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Automated detection and
detection range of primate
duets: a case study of the red
titi monkey (Plecturocebus
discolor) using passive
acoustic monitoring
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Quito, Ecuador
Passive acoustic monitoring (PAM) – an approach that uses autonomous

acoustic recording units (ARUs) – can provide insights into the behavior of

cryptic or endangered species that produce loud calls. However, extracting

useful information from PAM data often requires substantial human effort,

along with effective estimates of the detection range of the acoustic units,

which can be challenging to obtain. We studied the duetting behavior of pair-

living red titi monkeys (Plecturocebus discolor) using PAM coupled with an open-

source automated detection tool. Using data on spontaneous duetting by one titi

pair, combined with recordings from two Song Meter SM2 ARUs placed within

their home range, we estimated that the average source level of titi duets was

~105 dB re 20 mPa at 1 m with an attenuation rate of 8 dB per doubling of

distance, and we determined that the detection radius for manual annotation of

duets in audio recordings was at least 125 to 200 m, depending on the approach

used. We also used a supervised template-based detection algorithm (binary

point matching) to evaluate the efficacy of automated detection for titi duets in

audio recordings using linear arrays of ARUs within a ~2 km2 area. We used seven

titi duet templates and a set of “off-target” howler monkey (Alouatta seniculus)

templates to reduce false positive results. For duets with a signal-to-noise (SNR)

ratio > 10 dB (corresponding to a detection radius of ~125 m) our detection

approach had a recall (the number of all duets that are correctly detected) of 1.0.

Performance decreased when including duets with a lower SNR (recall = 0.71,

precision = 0.75). The fact that multiple lines of evidence suggest an effective

detection radius of 125 to 200 m for titi duets across upland terra firme and

seasonally flooded forest lends support to our findings. We suggest that PAM
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studies of other cryptic but vocally active species would benefit from following

similar experimental and analytic procedures to determine an ARU’s effective

detection radius and to improve the performance of automated

detection algorithms.
KEYWORDS

automated detection, autonomous recorders, duetting, attenuation, passive acoustic
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1 Introduction

Duetting is an interactive form of acoustic communication that

is relatively common in some pair-living species of tropical birds,

such as Thryothorus wrens and Cercomacra antbirds (Hilty, 2003;

Slater and Mann, 2004; Hall, 2009), but can also be found in pair-

living mammals, particularly primates (Méndez-Cárdenas and

Zimmermann, 2009). In primates, duets are considered “loud

calls”, i.e., species-specific intergroup vocal signals that are

structured to propagate over long distances (Waser and Waser,

1977; Mitani and Stuht, 1998). Duetting has been found in all

examined species in the subfamily Callicebinae (genera Callicebus,

Cheracebus, Plecturocebus: Caselli et al., 2014; Adret et al., 2018), all

but two species of the south-east Asian gibbons (family

Hylobatidae, Geissmann, 2002), the lemurs Indri indri (Pollock,

1986) and Lepilemur edwardsi (Méndez‐Cárdenas and

Zimmermann, 2009), the genus Tarsius (Groves and Shekelle,

2010), and in the colobine Presbytis potenziani (Tilson and

Tenaza, 1976; Sangchantr, 2004). The structure of duets can vary

considerably among primate taxa. For example, pair mates may

coordinate their vocalizations to overlap with one another, as seen

in titi monkeys (Müller and Anzenberger, 2002; Adret et al., 2018),

or to alternate with the partner’s vocalizations, as seen in gibbons

(Fan et al., 2009). Numerous functional hypotheses have been

suggested to explain the evolution of duetting behavior in such a

diverse set of primate species. These hypotheses can be categorized

based on the presumed audience for the vocalization: the pair mate

versus other nearby conspecifics. As a pair-mate focused behavior,

duetting has been suggested to have evolved as a mechanism to

initially form and later maintain the pair-bond (Geissmann, 1999;

Fan et al., 2009). As behavior directed at nearby solitary individuals

or neighboring pairs, duetting is proposed to have evolved as a

mechanism for mate-guarding (Fan et al., 2009), as a mechanism

for communicating with neighboring groups to maintain inter-

group spacing (Robinson, 1981; Dolotovskaya and Heymann,

2022), or as behavior associated with collective resource or

territory defense (Koloff and Mennill, 2013; Caselli et al., 2015;

Dolotovskaya and Heymann, 2022). These hypotheses are, of

course, not mutually exclusive.

Despite much interest from scientists, however, empirical tests

regarding the evolutionary origin and function of duet calls are

difficult to perform. This is in part because – although duetting is a

very conspicuous signal – it can be difficult to study in elusive
02
species that hide in vegetation while calling and that are sometimes

hard to habituate to human presence (Souza-Alves and Ferrari,

2010; Pinto et al., 2013). The use of passive acoustic monitoring

(PAM) provides a method that can circumvent some of these

difficulties in studying duetting in cryptic yet vocal animals. PAM

is an ecological survey tool that makes use of autonomous recording

units (ARUs) programmed to automatically record at a set schedule

and deployed at an ecologically appropriate temporal and spatial

scale (Deichmann et al., 2018; Sugai et al., 2019). Collecting data

with ARUs means human presence in the field can be limited. This

method has recently proven to be useful in monitoring taxa that are

rare or elusive such as Geoffroy’s spider monkeys (Ateles geoffroyi,

Lawson et al., 2023), Hainan gibbons (Nomascus hainanus, Dufourq

et al., 2021) and black lion-tamarins (Leontopithecus chrysopygus,

Zambolli et al., 2023). Although the use of ARUs has great potential

for longitudinal monitoring at relatively low cost, it requires careful

consideration to calibrate the methodology used to the species

of interest.

One important consideration pertains to the propagation and

attenuation of vocalizations in different habitats and under different

ecological conditions, which can have a major but often overlooked

impact on the detection ranges of ARUs across a landscape.

Attenuation is commonly discussed in terms of two factors:

spherical spreading and excess attenuation. Spherical spreading

refers to the natural decrease in sound intensity as soundwaves

propagate outward in all directions (e.g., in the shape of a sphere)

from a source. In addition to spherical spreading, excess attenuation

encompasses additional factors such as scattering (resulting from

the interruption of soundwave paths by objects in the environment)

and absorption (where sound energy is absorbed by another

medium like soil or water) (Bradbury and Vehrencamp, 1998).

Source level, frequency range, and call duration are variables that

can affect the propagation of vocalizations (Waser and Brown, 1984;

Nemeth et al., 2006). For a given frequency, the louder the source

level (typically operationalized as the intensity of the sound at

1 meter from the source) of the primates’ vocalizations, the further

the call will propagate (Bradbury and Vehrencamp, 1998).

However, source levels are known or can be estimated for only a

few primates (Table S1, Supplementary Material). Lower frequency

sounds attenuate less quickly due to their longer wavelengths

(Bradbury and Vehrencamp, 1998), which is why primate loud

calls tend to have lower frequencies than other vocalization types

(Mitani and Stuht, 1998). Habitat characteristics, including canopy
frontiersin.org
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density, ambient noise levels and topography, as well as weather

conditions such as temperature, humidity and wind speed also

affect propagation distances of calls (Ellinger and Hödl, 2003;

Darras et al., 2016; Gibb et al., 2019). Excess attenuation

disproportionately affects vocalizations in heavily forested

environments like rainforests, where dense vegetation and

complex structures contribute to increased absorption and

scattering (Brown and Waser, 2017). However, certain frequency

ranges may be less affected by attenuation, creating a “sound

window” that is more suitable for long-distance communication

(Waser and Brown, 1984). Consequently, selection pressures may

lead to the emergence of long-distance vocalizations that have much

of their intensity within these sound windows of lower attenuation,

even resulting in acoustic differences between populations of the

same primate species inhabiting different habitats (Sugiura et al.,

2006). When recording vocalizations with an ARU, various factors

such as device settings, height above the ground of the recorder and

microphone (Padgham, 2004; Rempel et al., 2013; Darras et al.,

2020), as well as the direction of an animal’s vocalizations (Pérez-

Granados et al., 2019) also influence the distance at which calls can

be recorded.

The use of ARUs allows us to expand the spatiotemporal scale

of our research, but often results in the accumulation of vast

amounts of audio data that need to be processed. Manually

processing audio recordings to identify the start and stop times of

vocalizations of interest (an approach known as annotation) is

time-consuming and prone to error and bias. For example, if

recordings are being reviewed by multiple observers, then

differences in experience or perceptual abilities may be an

additional source of variation that needs to be accounted for in

analyses (Swiston and Mennill, 2009). Similarly, if recordings are all

reviewed manually by the same listener, order effects or listener

fatigue could introduce error. For ARUs to be a valuable resource in

our scientific endeavors, automated tools for screening recordings

to detect and classify calls can be important for addressing this

bottleneck in data processing. Classification tools predict categories

of a signal of interest, such as its species or vocalization type

(Stowell, 2022). Detection tools either generate a binary

classification (presence or absence of a signal) for audio files or

generate the location of a signal of interest by listing its start and

end times within an audio file (Stowell, 2022). Moreover, automated

detection tools are often “deterministic algorithms”, meaning that

they can improve reproducibility in that, when well documented,

the same automated audio file processing pipeline, run on the same

dataset should yield exactly the same results. Still, automated

detection tools present their own set of errors and biases (Digby

et al., 2013), thus the tools are most valuable if the increase in time

and space that can be surveyed outweighs the limitations of the

detection algorithm and pipeline, or if the errors are more

predictable and consistent in nature than those associated with

manual annotation; however, error associated with human

annotations is often ignored (Swiston and Mennill, 2009; Digby

et al., 2013).

Methods for automated detection of acoustic signals within

audio recordings are often machine learning-based classification

algorithms that can be divided, conceptually, into “supervised”,
Frontiers in Ecology and Evolution 03
“semi-supervised”, and “unsupervised” approaches. Whereas

supervised and semi-supervised methods use a set of training data

that is labeled by an observer (e.g., marking which audio files do and

do not have duets after manual inspection), an unsupervised

algorithm looks for patterns in the provided data without any

prior information given by a human observer. Some of the

commonly used supervised detection algorithms include Support

Vector Machines (SVM; Noble, 2006; Heinicke et al., 2015; Clink

et al., 2020), Gaussian Mixture Models (GMM; Bishop, 2006;

Janvier et al., 2013; Heinicke et al., 2015), and K-nearest

neighbors (Janvier et al., 2013; Bayestehtashk et al., 2014; Taunk

et al., 2019). Some other methods, like Hidden Markov Models

(HMM; Eddy, 2004; Porcaro, 2015) and artificial neural networks

(ANN; Krogh, 2008; Pozzi et al., 2012) can be used for supervised,

semi-supervised, or unsupervised classification. A variety of

automated methods have been used to detect primate acoustic

signals for at least 16 different primate species (Table S2,

Supplementary Material), although very few of these studies have

focused on primates of the Americas. In addition, automated

detection methods have rarely been used for identifying duetting

behavior (e.g., Schroeder and McRae, 2020; Szymański et al., 2021),

and, to our knowledge, only three studies have used automated

approaches with duetting primates: band-limited energy detection

in gibbons (Hylobates funereus, Clink et al., 2023) and

convolutional neural networks in gibbons (Nomascus hainanus,

Dufourq et al., 2021) and indris (Indri indri: Ravaglia et al., 2023).

In this paper, we describe our approach using PAM and an

open-source automated detection tool to study the duetting

behavior of red titi monkeys (Plecturocebus discolor). Red titis are

small-bodied, pair-living primates found in Colombia, Ecuador,

and Perú (Vermeer and Tell-Alvarado, 2015). Though mostly

cryptic, titi individuals produce loud calls of various types (e.g.,

solo calls, duets, and choruses) often in the early morning

(Robinson, 1981; Kinzey and Becker, 1983; Aldrich, 2006; Van

Kuijk, 2013; Dolotovskaya and Heymann, 2022). In the field, the

duet of one pair is often followed by response duets from

neighboring pairs (Caselli et al., 2015). The titis’ cryptic behavior

means that many duets are sung from within hard-to-observe areas,

such as vine tangles or the dense vegetation of sleeping trees (Kinzey

and Becker, 1983; De Luna et al., 2010). In addition, unhabituated

groups will often cut their calls short when people or other potential

threats are nearby. Using PAM, however, it is possible to record

duets and other loud calls from multiple groups without interfering

with the primates’ natural behavior.

Here we use multiple complementary datasets to explore a

number of important methodological issues relevant to using PAM

to study titi duetting behavior. These issues have general relevance

for PAM studies of other cryptic but vocally active species. First, we

determined the average source level of titi monkey duets using data

on spontaneous duetting by a titi pair, in combination with

recordings from two Song Meter SM2 ARUs within their home

range (hereafter “home range dataset”). Second, we examined the

detection radius of duets (the radius around a recorder in which

duets can be reliably recognized) on Song Meter recording devices

using standardized playbacks at known distances from an ARU

(hereafter “playback dataset”). Variation in ambient noise levels and
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other variables can change the detectability of a duet. Therefore, our

third aim was to determine the detection probability of duets within

the detection radius of the recorder by calculating the proportion of

all duets that were recorded by the ARU. Fourth, the ability to detect

vocalizations (by ear or on an ARU) is also influenced by the

intensity of the call in comparison to the intensity of ambient noise

and the amount of excess attenuation that affects the call as it

propagates through the environment. Therefore, we examined how

the signal-to-noise ratio (SNR) of duets decreases with distance

using a combination of the home range dataset, playback dataset

and audio recordings collected systematically during the early

morning hours (05:45 to 08:10) from ARUs placed along a series

of linear N–S transects from across the study area (hereafter

“transect dataset”). We also estimated the amount of excess

attenuation the duets experience on top of spherical spreading.

Then, using a supervised template-based detection algorithm

(binary point matching), we automatically detected the duets in

the audio of the transect dataset. We also used our data to evaluate

the SNR of duets that are detected by the automated algorithms and

used this result to estimate the detection radius of duets on the Song

Meter ARU. Finally, we highlight some methodological issues that

must be considered when using PAM and automated algorithms to

study duetting primates.
2 Methods

2.1 Study location

We conducted this study at the Tiputini Biodiversity Station

(TBS, 00°37’05” S, 76°10’19” W, 190–270 m a.s.l.), located on the

northern bank of the Tiputini River, in the province of Orellana in

Ecuador (Figure 1A). TBS is adjacent to the Yasunı ́ National Park
and is part of the larger Yasunı ́ Biosphere Reserve. The station’s

presence preserves a ~700 ha tract of primary tropical rainforest

consisting of mostly terra firme forest (lowland evergreen forest)

along with some várzea and igapó regions (two types of flooded

lowland evergreen forest) near streams, rivers, and a small lake.

Annual precipitation averages 2924 mm ± SD 267 mm and

temperature has a monthly average ranging from 23–25°C

throughout the year (Van Belle et al., 2018).
2.2 Study species

Three pairs of red titi monkeys and their offspring (groups K, L,

and B) were habituated and have been studied regularly at TBS since

2003 as part of a long-term comparative study of sympatric pair-

living primates (Van Belle et al., 2021). Our data on home range use

and vocal behavior (used to determine duet source levels, to

examine the detection probability of calls, and to measure

decrease of SNR with distance) were collected in the range of

group L in June and July of 2016. This group consisted of a male/

female pair that shared this range from at least March 2009 through

the period of this study. The pair had two offspring at the time
Frontiers in Ecology and Evolution 04
recordings were collected: a sub-adult male born in January/

February of 2014 and a juvenile female born in December of

2014. During the time group L was studied, in June/July of 2016,

the subadult male was seen chorusing with his parents and singing

solo calls. The juvenile female did not participate in any duets or

produce any loud calls on her own.
2.3 Audio data collection

2.3.1 Home range dataset
Our first dataset, the “home range dataset”, was collected with

the aim of estimating the source level of titi monkey duets,

characterizing duet propagation loss over distance, and

determining the detection radius of duets (the radius around the

Song Meter SM2 ARUs in which duets are recorded). We placed

two Song Meter SM2 ARUs (Wildlife Acoustics, Inc., Maynard,

MA, USA) equipped with two SMX-II omnidirectional

microphones each (frequency response 20–20,000 Hz) within

group L’s home range at a height of 12 m for 34 days from mid-

June to late July of 2016. Gain settings of the devices were left at the

default 48 dB. As the recorders had to be placed in the canopy with

the use of a slingshot and ropes, a combination of logistics and

home range knowledge determined the deployment location of the

recorders: we needed enough open space to use the slingshot, yet

this had to be a location in which group L frequently spent time.

Once a suitable location was found (Figures 1B, C), we recorded the

location of the SM2 ARUs using a Garmin 76Cx GPS. The ARUs

were attached perpendicular to one another to a metal frame so that

the four microphones on the two ARUs were all spaced apart

equally. The ARUs were set to record 24 hours per day at 16-bit

resolution with a 44 kHz sampling rate. Audio files were saved every

60 minutes in high-quality uncompressed (lossless) waveform

format (WAV). Batteries and SD cards were exchanged roughly

every 5 days.

2.3.2 Playback dataset
With our second dataset, the “playback dataset”, we aimed to

examine the detection radius, detection probability, and

propagation loss of duets in a more standardized way and at

larger distances than our home range dataset allowed for. We

played a 3-second clip of a duet previously recorded of group K

at different specified distances from a stationary recorder along two

trails in July of 2016. We attached a single SM2 ARU at a height of

12 m to a permanent canopy tower that was built around an

emergent kapok tree (Ceiba pentandra). The ARU was configured

to record at 16-bit resolution using a 44 kHz sampling rate. With

the use of a Garmin 76Cx GPS, we then created one trail with GPS-

mapped locations at 10, 25, 50, 75, 100, and 125 m from the base of

the tower and a second trail with GPS mapped locations at the same

distances plus additional locations at 150, 175 and 200 m from the

tower. The length of these trails was limited to 125 m and 200 m due

to geographical changes in the terrain.

At each of the locations along the trail SvK played the group K

duet using a Sony ICD-UX533 digital voice recorder connected to a
frontiersin.org
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Pignose Legendary 7-100 portable amplifier at a height of ~2 m.

Because the source level of titi monkey duets was unknown at the

onset of this part of the study, we repeated these recordings at 80, 90

and 100 dB re 20 mPa at 1m (A-weighted) along both trails so we

could analyze, post hoc, the data from the amplitude that is the

closest match to the estimated source level of titi duets. We

calibrated the three amplitude levels at 1 m from the Pignose

amplifier with an American Recorder Technologies sound level

meter. We repeated our playback recordings of all three amplitude

levels twice at each distance and did so on two consecutive

mornings: one morning with clear sunny weather and one

overcast yet dry morning.

2.3.3 Transect dataset
Our last audio dataset, the “transect dataset”, is mainly used to

evaluate the efficacy of a supervised template-based detection algorithm

(binary point matching) for automated detection of titi duets in audio

recordings. In addition, we use these data to examine how distance

influences the detection of duets using multiple ARUs spaced at regular

intervals along transects. The transect dataset comprises simultaneous

recordings collected by one of us (JB) between late January and early

March of 2013–2017 and originally intended for use in ornithological

studies (Blake, 2021). For this third dataset, JB collected simultaneous
Frontiers in Ecology and Evolution 05
recordings using a set of five Song Meter SM2+ ARUs placed at 200 m

intervals along 10 different N–S transects within the TBS study area.

Overall, these recorders were placed at a total of 50 locations, 25 in each

of two approximately 100-ha research plots (Figure 1B), i.e., they were

spread over an area of roughly 2 km2 and covered a range of

microhabitats and topographies. These plots were established in 2001

and contain trails every ~100 m from east to west and every ~200 m

from north to south. The grid is marked and GPS mapped every 50 m.

For each day of recording, JB deployed five devices along one of the

north–south grid lines in the plots at the intersections with the east–

west transects, leading to a total distance of 800 m between recorders at

opposite ends of the transect. The ARUs were positioned at 1.5 to 2 m

off the ground and configured to record 10-min audio files with 16-bit

resolution and using a 16 kHz sampling rate. The resultant 3600 second

audio files were saved in high-quality uncompressed (lossless)

waveform format (WAV).

The ARUs were programmed to start recording at 05:45 am and

stop recording at 08:10 am, as the vocal activity of birds typically

declines rapidly in the 2 hours following sunrise (Blake, 1992). Each

10-minute recording was separated by a 5-minute break, leading to

a collection of ten recordings per device for each morning of

deployment. Although the intermittent recording schedule and

restricted time frame of sampling did not allow us to capture all
B

C

A

FIGURE 1

(A, B) The study site at the Tiputini Biodiversity Station is located adjacent to Yasunı ́ National Park (dark green inset), Ecuador, on the left bank of the
Rio Tiputini. Recorders for the transect dataset were located in two 1x1 km plots located within or along the trail system of the station. (C) The gray
area marks the 95% kernel density home range for titi group L and the white diamonds are the locations of 12 duets recorded during behavioral
follows of group L that were also recorded by the SM2 ARU (orange square). The small black dots are GPS ranging locations collected at 20-minute
intervals while observers followed group L during field seasons from Oct to Jan 2015.
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titi monkey loud calls emitted in range of the recorders on any given

morning, our data show that this time frame is appropriate for this

study as 67.7% of all duets are heard before 07:30 (Figure 2). The

devices were left in their locations until they had collected two full

mornings of recordings without rainy weather and were then

moved to a new N–S transect within the plot until all 25

locations per plot (5 N–S transects × 5 ARUs per transect) had

been sampled. Batteries and SD cards were replaced as needed.
2.4 How loud are titi monkey duets and
what is their detection probability?

To evaluate when titi monkeys were most likely to sing duets,

we analyzed data collected by six observers that followed titi

monkeys between 2007 and 2016. From our long-term behavioral

database we determined the total number of hours these observers

spent in the field and the total number of duets they heard (either

from monkeys they were following or from other groups) during

this time. From these data, we calculated the duetting rate (number

of duets heard per 100 observer field hours) for each hour of the day

from 05:30 to 18:30, or from just before sunrise to just after sunset.

Most duets occur during the early morning (Figure 2). During the

2016 field season, we regularly followed group L from 05:30 to

~11:00, after which time duetting is infrequent. On mornings with

heavy rain, we would follow the group as soon as rain let up, usually

locating them still in their sleep tree. During follows, we used the

same model GPS to record the group’s travel path. As the monkeys

generally do not travel when duetting, we also recorded the

locations of all duet vocalizations emitted during the follow. We

also recorded data on the timing and duration of duet sequences as

well as any vocal responses of nearby groups.
Frontiers in Ecology and Evolution 06
To determine the detection probability of duets on the SM2

ARU in our home range dataset, we generated spectrograms of the

audio files from both ARUs from the same days and hour as each

duet in Raven Pro 1.6 (K. Lisa Yang Center for Conservation

Bioacoustics, Cornell Lab of Ornithology, Cornell University,

Ithaca, New York, USA) by applying a fast Fourier transform

with a 1024-point Hann window (3 dB filter bandwidth =

61.9 Hz), 50% overlap, and a 1024-point DFT, with time and

frequency measurement precision of 32 ms and 15.6 Hz. We then

reviewed the sections of the recording where we expected, based on

follow data, to find a duet. We matched the timing and duration of

the duet sequences to ensure we could distinguish between group

L’s duets and other duets. We calculated the SNR for the duet on all

four spectrograms (one for each microphone) and used only the

recording from the microphone with the highest SNR value as that

presumably represents the microphone oriented most directly

towards the monkeys.

From the home range dataset, we also estimated the source level

of the titi duets using the R package ‘PAMGuide’ (Merchant et al.,

2015). The absolute received level of the duet was measured from a

5-second segment at the start of the duet. PAMGuide allows for

calculating the absolute received level of the signal when relevant

hardware specifications are known. In our case, we provided

PAMGuide with information on transducer sensitivity (−36 dB re

1 V/mPa at 1 kHz), gain settings (+48 dB), and the voltage of the

analogue-to-digital converter (1.414 V). Then, using the resulting

calibrated amplitude measurements for the duets as recorded on the

ARU and the distance between the recorder and the vocalizing

monkeys (calculated using the GPS coordinates of both points), we

applied the inverse square law to estimate the source level of the

duets at 1 m from the monkeys. Importantly, the average source

level resulting from this calculation fails to account for the effect of
FIGURE 2

Temporal distribution of duet calls. Gray bars show the distribution of total observer field time (hundreds of observation hours between 2007 and
2015 for six observers focused on following titi monkeys) per hour of the day between 05:30 and 18:30, and the black line shows the number of
duets recorded per 100 observer hours in field in each hourly block. Duetting is concentrated in the window from shortly before sunrise to the first
few hours after sunrise (05:30 to 08:30).
frontiersin.org

https://doi.org/10.3389/fevo.2023.1173722
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


van Kuijk et al. 10.3389/fevo.2023.1173722
excess attenuation and how this covaries with distance between the

source and a recorder. We therefore calculated the average source

level for the two duets closest to the recorder and used this value as a

minimum estimate of the actual source level, from which we

inferred the theoretical decay in SPL with distance assuming

spherical spreading only. We then compared theoretical to

observed SPL values at different distances between source and

recorder to estimate the effect of excess attenuation on titi duets.
2.5 What is the detection radius of titi
duets using our ARU setup?

We used both the home range and playback datasets to

determine the detection radius of duets on our ARU setup.

Because the duets in our home range dataset were limited in their

distance from the recorder, the playback dataset allows us to expand

upon the home range dataset results by increasing the tested

distances. Spectrograms for the playback dataset audio files were

created using identical specifications as discussed in Section 2.4 for

the home range dataset. We only created spectrograms from the

microphone most directly pointed towards the playback locations.

The spectrograms were inspected by two observers who had no field

experience with titi monkeys, but who were trained in annotating

duets in audio recordings in Raven Pro. The observers were naive

with respect to the timing of the duets. The observer-generated data

was used to determine the proportion of playback stimuli at each

playback distance that was manually recognized and annotated.
2.6 How does distance influence detection
of titi monkey duets?

To determine at what distance from an ARU duets can still be

detected in audio recordings, either by human observers or machine

learning algorithms, we examined the relationship between the

signal-to-noise ratio (SNR) of duets extracted from recordings

and distance between the caller and the recorder in all three

audio datasets (see Section 2.3).

For our transect dataset, we initially reviewed only data from

one randomly chosen ARU from each series offive to avoid pseudo-

replication by having the same duet reflected in the dataset more

than once. This left us with a total of 230 hours of acoustic data. To

locate duets within the audio files, SvK and one other observer

generated spectrograms of the recordings in Raven Pro 1.6 using the

same settings described in Section 2.4. The resulting spectrograms

were again manually inspected by paging through 75 second

windows at a time and playing back portions of the files to

identify duets that were hard to see in the spectrogram yet still

audible. Each detected duet was then assigned a subjective “quality

score” ranging from 1 through 4, based on the listener’s qualitative

perception of the recording (Figure 3). We scored duets as quality 1

when the monkeys were calling close enough to the recorder that

they could be heard moving through the vegetation or giving quiet

contact vocalizations. Duets were assigned quality score 2 when the

titis could no longer be heard moving, but the image of the call in
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the spectrogram showed evidence of multiple harmonics. Quality

score 3 was assigned to duets that were audible to the listener and

had clearly visible fundamental frequencies but showed far fewer

harmonics than calls of quality score 1 or 2. Quality score 4 was

assigned to duets that were barely audible and had only faint

fundamental frequencies visible in spectrograms.

For a subset of the duets detected through the manual

procedure described above, we then investigated whether the

same duet could be heard on any of the other four devices that

were recording at the same time. For this subset, we investigated all

duets for which we had assigned qualitative quality scores of 1

through 3 (N=17 duets) plus an additional 16 duets assigned a

quality score of 4. We then calculated the SNR of the calls appearing

simultaneously on each of the recorders to determine which of the

five recorders the group was closest to. SNRs were calculated using

Raven Pro by drawing a 5-second selection box with a frequency

range of 700–1400 Hz around the start of a duet. In case of

interference of other organisms’ vocalizations at the start of a

duet, we used the first 5-second section thereafter without

interrupting calls of other animals. A second selection box with

an identical duration and frequency range was drawn around a

section of ambient noise shortly before the duet or, in case of

interfering noise, directly after the end of the duet (e.g., Figure 3A).

The 700–1400 Hz frequency range was chosen as it encompasses the

peak frequencies (i.e., the loudest spectral components) of a duet

(which are most likely to propagate furthest through the

environment). The duration was chosen such that it is fairly easy

to find a suitable area of ambient noise in the recording without

other loud vocalizations or other interfering noises.

For the 5-second selection boxes around the duets and ambient

noise, we used Raven to calculate the “Inband Power (dB)”. We

converted the inband power measurements for these two selections

from dB to linear units using the formula y = 10x/10, where x is the

inband power in dB and y is the inband power in linear units. We

then calculated the SNR in linear units using the formula SNRlinear =

(y Signal − y Noise)/y Noise, where y Signal and y Noise are the

inband power in linear units for the duet and ambient noise

selections, respectively. Last, we turned the SNR from linear units

back into decibel units by using SNRdecibels = 10 × log10 (SNRlinear)

(K. Lisa Yang Center for Conservation Bioacoustics, 2022). Because

the distance between titi monkeys and ARUS in the transect dataset

is unknown, we used the SNRs of the different datasets to determine

at what distance from the ARU the SNR is too low for a duet to

reliably be detected by the algorithm.
2.7 How well do automated detection
algorithms perform?

We examined the efficacy of automated detection of duet calls in

audio files from our transect dataset using the binary point

matching (BPM) template matching algorithm implemented in

the monitoR package (Katz et al., 2016) for the R statistical

programming environment (version 4.1.2; R Core Team, 2022).

Because titi monkey duets are diverse and change in pattern

throughout the duration of the song, we chose a random selection
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of duets to create templates from in order to capture the full

variation of these complex vocalizations. To increase the odds of

detecting duets at short and long distances from the recorder, we

also chose high-quality duets at a range of distances to build

templates from. We created seven different templates that we

used to screen each audio file: one duet was taken from a short-

distance recording made with a Marantz PMD 660 digital recorder

and Sennheiser ME67 shotgun microphone with K6 power module,

and 6 duets with various assigned quality scores extracted from the

transect dataset. BPM templates are created from these reference

calls by specifying a frequency range, time range, and amplitude

cutoff as multidimensional parameters. We chose a −25 dB

amplitude cutoff and 10-second time frame for all templates

because this created the clearest distinction in similarity scores

between test files containing duets and test files that did not contain

duets. In addition, the frequency range was specific to each

template, to accommodate differences in SNR of the duets and

surrounding ambient noise. The minimum frequency ranged from

200 to 300 Hz and the maximum frequency ranged from 1400 Hz

(duets with lower SNR) to 1800 Hz (duets with higher SNR)

depending on the number of visible harmonics.

Duet templates were initially tested against a validation

dataset. This was a sample from the transect dataset that

included 8 days of data (i.e., 80 10-minute audio files), and
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included the presence of two known titi duets, one titi burst

gobble (a loud call of shorter duration but similar frequency range

to the duet, similar to Caselli et al.’s (2014) “type 1 call” and

Robinson’s (1979) “short sequence”), five howler monkey

(Alouatta seniculus) roars, and a multitude of other common

loud vocalizations such as bird calls in a similar frequency to titi

duets that could potentially cause false-positive detections. We

then tested multiple similarity cut-off scores as the detection

threshold for a titi monkey, identifying a cut-off score of 4.0 as

one that led to a low number of false negatives and a low number

of false positives in our test data.

We then applied this detection pipeline to a large test dataset of

1099 additional 10-minute audio files from the transect dataset (and

excluding the eight days used for training the data) and compared

the results of that detection process to manual annotation of the

same 1099 files. For each audio file inspected, we calculated an

average maximum similarity score for the set of seven titi templates

(and always excluding scores for when a particular template was

applied to the file it was extracted from). The automated detection

algorithm’s performance can be visualized using a confusion

matrix, which classifies true positives (TP), true negatives (TN),

false positives (FP), and false negatives (FN) (Novaković et al., 2017;

Flach, 2019). That is, a true positive is when the algorithm correctly

detected a titi duet in an audio file, whereas a false positive is when a
A

B DC

FIGURE 3

The SNR of a signal was determined by comparing the root mean square amplitude of a 5-sec, 700–1400 Hz window at the onset of a signal of
interest (red box labeled “Signal”) to a comparably-sized window with the same frequency range in a low-noise area of the recording (red box
labeled “Noise”). The onset of a duet was determined by locating the first loud note (the “bellow”) after the fainter introductory notes. (A–D) show
examples of duets assigned by listeners to four subjective “quality” scores.
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different vocalization or ambient noise was mistaken for a titi duet.

True negatives are files that the algorithm correctly classified as not

containing a titi duet and false negatives are files containing a titi

duet that the algorithm failed to detect.

The initial analysis with this set of templates (Pipeline 1) used

only a mean similarity score cut-off of 4.0. Given that a low SNR

value for a signal of interest in recordings is known to lead to

decreased algorithm performance (Spillman et al., 2017), to evaluate

the role of SNR on algorithm performance for titi duets, we

modified our dataset to exclude quality score 4 duets. Pipeline 2

then used the mean similarity score of 4.0 on this modified dataset.

Because large numbers of howler monkey roars were erroneously

classified as titi duets (i.e., false-positive detections), we created an

additional three templates specific to howler monkeys and screened

recordings with these templates as well. Pipeline 3 used our original

test dataset and scored a detection when two conditions were met:

(1) the titi template score was higher than 4.0 and (2) when the titi

template score exceeded the howler template score for the audio file.

Last, Pipeline 4 used the detection rule including the howler

monkey templates and the modified dataset that excluded quality

score 4 duets. More detailed description of algorithm performance

and the four pipelines can be found in the Supplementary Material

(Data Sheet 1).

We used common metrics to evaluate the success of the four

pipelines: precision, recall, balanced accuracy, and the F1 score.

Precision is the portion of all positive detections that are correct

detections. Recall (also called sensitivity) is the proportion of all

duets in the manually scored dataset that are correctly detected.

Recall suggests how well the algorithm detects duets, whereas

precision stipulates the reliability of the algorithm. Accuracy is

the proportion of all predictions that were correct, whether those

are detections or nondetections. Because this number would be

skewed by a large number of true negatives, we use balanced

accuracy instead, which is calculated as the average of recall and

specificity (i.e., the proportion of true negatives divided by all

negatives). The F1 score is the harmonic mean of precision and

recall. One major point of criticism of automated detection

procedures such as those implemented in monitoR is that there is

often a high number of false-positive detections (Barclay, 1999;

Swiston and Mennill, 2009). As red titis at our study site duet

infrequently, false negatives are of larger concern as this would

reduce the already small number of duets that naturally occur in any

dataset. However, we attempted to find a balance that keeps both

the number of false negatives as well as false positives reasonable.

Last, as the detection probability of a duet strongly depends on its

SNR, we calculated the SNR of all duets to investigate how SNR

influences detection probability of the duets.
3 Results

3.1 How loud are titi monkey duets and
what is their detection probability?

Five observers recorded 820 duets in 10,439 hours in the field

between 2007 and 2016. Only 28 (3.3%) of these duets were
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recorded before 06:00 am, yet between 05:30 and 06:30 we

recorded the highest number of duets per 100 hours at 55.6. We

recorded 41.5 duets per 100 hours between 06:30 and 07:30, after

which the number of duets per 100 hours strongly

declines (Figure 2).

A total of 13 duets were recorded in the home range dataset for

group L during behavioral follows on nine of the 34 days that the

ARU was active, meaning they sang roughly once every 3 to 4 days.

Of the 13 duets, two were spontaneous calls (i.e., either the first calls

of the day detected by the observer or the first ones visible in the

audio recordings) that often elicited responses from neighboring

groups. The other 11 duets were responses to nearby groups’ duets

as we heard calls of other groups shortly before the onset of group

L’s duet. The earliest duet from group L was recorded at 06:18 and

the latest duet occurred at 09:35. The duration of duets varied from

33 seconds to 6 minutes and 53 seconds, with an average length of 3

minutes and 20 seconds.

We were able to locate 12 of these 13 duets in the ARU

recordings (Figure 1C). Post-hoc inspection of the data revealed

that the missing (not recorded) duet resulted from technological

difficulties with the recorder. The calculated distance between the

GPS points of the ARU and duetting locations ranged from 38 to

125 m. Mean source level of the 12 duets as estimated based on

spherical spreading only was 84.6 dB re 20 µPa at 1 m ± SD 4.9 dB.

The mean amplitude estimated on the basis of the two closest duets

only was 91.9 dB re 20 µPa at 1 m (see also Table S1, Supplementary

Material). This increase in estimated source level in comparison to

the overall average demonstrates that duets are affected by excess

attenuation in addition to spherical spreading. Figure 4A

demonstrates the difference in the theoretical decay in SPL with

only spherical spreading (red line) as compared to the observed

decay in our dataset (blue line), assuming an SPL at 1m of 91.9 dB re

20 µPa as estimated above. Figure 4B shows the estimated excess

attenuation in relation to distance by plotting the difference in SPL

between the theoretical and observed curves of Figure 4A.

Additionally, using our playback dataset, it was possible to

estimate the amount of excess attenuation that duets experience

at different distances from a speaker by comparing theoretical

versus observed received levels for a given source level (100 dB re

20 mPa at 1 m, Figures 4C, D). We estimated that the two closest

calls recorded in our home range dataset would have an average

excess attenuation ~12.9 dB (Figure 4D), suggesting that the source

level for these calls would actually be ~105 dB re 20 mPa at 1 m (91.9

+ 12.9 = 104.8) (Table S1, Supplementary Material). Moreover,

using our playback dataset, we found that excess attenuation

averaged 2 dB per doubling of distance, in addition to the 6 dB

attenuation due to spherical spreading. This leads to an estimated

total attenuation rate of 8 dB per doubling of distance for titi duets

at TBS.
3.2 What is the detection radius of titi
duets using our ARU setup?

In the home range dataset for group L, the furthest duet from

the ARU location, at 125 m, was easily visually detected in the
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spectrogram, suggesting that SM2 recorders have a minimum

detection radius of 125 m. Our playback experiment allows us to

expand on these findings. We focused our analysis on the playbacks

conducted at 100 dB re 20 mPa at 1 m because this most closely

matches our average estimated source level for titi monkey duets.

The visibility of duets in spectrograms was comparable to duets

with a quality score of 1 through 3 in our transect dataset. Duets

were clearly detectable by visual inspection of the spectrograms,

showing little loss of harmonic structure for the closest duets and

some loss of the highest harmonics for more distant duets. That is,

we never had to listen to audio files to confirm the presence of a

duet, even at our furthest tested distance of 200 m. These results

suggest we can increase our estimated detection radius from 125 to

at least 200 m.
3.3 What is the detection probability of a
duet within the detection radius?

For our home range dataset, all the 12 duets recorded during

behavioral follows were also captured on the ARU audio files (one

additional duet recorded during behavioral follows took place

during a time when the Song Meter malfunctioned). Based on

this limited sample, titi monkey duets have a detection probability

of 100% when given within a 125-meter radius around the Song

Meter ARU.
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In manual review of audio files generated in our playback

experiments, naïve observers annotated all playback duets at all

distances up to our maximum distance of 200 m. Again, this result

suggests that playback recordings conducted at 100 dB have a

detection probability of 100% up to at least 200 m.
3.4 How does distance influence detection
of titi monkey duets?

For our transect dataset, duets were never detected on all five

recorders simultaneously. Five duets (15.2%) were only heard on

one recorder; 18 duets (54.5%) were heard on at least one recorder

200 m away from the ARU where the call was recorded with the

highest SNR; 10 duets (30.3%) were heard on at least one ARU 400

m away; and no duets were heard on ARUs 600 or 800 m away from

the one where the highest SNR was found. The highest SNR values

seen in any set of five simultaneous recordings (i.e., at the recorder

that the monkeys were presumed to be closest to) ranged from 1.2 to

32.5 dB. In Figure 5A, we plot the relationship between SNR and

distance from the recorder with the highest SNR value, splitting

these data into three different sets of boxplots based on the listeners’

assignment of a quality score to the recording on the ARU with the

highest SNR. Though we cannot relate SNR to precise distances

between the recorder and primates, our data nonetheless clearly

show how SNR decreases with distance. Notably, for all quality-
B

C D

E F

A

FIGURE 4

(A) uses the average source level of the two duets recorded closest to the ARU to calculate the theoretical decay in SPL over distance assuming
spherical spreading only (red dots). The blue dots show the observed SPL of the recorded duets. Both sets of data points are fitted to a line of best
fit of exponential decay (red and blue lines). (B) shows the estimated effect of excess attenuation on the titi duets by calculating the difference in SPL
of the theoretical and observed values at 25 m intervals between 0 and 200 m. (C, D) show the decay in SPL and estimated effect of excess
attenuation, respectively, for our standardized playback experiments. The vertical red lines in (D) reflect the distances of the two duets recorded
closest to the ARU (38.2 and 48.4 m). The excess attenuation values for those two duets were then used to adjust our home range dataset values for
excess attenuation, reflected in (E, F). For the home range and playback datasets, ARUs were positioned 12 m above ground.
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score categories assigned to the call on the recorder where the SNR

was highest, the SNR of that same call on the next closest recorder

(200 m away) is dramatically lower, and calls were virtually never

detected 400 m away.

The home range dataset (Figure 5B) also documents a similarly

rapid decline in SNR with distance. The closest two calls at 38 and

43 m from the ARU have a SNR of 34.4 and 39 dB, respectively. The

furthest duet was recorded at 125 m and has a SNR of 10.8 dB. The

playback dataset (Figure 5C) shows a similar trend, though the SNR

does not decrease as rapidly as in our home range dataset.
3.5 How well do automated detection
algorithms perform?

Our observers manually annotated 93 titi monkey loud calls in the

transect dataset and classified 83 as duets, nine as burst gobbles, and

one solo call. Because duets, solo calls, and burst gobbles likely have

different functions (Robinson, 1979; Caselli et al., 2015) and possibly

different detection radii, we only use duets in this study. Of the 83 duets

we manually annotated in the transect dataset, two were used in

training the algorithm, leaving 81 duets in the test dataset for the

algorithm to detect. Of these duets, zero were assigned a qualitative

quality score of 1, three were scored as quality 2, 14 were scored as
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quality 3, and 64 were scored as quality 4. Both howler monkey roars

and titi duets that occasionally overlapped with each other were found

in 19 audio files. Of the 1016 files that did not contain titi duets, 231

contained howler monkey roars.

We set the similarity cut-off score at 4.0 as the detection

threshold for a titi monkey duet. Using this threshold, we ran

four different detection pipelines using different combinations of

the test dataset and binary matching templates. Pipeline 1 utilized

the full test dataset (N = 81 duets) with titi duet templates and

registered a “positive” detection when the mean titi template score

was greater than 4.0. Duets categorized as quality 4 ranged in SNR

from 0.1 to 11.2 dB with a mean and SD of 3.8 ± 2.9 dB. Quality 2

and 3 duets ranged in SNR from 5.9 to 27.1 dB with a mean of 12.9

± 5.6 dB. Of all the true-positive detections, the SNR ranged from

8.5 to 27.1 dB with a mean of 13.2 ± 5.4 dB. The duets that were not

detected ranged in SNR from 0.1 to 9.9 dB with a mean of 3.7 ±

2.7 dB. Duets with a SNR > 10 dB were detected correctly 100% (10

out of 10) of the time, whereas only 12.6% of duets with a SNR <

10 dB were detected (9 out of 71). For Pipeline 2, we used a modified

dataset that excluded the 64 quality score 4 duets (Figure 3D) as

manual detections. This improved the balanced accuracy, recall and

F1-score of the algorithm (Table S3, Supplementary Material). In

Pipeline 3, we used the full test dataset of 81 duets and additionally

included the howler monkey templates in the detection rule such
B C

A

FIGURE 5

Changes in SNR with distance from the ARU, plotted for (A) transect dataset, (B) home range dataset, and (C) playback dataset. For the transect
dataset, the data points represent each detected duet on each recorder. Data from the recorder with the highest SNR for each duet is plotted as
distance 0, and points for distances at 200 m, 400 m, etc. represent the same duets detected on increasingly distant recorders. The first panel of
boxplots contains duets with a maximum quality score of 1 or 2 at distance 0, the second panel contains duets with a maximum distance score or 3,
and the third panel contains boxplots with a maximum quality score of 4. The boxplot’s upper and lower boundary represent the first and third
quartiles of the SNR and the bold line within the box represents the median SNR of the data points for that recorder. For the home range and
playback datasets, the data points represent each duet we found in the audio data. The gray area around the blue regression line demonstrates the
95% confidence interval. For the transect dataset, ARUs were positioned 1.5 to 2 m above ground whereas for the home range and playback datasets
the ARUs were located 12 m above ground. Lower SNR values measured at close distance from the source in (A), panel 1 may be explained by the
height of the ARUs which were positioned closer to the ground as compared with (B, C).
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that a positive detection was recorded when the mean titi template

score was greater than 4.0 and the mean titi template score exceeded

mean howler template score. Pipeline 3 had a much higher

precision rate than the first two pipelines, but slightly reduced

accuracy and recall. Pipeline 4 used the modified test dataset that

excluded quality 4 calls as well as the howler monkey templates.

Here, the algorithm detected 12 of 17 duets (70.6%) and recorded 5

false negatives (Table S3, Supplementary Material). The algorithm

also successfully distinguished other titi loud calls from duets; the

one solo call and nine burst gobbles in our testing data were now

correctly identified as negative duet detections. The false positives

remained identical to Pipeline 3. Pipeline 4 had a precision of 0.75, a

recall of 0.71, and an F1-score of 0.72. More detailed descriptions of

the results of all four Pipelines, including confusion matrix results,

are available in the Supplementary Material.
4 Discussion

4.1 Study limitations

In this study, we show that PAM in combination with

automated detection of duets can be a useful method of data

collection for duetting primates provided that appropriate

attention is paid to understanding particulars of the system under

investigation, e.g., about source level and attenuation with distance

and about how other animals’ vocalizations might interfere with

successful detection. We determined that the source level of titi

duets is ~105 dB re 20 mPa at 1m with an attenuation rate of 8 dB

per doubling of distance. The detection radius for manual

annotation of duets in audio recordings using our ARU setup is

at least 200m but is much lower for the automated detection

algorithm. This result is explained by the poor detectability of

duets with a low SNR. Algorithm recall for duets with an SNR >

10 dB was 100%, corresponding to a detection radius of ~125m. The

SNR of most duets drops below 10 dB for distances beyond 125 m

and leads to poor recall. These results highlight important

considerations to be made in PAM research design when

choosing to analyze data using manual annotation versus

automated detection of calls of interest.

Our study has three main limitations, however. First, we used

ARUs, Wildlife Acoustics’ Song Meter SM2 and SM2+, which are

no longer commercially available. Though this is a problem that is

likely to occur with many recorders over time as technological

advancements are made, it does make replicability of studies and

generalization of results more difficult due to differences in recorder

and microphone specifications. Second, some of our datasets are

rather small. For example, our observational data on home range

use and vocal activity consists of data from only one focal pair of titi

monkeys. We detected 13 duets on nine of 34 observation days,

which puts the singing rate of this group at once every 3 to 4 days.

The small dataset in combination with the infrequent nature of

duets in this species means that our results cannot be extrapolated

with confidence to other populations or groups of Plecturocebus

discolor, because it does not consider intergroup variation or

potential changes in singing rate throughout the year
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(Dolotovskaya and Heymann, 2022). On the other hand, our

transect dataset were collected across a much larger geographic

area (roughly 2 km2), and with titi home range size estimates from

the TBS region ranging from 4.1 ha or 0.041 km2 (Van Belle et al.,

2021) to 6.1 ha or 0.061km2 (Dacier et al., 2011), this area should

contain an estimated 33 to 49 titi monkey pairs. Undoubtedly, a

similar study with an extended temporal or spatial scale could lead

to more robust results, especially considering the infrequent nature

of duet calls in this region. Third, the trails along which we

conducted our playback experiments were not long enough to

document when the detection probability of duets decreased as

calls were always detectable even at the largest playback distance of

200 m. Therefore, the full extent to which distance affects the

detectability of duets in recordings relying either on manual

annotation or automated detection remains an empirical

question, though our results suggest a minimum detection radius

of 125 to 200 m.
4.2 Passive acoustic monitoring

Using 12 naturally occurring duets recorded within the home

range that were picked up by two ARUs, we estimated that the source

level of the titi duets is ~92 dB re 20 mPa at 1 m when assuming only

spherical spreading and ~105 dB re 20 mPa at 1 m when we correct

for excess attenuation. The source level of titi monkey duets is similar

to the estimated source levels of other primate loud calls such as

howler monkey roars and gibbon great calls (Sekulic, 1983;

Whitehead, 1995; Terleph et al., 2016). However, detailed

comparisons are complicated by inconsistencies in the reporting of

excess attenuation levels (Table S1, Supplementary Material). For

example, sound pressure levels for howler monkeys have been

reported as 90 dB at 5 m (Whitehead, 1995) and 70 dB at 50 m

(Sekulic, 1983). Using the inverse square law, both estimates would

result in a source level of 104 dB at 1 m, but this does not account for

excess attenuation. This means that when the attenuation rate (the

combination of both spherical spreading and excess attenuation) of a

call of interest in a specific environment is unknown, source levels are

likely to be underestimated. This can lead to incorrect assumptions

on a call’s detection radius and detection probability. However, it

bears noting that excess attenuation does not always lead to an

increased decay in SPL. In some cases, reflection of sound waves can

cause constructive interference, leading to less attenuation than

predicted even through spherical spreading alone (Hedwig et al.,

2018). Here, the attenuation rate of duets was estimated to be 8 dB

per doubling of distance in a primary tropical rainforest: 6 dB due to

spherical spreading plus an additional 2 dB of excess attenuation per

doubling of distance. These results are supported by similar findings

for comparable habitats. Ellinger and Hödl (2003) estimated excess

attenuation to be 10 dB at 50 m in lowland rainforest in Venezuela

and Waser and Brown (1986) estimated excess attenuation at

evergreen rainforests in Kenya and Uganda to be ~7 dB at 50 m,

both slightly lower than our estimate of 13 dB at 50 m (Figure 4).

Excess attenuation levels vary depending on variables such as call

frequency, height above the ground, and time of day (Waser and

Brown, 1986; Ellinger and Hödl, 2003; Sugiura et al., 2006).
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The duet furthest from the ARU in our home range dataset was

125 m away. This limits any conclusions for an estimated detection

radius and probability to this distance. When analyzed manually by

observers, all duets were easily visible in spectrograms and no duets

were missed, placing the detection radius at 125 m with a detection

probability of 1. In our playback dataset, duets were also

consistently detected by human observers at all tested distances

up to the maximum of 200 m with a detection probability of 1,

suggesting the actual detection radius for the Song Meter SM2

ARUs when relying on manual annotation by human observers is

greater than 200 m. We did not conduct our playbacks at distances

beyond 200 m because of strong changes in the slope of the terrain

that we suspected would have significantly altered the habitat

acoustics such that data beyond 200 m would have been

unreliable. However, a recent study shows that slope does not

affect the ability of ARUs to detect signals of interest (Shaw et al.,

2022). Instead, the orientation of microphones and vocalizing

primates plays a more important role in ARU detection radius

(Shaw et al., 2022). Indeed, our playback dataset may slightly

overestimate the detection radius because we always oriented the

speaker directly towards the ARU when conducting playbacks,

while this would not necessarily be the case for naturally

occurring duets, thereby influencing the likelihood of an ARU

picking up the calls. This becomes apparent when we compare

confidence intervals around the regression lines in Figures 5B, C;

the range of variation in SNR of naturally occurring titi duets in the

home range dataset leads to a larger confidence interval around the

relationship between SNR and distance, whereas playback dataset

show less variation in SNR data due to the consistent orientation of

the speaker, leading to a much narrower confidence interval around

the inferred relationship. Combining our different datasets and

taking into account their limitations, the detection radius within

which the detection probability is close to 1 when audio data are

verified by human observers is ~200 m.
4.3 Automated detection

Overall, our automated detection protocol frequently missed

duets with a SNR below 10 dB, but performed relatively well at

identifying calls with a higher SNR, which is perhaps not surprising.

Difficulties with detecting low SNR signals is a common limitation

of automated detection (Spillmann et al., 2017), particularly in

complex environments like rainforests. This outcome is to be

expected as the power variations that the algorithm looks for may

be barely distinguishable from ambient noise. To increase the odds

that a call has a SNR sufficiently high to be detected, several

approaches could be taken. When using an array of recorders,

narrowing the distance between recorders increases the odds that a

singing group of primates is closer to a recorder. However, this can

significantly increase the cost of a project as well as amount of data

collected that needs to be analyzed, and it can be logistically

challenging to manage large numbers of recorders. Instead

(though not explored in this paper) noise reduction techniques

such as noise spectral subtraction method (Bayestehtashk et al.,

2014) or adaptive level equalization (Towsey, 2013) might increase
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the SNR of calls. Though noise reduction techniques can enhance

the signal of interest, they can also result in a loss of detail in the

signal (Towsey et al., 2014).

In our initial run of the binary point matching algorithm on

1099 test data files, we identified 29 false positives, yielding low

precision and recall values. High rates of false positives are common

when the focus of the detection algorithm is on minimizing false

negatives, in noisy environments, and when aiming to detect

complex vocalizations (Marques et al., 2009; Swiston and

Mennill, 2009; Heinicke et al., 2015; Bobay et al., 2018). The

number of false positives seen in any given dataset is also

determined by the relative abundance of the species contributing

to false positive detections, which can change across seasons. The

rate of false positives can partially be mitigated by adjusting the

detection threshold, but this comes at the cost of increasing the

number of false negatives. In our dataset, most false positives seen

in initial runs of our algorithm were caused by howler monkey

roars. Howler roars and titi duets overlap significantly in frequency

range, and the complexity of the duets and noisiness of the howler

roars makes it difficult for the detection algorithm to differentiate

between the two. However, we were able to mitigate this problem by

creating an additional set of howler monkey templates that we

applied to each file and then using a detection rule that considers

the similarity score of both titi and howler templates when deciding

whether or not a titi duet is detected. This change in the detection

rule successfully allowed us to remove as positive detections all

howler monkey roars, but also resulted in the loss of a few titi

detections. This typically happened when both species vocalized

within the same 10-minute audio file. Whether this is problematic

or not heavily depends on the study design and research question.

Our human observers misclassified five burst gobbles as duets,

demonstrating that false positives are not unique to automated

detection algorithms. However, the rate of false positives is

generally much lower for manual annotation than automated

detection (Swiston and Mennill, 2009). Depending on the nature

of the study, if the rate of false positives is less of a concern than the

rate of false negatives, the choice could be made to manually

validate all detections of an algorithm (Knight et al., 2020). In

monitoR this can be done with the function ‘showPeaks’.

By creating templates for non-titi vocalizations that were found,

in initial runs, to cause large numbers of false-positive detections

and then including scores on those “off-target” templates as part of a

more complex detection rule, we greatly decreased the number of

false positives and thereby increased the precision rates of the

algorithm. In addition, recall (the true positive rate) was largely

influenced by the quality of the calls in the data. Large numbers of

distant calls with a low SNR are difficult to detect by algorithms as

they do not stand out as clearly against background noise. When the

expectation is that these calls should be detected by the algorithm,

the outcomes are rather poor (e.g., algorithm iterations 1 and 3).

However, when we focus only on calls within a smaller detection

radius around the recorder (algorithm iterations 2 and 4), the

algorithm performs considerably better. This result suggests that

automated detection algorithms can and should be tailored to each

specific species and research question. Among others, differences in

call structures, habitat structure, number of other vocally active
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animals in the habitat, algorithm type, and study goals determine

the required specifications of the algorithm, and thus its outcomes.

The need for detection algorithm parameters and decision rules

to be tailored to specific sites and call types also creates challenges

for comparing results between studies. The fourth iteration of our

algorithm had a precision of 0.67. When we compare this to other

studies that have used various automated detection procedures to

locate primate vocalizations within audio files, we find that our

precision score is lower than found in studies of Guianan red howler

monkeys (Alouatta macconnelli), black-fronted titi monkeys

(Callicebus nigrifrons), Hainan gibbons (Nomascus hainanus), and

northern grey gibbons (Hylobates funereus) (Versteegh et al., 2016;

Do Nascimento et al., 2021; Clink et al., 2023; Ravaglia et al., 2023),

but higher than found for several African primates (Heinicke et al.,

2015). Our recall of 0.71 is similar to that found for northern grey

gibbons (Clink et al., 2023), higher than that of Guianan red howler

monkeys and African primates (Heinicke et al., 2015; Do

Nascimento et al., 2021), and lower than recall values for black-

fronted titi monkeys, Hainan gibbons, and indris (Versteegh et al.,

2016; Dufourq et al., 2021; Ravaglia et al., 2023), though some of

these more recent studies with high recall used a deep learning

approach. However, it is difficult to compare the performance of the

algorithms using these metrics as some differences cannot easily be

quantified (e.g., vocalization and habitat structure, the number of

vocally active animals in an environment that can trigger false

positives). In addition, other important details are often unknown.

For example, if the calls in the test dataset are predominantly calls

with a high SNR, algorithm performance will be high, but when

calls with lower SNRs are also included, performance of the

algorithm may drop significantly. Clearly, understanding the

quality of the calls in the test dataset is important, as it allows us

to modify the design of future studies.
4.4 Recommendations for studying
duetting with PAM

In this study, we demonstrate that passive acoustic monitoring

together with an automated detection algorithm can be an effective

method to study duetting behavior in titi monkeys and potentially

other duetting animals. However, due to the complex temporal and

spectral structures of duets, a series of steps need to be taken to

ensure a study design that fits the desired outcome. Here, we

describe such a workflow.

First, as recorder specifications and both structure and source

level of duets greatly affect the detection radius, empirical

determination of the detection radius and detection probability

for the combination of the chosen recorder type and vocalizations

of interest is a critical first step. Because habitat characteristics also

play a role in the detection radius of duets, detection radius should

be determined for each site at which the methodology is

implemented. In this study, we used two ways of determining the

detection radius of an ARU model for a vocalization of interest. If

the source level of the primate’s loud call is known or can be

determined, playback studies can be used to determine the detection

radius and detection probabilities. If the source level cannot be
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determined, using one or multiple ARUs in primate home ranges

can be used in combination with location data on loud calls from

behavioral follows of habituated groups. However, this alternative is

less time efficient than playback experiments.

Second, a trade-off must be made between choosing whether to

manually annotate the collected audio data with the use of

spectrograms, or to use an automated detection algorithm to

locate the duets in the audio data. This will also influence

evaluation of the detection radius of the recorder, as we

demonstrated that duets can typically be annotated at larger

distances by human observers than by the detection algorithm.

When ARUs are used on a small scale, manual annotation of duets

is feasible. The potential for significant numbers of false positive and

false negative detections means that automated detection

algorithms come with their own set of errors and biases, but with

the benefit that these biases are measurable and more consistent

than observer errors and biases.

Third, if the amount of audio data collected for the purposes of

the study is too large to allow manual annotation within a

reasonable time frame, a mix of both techniques can be used if

high accuracy is desired. If a detection algorithm is designed to

reduce the number of false negatives, the resulting large number of

positive detections – which will be a combination of true positives

and false positives – can still be manually verified and corrected. It

should be kept in mind that when the animal of interest duets only

infrequently, the number of false positives will likely increase at a

much higher rate than the number true positives. However,

although a high false positive rate means that more putative

detections need to be verified, it does not negatively affect the

performance of the algorithm on detecting true positives. When the

animals under study vocalize infrequently, a deep learning

approach might yield benefits over template matching as it allows

for data augmentation (i.e., artificially increasing the training data

by creating modified duets from existing ones) when training the

algorithm (for example studies, see Table S2, Supplementary

Material). Deep learning commonly requires more expert

knowledge to implement, though alternatives geared towards

increasing accessibility for less experienced scientists are in

development (Arthur et al., 2021).
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Szymański, P., Olszowiak, K., Wheeldon, A., Budka, M., and Osiejuk, T. S. (2021).
Passive acoustic monitoring gives new insight into year-round duetting behaviour of a
tropical songbird. Ecol. Indic. 122, 107271. doi: 10.1016/j.ecolind.2020.107271

Taunk, K., De, S., Verma, S., and Swetapadma, A. (2019). “A brief review of nearest
neighbor algorithm for learning and classification,” in International Conference on
Intelligent Computing and Control Systems, Seconderabad, India. 1255–1260, ICCS.

Terleph, T. A., Malaivijitnond, S., and Reichard, U. H. (2016). Age related decline in
female lar gibbon great call performance suggests that call features correlate with
physical condition. BMC Evolution. Biol. 16, 1–13. doi: 10.1186/s12862-015-0578-8

Tilson, R. L., and Tenaza, R. R. (1976). Monogamy and duetting in an Old World
monkey. Nature 263, 320–321. doi: 10.1038/263320a0

Towsey, M. W. (2013). Noise removal from wave-forms and spectrograms derived from
natural recordings of the environment (Brisbane: Queensland University of Technology).

Towsey, M., Zhang, L., Cottman-Fields, M., Wimmer, J., Zhang, J., and Roe, P.
(2014). Visualization of long-duration acoustic recordings of the environment. Proc.
Comput. Sci. 29, 703–712. doi: 10.1016/j.procs.2014.05.063
Frontiers in Ecology and Evolution 17
Van Belle, S., Porter, A., Fernandez-Duque, E., and Di Fiore, A. (2018). Ranging
behavior and potential for territoriality in equatorial sakis (Pithecia aequatorialis)
in Amazonian Ecuador. Am. J. Phys. Anthropol. 167, 701–712. doi: 10.1002/
ajpa.23645

Van Belle, S., Porter, A. M., Fernandez-Duque, E., and Di Fiore, A. (2021). Ranging
behavior and the potential for territoriality in pair-living titi monkeys (Plecturocebus
discolor). Am. J. Primatol. 83, e23225. doi: 10.1002/ajp.23225

Van Kuijk, S. (2013). Living on the edge: Critically endangered San Martin titi
monkeys (Callicebus oenanthe) show preference for forest edges in C.C. Ojos de Agua,
Peru. MSc thesis: Oxford Brookes University.

Vermeer, J., and Tello-Alvarado, J. C. (2015). The distribution and taxonomy of titi
monkeys (Callicebus) in central and southern Peru, with the description of a new
species. Primate Conserv. 29, 1–21. doi: 10.1896/052.029.0102

Versteegh, M., Kuhn, J., Synnaeve, G., Ravaux, L., Chemla, E., Cäsar, C., et al. (2016).
Classification and automatic transcription of primate calls. J. Acoustical Soc. America
140, EL26–EL30. doi: 10.1121/1.4954887

Waser, P. M., and Brown, C. H. (1984). Is there a “sound window” for primate
communication? Behav. Ecol. Sociobiol. 15, 73–76. doi: 10.1007/BF00310219

Waser, P. M., and Brown, C. H. (1986). Habitat acoustics and primate
communication. Am. J. Primatol. 10, 135–154. doi: 10.1002/ajp.1350100205

Waser, P. M., and Waser, M. S. (1977). Experimental studies of primate vocalization:
Specializations for long-distance propagation. Z. für Tierpsychol. 43, 239–263.
doi: 10.1111/j.1439-0310.1977.tb00073.x

Whitehead, J. M. (1995). Vox Alouattinae: a preliminary survey of the acoustic
characteristics of long-distance calls of howling monkeys. Int. J. Primatol. 16, 121–144.
doi: 10.1007/BF02700156

Zambolli, A. H., Manzano, M. C. R., Honda, L. K., Rezende, G. C., and Culot, L.
(2023). Performance of autonomous recorders to detect a cryptic and endangered
primate species, the black lion-tamarin (Leontopithecus chrysopygus). Am. J. Primatol.
85, e23454. doi: 10.1002/ajp.23454
frontiersin.org

https://doi.org/10.1080/09524622.2016.1216802
https://doi.org/10.7717/peerj.13152
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1163/156853906778623617
https://doi.org/10.1111/j.1557-9263.2009.00204.x
https://doi.org/10.1111/j.1557-9263.2009.00204.x
https://doi.org/10.1016/j.ecolind.2020.107271
https://doi.org/10.1186/s12862-015-0578-8
https://doi.org/10.1038/263320a0
https://doi.org/10.1016/j.procs.2014.05.063
https://doi.org/10.1002/ajpa.23645
https://doi.org/10.1002/ajpa.23645
https://doi.org/10.1002/ajp.23225
https://doi.org/10.1896/052.029.0102
https://doi.org/10.1121/1.4954887
https://doi.org/10.1007/BF00310219
https://doi.org/10.1002/ajp.1350100205
https://doi.org/10.1111/j.1439-0310.1977.tb00073.x
https://doi.org/10.1007/BF02700156
https://doi.org/10.1002/ajp.23454
https://doi.org/10.3389/fevo.2023.1173722
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

	Automated detection and detection range of primate duets: a case study of the red titi monkey (Plecturocebus discolor) using passive acoustic monitoring
	1 Introduction
	2 Methods
	2.1 Study location
	2.2 Study species
	2.3 Audio data collection
	2.3.1 Home range dataset
	2.3.2 Playback dataset
	2.3.3 Transect dataset

	2.4 How loud are titi monkey duets and what is their detection probability?
	2.5 What is the detection radius of titi duets using our ARU setup?
	2.6 How does distance influence detection of titi monkey duets?
	2.7 How well do automated detection algorithms perform?

	3 Results
	3.1 How loud are titi monkey duets and what is their detection probability?
	3.2 What is the detection radius of titi duets using our ARU setup?
	3.3 What is the detection probability of a duet within the detection radius?
	3.4 How does distance influence detection of titi monkey duets?
	3.5 How well do automated detection algorithms perform?

	4 Discussion
	4.1 Study limitations
	4.2 Passive acoustic monitoring
	4.3 Automated detection
	4.4 Recommendations for studying duetting with PAM

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


