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1 Introduction

In 2014, Ma et al. [1] proposed the idea of C∗-algebra valued metric space (AVMS) and investigated certain
fixed point theorems for self-mapping under various contractive circumstances. Furthermore, the concept of
C∗-(AVMS) is generalized to that of C∗-(AV BMS), where B is an element of C∗-algebra greater than 1 and
the triangle inequality is altered into Db (ς, y) ≤ τ(Db(ς, z) +Db(z, y)). Theorems for self-map with contractive
condition are then established using various fixed point theorems [2]. Besides, Alsulami et al. [3] the classic
Banach fixed point theorems have been examined for their fixed point outcomes can be used to produce C∗-
(AVMS), C∗-(AV BMS) in fixed point theory. [4, 5]. We recall the concept of C∗-(AV BMS). Since C∗-algebra
is an important topic in functional analysis, operator theory and algebras which is important in non-commutative
geometry and theoretical physics, such as quantum mechanics and string theory [6]. During this article, we
indicate A as an unitary C∗-algebra and Ah= {a ∈A : a =a∗}. Especially, an aspect a ∈A is a positive factor, if
a = a∗ and σ(a) ⊆ R+, where σ(a) is the spectrum of a.There is a natural partial order in Ah placed by a ≤ b iff
θ ≤ (b− a), where θ implies the zero factor in A. Then, let A+ and A′ represent the set {a ∈A : θ ≤ a} and the

set {a ∈A : ab = ba, ∀ b ∈A}, respectively and |a| = (a∗a)
1
2 .

Definition 1.1. [1] Let χ be a non-empty set and τ∈ A such that τ ≥ I. Suppose that the mapping Db :
χ× χ→ A is held, the following constraints.

(i) θ ≤ Db(ς, y) and Db(ς, y) = θ iff (ς = y);

(ii) Db (ς, y) = Db (ς, y) ;

(iii) Db (ς, y) ≤ τ(Db (ς, z) +Db (z, y)) ∀ ς, y, z ∈χ.

Then, Db is called C∗-(AV BM) on χ and (χ,A, Db) is called C∗-(AV BMS).

Definition 1.2. [1]. Let (χ,A, Db) be C∗-(AV BMS). Imagine that {ςn} is an order in χ and ς ∈ χ. If at all
ε > θ, ∃ N 3 ∀ n > N , ||Db (ςn, x)|| ≤ ε then {ςn} is allegedly convergent with respect to A, and {ςn} converges
to ς, i.e., we use limn→∞ ςn = ς. If at all ε > θ, ∃ N 3 ∀ n,m > N , ||Db (ςn, ςm)|| ≤ ε, then {ςn} is referred
to as a Cauchy sequence in χ. (χ,A, Db) is referred to as a complete C∗-(AV BMS) if each Cauchy sequence is
convergent in χ.

Remark 1.1. [7] Let A be a C∗-algebra and assume that φ is a linear functional on A. Define φ∗ (a) = φ(a∗) ∀
a ∈A. Then, φ∗ likewise has a linear function A. And the function φ is known as a self-adjoint if φ∗ = φ.

A linear function φ on A is called positive if φ (a∗a) ≥ 0 for all a ∈A. We indicate the positivity of φ by
φ ≥ θ. For two self-adjoint linear function φ1, φ2, There are (φ2 − φ1) ≥ θ when φ2 ≥ φ1.

Definition 1.3. [7] If φ : A→ B is a linear mapping in C∗-algebra, It is said to be positive if φ
(
A+
)
⊆ φ(B+).

When this occurs, φ (Ah) ⊆ φ(Bh), and the map of restriction φ : Ah → Bh is increasing. if B =A the positive
linear map is thus referred to as positive functional, and it meets the following propositions 1.1 and 1.2.

Proposition 1.1. [7] Let A be a C∗-algebra with 1, thereafter, a positive functional is bounded and φ(1) =‖ φ ‖.

Proposition 1.2. [7] Let A be a C∗-algebra with 1 and let φ be a bounded linear functional on A 3 φ (a) =‖
φ ‖‖ a ‖. There exists positive component a ∈A 3 φ is a positive functional.

Definition 1.4. [8] Let the non-decreasing function F : A+ → A+ be a positive linear map that complies with
the following restrictions:

(i) F is continuous;

(ii) F (a) = θ iff a =θ;

(iii) limn→∞ Fn (a) = θ.

Definition 1.5. [8] Suppose that A and B are C∗-algebra. A mapping F : A→ B is purported to be C∗-
homomorphism if :
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(i) F (aς + by) = aF (ς) +bF(y) ∀ a,b ∈ C and ς, y ∈ A;

(ii) F(ς, y) = F (ς)F(y) ∀ ς, y ∈ A;

(iii) F (ς∗) = F (ς)∗ ∀ ς ∈ A;

(iv) F maps the unit in A to the unit in B.

Definition 1.6. [9] Let A and B be a C∗-algebra space and let F : A→ B be a homomorphism, then F is
called an ∗-isomorphism if it is one-to-one ∗-isomorphism. We declare that C∗-algebra A is ∗-isomorphism to a
C∗-algebra B if ∃ ∗-isomorphism of A onto B.

property 1.1. [9] Let A and B be C∗-algebra space and F : A→ B is a C∗-homomorphism ∀ ς ∈ A, there are
σ (F (ς)) ⊂ σ(ς and ‖ F(ς) ‖≤‖ F ‖.

Corollary 1.1. [10] Every C∗-homomorphism is bounded.

Corollary 1.2. [10] Suppose that F is C∗-isomorphism from A to B, then σ (F (ς)) ⊂ σ(ς) and ‖ F (ς) ‖≤‖ ς ‖
∀ ς ∈ A.

Lemma 1.3. [10] Every ∗-homomorphism is positive.

2 Main Results

Theorem 2.1. Let (χ,A, Db) is a complete C∗-(AV BMS). Let L,M : χ→ χ be a contractive mapping and

F (Db (Lς,My)) ≤ F (N (ς, y))− φ (Db (ς, y)) (2.1)

N (ς, y) ≤

[
αDb (ς, y) + β[1+Db(ς,Lς)]Db(y,My)

1+Db(ς,y)

+γ [Db (ς, Lς) +Db (y,My)] + δ [Db (ς,My) +Db (y, Lς)]

]
For all ς, y ∈ χ, where τ ∈ A

′
+, α + β + γ + δ ≥ 0 with τα + β + γ(τ + 1) + δ (τ(τ + 1)) < 1. F and φ are

∗-homomorphisms and the constraint F (a) ≤ φ(a). Then L and M have a unique common fixed point in χ.

Proof. Let ς0 ∈ χ and define ςn = Lςn−1, ςn+1 = Mςn we have

F (Db (ςn, ςn+1)) = F (Db (Lςn−1,Mςn))
≤ F (N (ςn−1, ςn))− φ (Db (ςn−1, ςn))

= F

αDb (ςn−1, ςn) +
β[1+Db(ςn−1,Lςn−1)]Db(ςn,Mςn)

1+Db(ςn−1,ςn)
+γ [Db (ςn−1, Lςn−1) +Db (ςn, Mςn)]
+δ [Db (ςn−1,Mςn) +Db (ςn, Lςn−1)]

− φ (Db (ςn−1, ςn))

= F(α)F (Db (ςn−1, ςn)) +
F(β)F[1+Db(ςn−1,Lςn−1)]Db(ςnMςn)

1+Db(ςn−1,ςn)
+F(γ)F [Db (ςn−1, Lςn−1) +Db (ςn,Mςn)]
+F(δ)F [Db (ςn−1,Mςn) +Db (ςn, Lςn−1)]− φ (Db (ςn−1, ςn)) .

Therefore

‖ F (Db (ςn, ςn+1)) ‖ = ‖ F (Db (Lςn−1,Mςn)) ‖
≤ ‖ F(α) ‖ ‖ F (Db (ςn−1, ςn)) ‖ + ‖ F(β) ‖ ‖ F[1+Db(ςn−1,Lςn−1)]Db(ςn,Mςn)

1+Db(ςn−1,ςn)
‖

+ ‖ F(γ) ‖ ‖ F [Db (ςn−1, Lςn−1) +Db (ςn,Mςn)] ‖
+ ‖ F(δ) ‖ ‖ F [Db (ςn−1,Mςn) +Db (ςn, Lςn−1)] ‖
− ‖ φ (Db (ςn−1, ςn)) ‖→ 0 as n→ +∞.
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Consider the fact that φ and F are strongly monotone functions. There are

Db (ςn, ςn+1) = Db(Lςn−1,Mςn)

≤ αDb (ςn−1, ςn) +
β[1+Db(ςn−1,Lςn−1)]Db(ςn,Mςn)

1+Db(ςn−1,ςn)
+γ [Db (ςn−1, Lςn−1) +Db (ςn,Mςn)] + δ[Db (ςn−1,Mςn) +Db(ςn, Lςn−1)]

= αDb (ςn−1, ςn) +
β[1+Db(ςn−1,ςn)]Db(ςn,ςn+1)

1+Db(ςn−1,ςn)
+γ [Db (ςn−1, ςn) +Db (ςn, ςn+1)] + δ[Db (ςn−1, ςn+1) +Db(ςn, ςn)]
= (α+ γ)Db (ςn−1, ςn) + (β + γ)Db (ςn, ςn+1) + δ (Db (ςn−1, ςn+1))
≤ (α+ γ)Db (ςn−1, ςn) + (β + γ)Db (ςn, ςn+1)
+τδ (Db (ςn−1, ςn) +Db (ςn, ςn+1))
= (α+ γ + τδ )Db (ςn−1, ςn) + (β + γ + τδ)Db (ςn, ςn+1) .

This indicates that

Db (ςn, ςn+1) ≤ α+ γ + τδ

β + γ + τδ
Db (ςn, ςn−1) (2.2)

Db (ςn, ςn+1) ≤ hDb (ςn, ςn−1)

where,

h =
α+ γ + τδ

β + γ + τδ
< 1.

As a result,
‖ Db (ςn−1, ςn) ‖ ‖ Db (ςn, ςn+1) ‖≤‖ h ‖ ‖ Db (ςn, ςn−1) ‖→ 0, as n,m→ +∞.

Let n > m

Db (ςn, ςm) ≤ τDb (ςn, ςn−1) + τ2Db (ςn−1, ςn−2) + . . .+ τn−mDb(ςm−1, ςm)

When using the theorem’s constraint,

F (Db (ςn, ςm)) ≤ F (τDb (ςn, ςn−1)) + F
(
τ2Db (ςn−1, ςn−2)

)
+ . . .+ F

(
τn−mDb (ςm−1, ςm)

)
≤ F(τ)F (Db (ςn, ςn−1)) + F

(
τ2
)
F (Db (ςn−1, ςn−2)) + . . .

+F
(
τn−m

)
F (Db (ςm−1, ςm))

≤ F (τN (ςn, ςn−1))− φ (τDb (ςn, ςn−1)) + F
(
τ2N (ςn−1, ςn−2)

)
−φ
(
τ2Db (ςn−1, ςn−2)

)
+ . . .+ F

(
τn−mN (ςm−1, ςm)

)
−φ
(
τn−mDb (ςm−1, ςm)

)
= F

αDb (ςn, ςn−1) +
β[1+Db(ςn−1,ςn)]Db(ςn,ςn+1)

1+Db(ςn−1,ςn)
+γτ [Db (ςn−1, ςn) +Db (ςn, ςn+1)]
+δτ [Db (ςn−1, ςn+1) +Db (ςn, ςn)]

− φ (τDb (ςn, ςn−1)) + . . .

+F

ατn−mDb (ςm−1, ςm) +
βτn−m[1+Db(ςm,ςm−1)]Db(ςm−1,ςm−2)

1+Db(ςm,ςm−1)
+γτn−m [Db (ςm, ςm−1) +Db (ςm−1, ςm−2)]
+δτn−m [Db (ςm, ςm−2) +Db (ςm−1, ςm−1)]


−φ
(
τn−mDb (ςm−1, ςm)

)
.

Therefore,

F (Db (ςn, ςm)) =


F(α)F(τ)F (Db (ςn, ςn−1))

+F(β)F(τ)F

(
[1+Db(ςn−1,ςn)]Db(ςn,ςn+1)

1+Db(ςn−1,ςn)

)
+F(γ)F(τ)F [Db (ςn−1, ςn) +Db (ςn, ςn+1)]
+F(δ)F(τ)F [Db (ςn−1, ςn+1) +Db (ςn, ςn)]

− φ (τDb (ςn, ςn−1)) + . . .

+


F(α)F

(
τn−m

)
F (Db (ςm−1, ςm))

+F(β)F
(
τn−m

)
F

(
[1+Db(ςm,ςm−1)]Db(ςm−1,ςm−2)

1+Db(ςm,ςm−1)

)
+F(γ)F

(
τn−m

)
F [Db (ςm, ςm−1) +Db (ςm−1, ςm−2)]

+F(δ)F
(
τn−m

)
F [Db (ςm, ςm−2) +Db (ςm−1, ςm−1)]

− φ (τn−mDb (ςm−1, ςm)
)
.
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Consider the fact that φ and F are strongly monotone functions. There are

Db (ςn, ςm) ≤ ατDb (ςn, ςn−1) +
β[1+Db(ςn−1,ςn)]Db(ςn,ςn+1)

1+Db(ςn−1,ςn)
+γτ [Db (ςn−1, ςn) +Db (ςn, ςn+1)] + δτ [Db (ςn−1, ςn+1) +Db (ςn, ςn)] + . . .

+ατn−mDb (ςm−1, ςm) +
βτn−m[1+Db(ςm,ςm−1)]Db(ςm−1,ςm−2)

1+Db(ςm,ςm−1)
+γτn−m [Db (ςm, ςm−1) +Db (ςm−1, ςm−2)]
+δτn−m [Db (ςm, ςm−2) +Db (ςm−1, ςm−1)] .

So,

Db (ςn, ςm) ≤



‖ α ‖‖ τ ‖‖ Db (ςn, ςn−1) ‖
+ ‖ β ‖‖ τ ‖‖ [1+Db(ςn−1,ςn)]Db(ςn,ςn+1)

1+Db(ςn−1,ςn)
‖

+ ‖ γ ‖‖ τ ‖‖ Db (ςn−1, ςn) +Db (ςn, ςn+1) ‖
+ ‖ δ ‖‖ τ ‖‖ Db (ςn−1, ςn+1) +Db (ςn, ςn) ‖ + . . .

+ ‖ α ‖‖ τ n−m ‖‖ Db (ςm−1, ςm) ‖
+ ‖ β ‖‖ τn−m ‖‖ [1+Db(ςm,ςm−1)]Db(ςm−1,ςm−2)

1+Db(ςm,ςm−1)
‖

+ ‖ γ ‖‖ τn−m ‖‖ Db (ςm, ςm−1) +Db (ςm−1, ςm−2) ‖
+ ‖ δ ‖‖ τn−m ‖‖ Db (ςm, ςm−2) +Db (ςm−1, ςm−1) ‖


→ 0, as n.m→ +∞.

Then {ςn} is Cauchy sequence. Since (χ,A, Db) is a complete C∗-(AV BMS) ∃ u ∈χ 3 ςn→ u as n→∞. Now
that

Db (u,Mu) ≤ τ [Db (u,ςn+1) +Db (ςn+1,Mu)]
= τ [Db (ςn+1,Mu) +Db (u,ςn+1)]
= τ [Db (Lςn,Mu) +Db (u,ςn+1)]

F (Db (u,Mu)) = τ [F (Db (Lςn,Mu)) + F (Db (u,ςn+1))]
≤ τ [F (N (ςn, u))− φDb (ςn, u)] + τ [FDb (u,ςn+1)]

‖ F (Db (Lςn,Mu)) ‖ ≤ ‖ τ ‖‖ F (Db (u,ςn+1)) ‖ + ‖ τ ‖‖ Fα ‖‖ Db (ςn, u) ‖
+ ‖ τ ‖‖ Fβ ‖‖ [1+Db(ςn,Lςn)]Db(u,Mu)

1+Db(ςn,u)
‖

+ ‖ τ ‖‖ Fγ ‖ ‖ Db (ςn, ςn+1) +Db (u,Mu) ‖
+ ‖ τ ‖‖ Fδ ‖‖ Db (ςn,Mu) +Db (u,Lςn) ‖ − ‖ τ ‖‖ φDb (ςn, u) ‖ .

Using the property of φ, we have

‖ F (Db (Lςn,Mu)) ‖ ≤ ‖ τ ‖‖ F (Db (u,ςn+1)) ‖ + ‖ τ ‖‖ Fα ‖‖ Db (ςn, u) ‖
+ ‖ τ ‖‖ Fβ ‖‖ [1+Db(ςn,Lςn)]Db(u,Mu)

1+Db(ςn,u)
‖

+ ‖ τ ‖‖ Fγ ‖ ‖ Db (ςn, ςn+1) +Db (u,Mu) ‖
+ ‖ τ ‖‖ Fδ ‖‖ Db (ςn,Mu) +Db (u,Lςn) ‖

where F is strongly monotone, then

‖ (Db (Lςn,Mu)) ‖ ≤ ‖ τ ‖‖ (Db (u,ςn+1)) ‖ + ‖ τ ‖‖ α ‖‖ Db (ςn, u) ‖
+ ‖ τ ‖‖ β ‖‖ [1+Db(ςn,Lςn)]Db(u,Mu)

1+Db(ςn,u)
‖

+ ‖ τ ‖‖ γ ‖ ‖ Db (ςn, ςn+1) +Db (u,Mu) ‖
+ ‖ τ ‖‖ δ ‖‖ Db (ςn,Mu) +Db (u,Lςn) ‖
= ‖ τ ‖‖ (Db (u,ςn+1)) ‖

+ ‖ τ ‖


‖ α ‖‖ Db (ςn, u) ‖

+ ‖ β ‖‖ [1+Db(ςn,ςn+1)]Db(u,Mu)

1+Db(ςn,u)
‖

+ ‖ γ ‖ ‖ Db (ςn, ςn+1) +Db (u,Mu) ‖
+ ‖ δ ‖‖ Db (ςn,Mu) +Db (u,ςn+1) ‖


as ςn→ u and ςn+1→ u as n→∞, we obtain

‖ 1− τβ − τγ − τδ ‖ ‖ Db (u,Mu) ‖≤
(

‖ τ ‖‖ α ‖‖ Db (ςn, u) ‖
+ ‖ τ ‖‖ 1 + δ ‖‖ Db (u,ςn+1) ‖

)
→ 0 as n→∞.
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Hence ‖ Db (Mu, u) ‖= 0 since ‖ 1 − τβ − τγ − τδ ‖> 0. As a result, Mu = u which is uis a fixed point of M .
Similarly we can demonstrate this Lu = u. Hence Lu =Mu = u. This show that u is common fixed point of
L and M .

Let v be a different fixed point common to L and M . (i.e) Lv =Mv = v 3 u 6= v we have Db (u, v) = Db(Lu,Mv)
then,

F (Db (u, v)) = F (Db (Lu,Mv)) ≤ F (N (u, v))− φ (Db (u, v))

‖ F (Db (Lu,Mv)) ‖ ≤ ‖ Fα ‖‖ Db (u, v) ‖ + ‖ Fβ ‖‖ [1+Db(u,Lu)]Db(v,Mv)
1+Db(u,v)

‖
+ ‖ Fγ ‖‖ Db (u,Lu) +Db (v,Mv) ‖
+ ‖ Fδ ‖‖ Db (u,Mv) +Db (v,Lu) ‖ − ‖ φDb (u, v) ‖

Using the property of φ, we get

‖ F (Db (Lu,Mv)) ‖ ≤ ‖ Fα ‖‖ Db (u, v) ‖ + ‖ Fβ ‖‖ [1+Db(u,Lu)]Db(v,Mv)
1+Db(u,v)

‖
+ ‖ Fγ ‖ ‖ Db (u,Lu) +Db (v,Mv) ‖
+ ‖ Fδ ‖‖ Db (u,Mv) +Db (v,Lu) ‖

Where F is strongly monotone, then

‖ (Db (Lu,Mv)) ‖ ≤ ‖ α ‖‖ Db (u, v) ‖ + ‖ β ‖‖ [1+Db(u,Lu)]Db(v,Mv)
1+Db(u,v)

‖
+ ‖ γ ‖ ‖ Db (u,Lu) +Db (v,Mv) ‖
+ ‖ δ ‖‖ Db (u,Mv) +Db (v,Lu) ‖
= ‖ α+ 2δ ‖ ‖ Db (u, v) ‖
≤ ‖ τα+ β + (τ + 1)γ + τ(τ + 1)δ ‖ ‖ Db (u, v) ‖
< ‖ Db (u, v) ‖ .

Which is a contradiction. Hence ‖ Db (u, v) ‖= 0 and u = v. Thus u is a unique common fixed point of L and
M .

Corollary 2.2. Let (χ,A, Db) is a complete C∗-(AV bMS). Let M : χ→ χ be a contractive mapping and

F (Db (Mnς,Mny)) ≤ F (L (ς, y))− φ (Db (ς, y)) (2.3)

L (ς, y) ≤ αDb (ς, y) + γ [Db (ς,Mny) +Db (y,Mny)] + δ[Db (ς,Mny) +Db(y,M
nς]

for all ς, y ∈χ, where τ ∈ A
′
+, α+γ+δ ≥ 0 with τα+γ(τ+1)+δ (τ(τ + 1)) < 1. F and φ are ∗-homomorphisms

and the constraint F (a) ≤ φ(a). Then M have a unique fixed point in X.

Corollary 2.3. Let (χ,A, Db) is a complete C∗-(AV bMS). Let L : χ→ χ be a contractive mapping and

F (Db (Lnς, Lny)) ≤ F (N (ς, y))− φ (Db (ς, y)) (2.4)

N (ς, y) ≤ αDb (ς, y) + β[1+Db(ς,L
nς)]Db(y,L

ny)
1+Db(ς,y)

+γ [Db (ς, Lnς) +Db (y,Lny)] + δ[Db (ς, Lny) +Db(y,L
nς]

for all ς, y ∈χ, where τ ∈ A
′
+, α + β + γ + δ ≥ 0 with τα + β + γ(τ + 1) + δ (τ(τ + 1)) < 1. F and φ are

∗-homomorphisms and the constraint F (a) ≤ φ(a). Then L have a unique fixed point in χ.

Example 2.4. Let χ = [0, 1] and A = C with a norm ‖ ς ‖= |ς| be a real C∗-algebra. We define C+ =
(ς, y) ∈ C : ς = Re(ξ) ≥ 0, y = Im(ξ) ≥ 0}. The partial order ≤ with respect to the C∗-algebra C.
Re(ς1) ≤ Re(ς2) and Im(y1) ≤ Im(y2) ∀ (ς1, y1) , (ς2, y2) ∈ C. Let Db : χ × χ → C suppose that Db (ς, y) =
2 (|ς − y| , |ς − y|) for ς, y ∈χ. Then, (χ,A, Db) is a C∗-algebra valued b-metric space where τ = 1 in theorem
2.1. Let F, φ : C+ → C+ be the mappings defined as follows: For T = (ς, y) ∈ C+

ψ (T ) =


(ς, y) , if ς ≤ 1 and y ≤ 1,(
ς2, y

)
, if ς > 1 and y ≤ 1,(

ς, y2
)
, if ς ≤ 1 and y > 1,(

ς2, y2
)
, if ς > 1 and y > 1.
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and for G = (G1,G2) ∈ C+ with P = min {G1,G2} ,

φ (G) =

{(
P2

2
, P

2

2

)
, if P ≤ 1(

1
2
, 1
2

)
, if P > 2

Then, F and φ are satisfying in definition 1.4 and 1.5. Let L,M : χ→ χ be defined as follows:

L (ς) =

{
0, if 0 ≤ ς ≤ 1

2
1
4
, if 1

2
< ς ≤ 1

; M (ς) =
1

32
, for ς ∈ χ

Then, L and M are satisfying in theorem 2.1. Let α = 1
8
, β = 0 , γ = 1

16
and δ = 1

16
. It demonstrates that:

F (Db (Lς,My)) ≤ F (N (ς, y))− φ (Db (ς, y)) ∀ ς, y ∈ χ with y ≤ ς.

Hence, Theorem 2.1 is satisfied. Then demonstrate that 0 is a unique common fixed point of L and M .

3 Conclusions

In Theorem 2.1 we have formulated a contractive conditions to modify and extend the concept of common
fixed point theorem for C∗-algebra valued b-metric space via (φ,F)-contractive mapping. The existence and
uniqueness of the result is presented in this article. We have also given some example which satisfies the
contractive condition of our main result. Our result may be the vision for other authors to extend and improve
several results in such spaces and applications to other related areas.
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