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ABSTRACT 
 
In this paper, we consider a leptospirosis epidemic model with non-linear saturated 
incidence by applying the optimal control techniques to eradicate the infection in the 
human population. Leptospirosis is the disease which effects human as well as Cattle. Our 
aim is to find such optimal control techniques for the eradication of leptospira in the host 
population. To do this, we define three control variables, one for human and the second 
and third one for Vector population. First we find the existence of the control problem and 
then we characterize the optimal control problem by using the well-known method of 
Pontryagin’s Maximum Principle. The numerical simulations of both the system are solving 
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by using backward Runge-kutta order four schemes. Finally, the numerical results of both 
the systems are presented for comparison. 
 

 
Keywords: Leptospirosis; Pontryagin’s maximum principle; optimal control; numerical 

simulations. 
 

1. INTRODUCTION  
 
Mathematical models have played an important role in understanding the epidemiology of 
the infectious disease [1,2]. The model provides quantitative descriptions of the complicated, 
nonlinear process of disease transmission and help us to obtain inside into the dynamics of 
the disease and we are able to make such decision for public health policy. Many 
mathematical models [3,4,5] have been proposed to represents the compartmental 
dynamics of both susceptible, infected and recovered human and vector population .Triampo 
et al. [6] considered a deterministic model for the transmission of leptospirosis disease 
presented in [6]. In their work they considered a number of leptospirosis disease in Thailand 
and shown the numerical simulations. Zaman et al. [7] using the real data of Thailand for 
their numerical simulations, find the global stability of both the Disease-free and endemic 
equilibrium and also the backward bifurcation for different set of parameters. Zaman [8] 
considered the real data presented in [5] to study the dynamical behavior and role of optimal 
control theory of this disease. Pongsumpun et al. [9] developed mathematical models to 
study the behavior of leptospirosis disease. In their work, they represent the rate of change 
for both rats and human population. The human population is further divided into two main 
groups Juveniles and adults. A variety of nonlinear incidence rate have been used in 
epidemic models [10,11,12]. Liu et al. [13] demonstrated that in cases where the host could 
exhibit lasting immunity to infection that nonlinear incidence rates of infection could greatly 
expand the breadth of dynamics caused by the disease. By investigating cholera epidemic 
spread in Bari in 1973, Capasso and Serio [12] consider a saturated incidence in his model.  
 
In this paper, we consider the basic model studied in [8] to incorporate some important 
epidemiological features. We use optimal control theory to reduce the proportion of the 
infected human and infected vector population by using multiple controls. At the long-term 
level of infected human, every infected human on average causes one further secondary 
cases. Therefore, if we can reduce the number of infected human further, so the disease 
does well and increase the recovered human. Here we define the control variables, the first 
control is cover all cuts, wear dry, full-cover boots, shoes and long sleeve shirts when 
handling animals. The second control represents wash hands thoroughly on a regular basis 
and shower after work. To do this, we first show the existence of theoptimal control system. 
Then, by solving the optimality system numerically, which consists of the original state 
system, the adjoint system and their boundary conditions by using the real data presented 
for leptospirosis epidemic in Thailand. We also conclude by discussing results of the 
numerical simulations for our epidemic mathematical model. 
 
The paper is organized as follows. Section 2 is devoted to the mathematical formulation of 
Leptospirosis disease. We discuss the existence of the control problem in their discussion in 
Section 3. Existence of the control problem is discussed in Section 4. In Section 5 we 
discuss the numerical results of the control problem and finally we wind up our work with the 
conclusion in Section 6. 
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2. MATERIAL AND METHODS  
 
In this section, we consider the epidemic model of leptospirosis [8], with the nonlinear 
saturated incidences rates. First, we formulate the model in detail and define the parameter 

involve in the model. To do this, we assume that ( )
h

S t  represents a number of susceptible 

human at time “t”; ( )
h

I t  represents a number of human in the population, which is infected 

from the leptospirosis disease at time “t”; ( )
h

R t  represents number of human in the 

population which is recovered from the infection at time ; we denote the total population size 

by 
h

N , with ( ) ( ) ( ) ( )
h h h h

N t S t I t R t= + + . For vector population, let ( )
v

S t  are susceptible 

vector and ( )
v

I t  are infectious vector at time “t”. The total population size of vector 

population is denoted by ( )
v

N t with ( ) ( ) ( )
v v v

N t S t I t= + . By the interaction of both human 

and vector population, we get the following system of five differential equations is given by: 
 

2 1

1 2

2 1

1 2

3

2

3

2

,
1 1

( ) ,
1 1

( ) ,

,
1

,
1

( )

( )

h v h

h h h h h h

v h

h v h

h h h h h

v h

h

h h h h h

v v h

v v v

h

v v h
v v v v

h

dS I I
b S S R

dt I I

dI I I
S I

dt I I

dR
I R

dt

dS S I
b S

dt I

dI S I
I I

dt I

β β
µ λ

α α

β β
µ δ γ

α α

γ µ λ

β
γ

α

β
γ δ

α

= − − + +
+ +

= + − + +
+ +

= − +

= − −
+

= − −
+

    (1)  

 
with the initial conditions, 
 

(0) 0, (0) 0, (0) 0, (0) 0 (0) 0.
h h h v v

S I R S I≥ ≥ ≥ ≥ ≥  (2)  

 

Here 
h

b  is the recruitment rate of the human population, 
1 2 3
, ,β β β respectively represent 

the transmission coefficient between human, susceptible human and infected vector and 
susceptible vector and infected human. Natural mortality rate of human population is 

represented by .
h

µ
h

λ is constant of proportionality where the infected human become 

susceptible again. Disease death rate for human population is denoted by
h

δ . Natural 

mortality rate of vector population is shown by
v

γ .
v

δ is the disease death rate of vector. 
1

α

The parameter measure the inhibitory effect of human vector population and 
2

α the 

parameter measure the inhibitory effect of human population.
v

b is the recruitment rate for 

vector population. 



 
 
 
 

Annual Review & Research in Biology, 4(3): 560-576, 2014 
 
 

563 
 

3. OPTIMAL CONTROL PROBLEM  
 
Optimal control theory is a powerful mathematical tool which makes the decision involving 
complex dynamical systems [14]. Optimal control method have been used, to study the 
dynamics of the disease we refer the reader to [15,16], for more work[17-23], no such 
method is used according to the author’s knowledge, to determine optimal control measure 
for vector-host epidemic direct transmission. The problem is to minimize the infected human 
and vector population and to maximize the recovered human population. 
 

In the system (3) below we have five state variables ( ), ( ), ( ), ( )
h h h v

S t I t R t S t and ( )
v

I t  with 

three control variables
1 2 3
, ,u u u .The control problem consists of a non-linear system of five 

differential equations is given by, 
 

2 1 1 2

1 2

2 1 1 2

1 2

1 2

3

3 1

2

(1 ( )) (1 ( ))
,

1 1

(1 ( )) (1 ( ))
( ) ,

1 1

( ) ( ( ) ( )) ,

( ) ,
1

( )

( )

h v h

h h h h h h

v h

h v h

h h h h h

v h

h

h h h h h h

v v h

v v v v

h

dS I u t I u t
b S S R

dt I I

dI I u t I u t
S I

dt I I

dR
I R u t u t S

dt

dS S I
b S u t S

dt I

β β
µ λ

α α

β β
µ δ γ

α α

γ µ λ

β
γ

α

− −
= − − + +

+ +

− −
= + − + +

+ +

= − + + +

= − − −
+

ε

3

3 2

2

( ) .
1

v v h
v v v v v

h

dI S I
I I u t I

dt I

β
γ δ

α
= − − −

+
ε

  (3)  

 

Subject to the initial conditions (2). Here we define the control variables
1 2 3
, ,u u u , to 

represent the following. 
 

• The first control 
1
( )u t represents that human should cover all cuts, abrasions with 

waterproof dressing, grazes, wear dry clothes, wearing full cover shoes, gloves and 
using the shirts with long sleeve when we handling the animals. 

• The second control 
2
( )u t shows that after work human should bath or shower 

regularly and adopt the habit to wash our hands regularly. 

• Our third control 
3
( )u t represents that to clean the home and working area. 

 
Now we define the objective functional for the control problem to minimize the infected 
human population, susceptible vector and infected vector population and maximize the 
population of recovered human and susceptible human individuals. For this we use three 
control variables which is defined above. The objective functional for the control problem is 
given by, 
 

2 2 2

1 2 3 1 2 3 1 1 2 2 3
0

1
( , , ) min ( ( ) ( ))

2
( )

T

o h h v v o
J u u u Q S Q I Q S Q I k u k u t k u t= + + + + + +∫ (4) 
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Here the term 
0 1 2 3 1
, , , , ,

o
Q Q Q Q k k and 

2
k are the weight constants to keep the balance in 

the objective functional and also m is the constant at which the vectors are eradicated. The 

objective functional also contains the susceptible class and recovered class of human 
individuals, our goal is to maximize the recovered and susceptible human population and 
minimize the vector population and infection in the human population. Here we define the 
control set, 
 

, 1, 2.   , 0 ( ) 1., 1,  3,  [0, ]( )
i i

K u i is lebesguemeasureable u t i to t T= = ≤ ≤ = ∈
(5)

 

 
The lagrangian for the control problem is defined as 

 

2 2 2

1 2 3 1 1 2 2 3

1
( ( ) ( ))

2
( )

o h h v v o
L Q S Q I Q S Q I k u k u t k u t= + + + + + +

   

(6) 

 

And the Hamiltonian represented by M is defined as 
 

2 2 2

1 2 3 1 1 2 2 3 1 2 3 4 5

1
( ( ) ( )) (7)

2
( ) h h h v v

o h h v v o

dS dI dR dS dI
M Q S Q I Q S Q I k u k u t k u t

dt dt dt dt dt
λ λ λ λ λ= + + + + + + + + + + +

 
 
Now, we show the existence of the of the control problem (3), in the following section by 
using the leipstics conditions. 
 

4. EXISTENCE OF THE CONTROL PROBLEM 
 
To show the existence of the control problem (3), we write the system (3) in the following 

form, and , , ,
h h h v

S I R S and
v

I respectively represent the state variables susceptible human, 

infected human, recovered human, susceptible vector and infected vector. The control 

variables are 
1 3
,u u and

3
u . 

Let 
 

( ),Z BZ F Z
′ = +

         
(8) 

 
where,   
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( )

( )

( ) ,

( )

( )

h

h

h

v

v

S t

I t

Z R t

S t

I t

′

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

2 1 1

1 2

2 1 1

1 2

2

1 2 3

3 1

1 3 2 3

2

3

2

(1 ( ))
( )
1 1

(1 ( ))
( )
1 10 0 0

0 0 0 0

0 0 , 0

0 0 0 0

0 0 0 0

1

1

v h
h h

v h

v h
h

v hh h

h

v

v h

v

h

v h

h

I I u t
S b

I I

I I u t
S

I I

P

B u u P F

u

P u S I
b

I

S I

I

β β

α α

β β

α αµ λ

γ

γ

β

α

β

α

− 
− + + + +
 
 
 

− +
 + +− 
 −  
 = + − =
 

− −  
 − +   −

+



 + 

ε

ε

,















 

 

Where,
1 2 3

( ), ( ), ( ).
v v h h h h h

P P Pδ γ µ δ γ λ µ= + = + + = +  

Where, Z ′
denotes the derivative with respect to time t. The system (8) is a non-linear 

system with a bounded coefficient. We set, 
 

 G(Z)=BZ+ F(Z).
         

(9) 
 
The second term on the right hand side of (9) satisfies 
 

1 2 1 1 2 2 1 2 3 1 2

4 1 2 5 1 2

1 2 1 2 1 2

1 2 1

| ( ) ( ) (| ( ( ) ( )) | | ( ( ) ( )) | | ( ( ) ( )) |

| ( ( ) ( )) | | ( ( ) ( )) |),

(| ( ( ) ( )) | | ( ( ) ( )) | | ( ( ) ( )) |    

| ( ( ) ( )) | | ( (

h h h h h h

v v v v

h h h h h h

v v v

F Z F Z H S t S t H I t I t H R t R t

H S t S t H I t I t

H S t S t I t I t R t R t

S t S t I

− ≤ − + − + −

+ − + −

≤ − + − + −

+ − + 2) ( )) |),vt I t−

 

 

Where, the positive constant 
1 2 3 4 5

max( , , , , )H H H H H H= is independent of the state 

variables. Also we have 
 

1 2 1 2
| ( ) ( ) | | |,G Z G Z H Z Z− ≤ −  
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Where,
1 2 3 4 5

.H H H H H H M= + + + + + < ∞‖ ‖ So, it follows that the function G is 

uniformly Lipchitz continuous. From the definition of control variables and non-negative initial 
conditions we can see that a solution of the system (9) exists, [24]. 
 
Now, we consider the control system (3) with the initial conditions (2) to show the existence 
of the control problem. Note that for bounded Lebesgue measurable controls and non-
negative initial conditions, non-negative bounded solutions to the state system exists [24]. 
For the existence of our control problem, we state and prove the following theorem. 
 

Theorem 4.1:There exists an optimal control 
* * * *

1 2 3
( , , )u u u u K= ∈ such that 

1 2 3

* * *

1 2 3     ( , , ) 1 2 3( , , ) min ( , , ),u u u kJ u u u J u u u∈= subject to the control system (3) with the initial 

conditions (2). 
 
Proof: To prove the existence of an optimal control, we use the result in [25], the control and 
the state variable are nonnegative values. In this minimizing the problem, the necessary 

convexity of the objective functional in 
1 2 3
, , u u u are satisfied. The set of control variables 

1 2 3
( , , )u u u K∈ is also convex and closed by the definition. The optimal system is bounded 

which determines the compactness needed for the existence of optimal control. The 
integrand in the objective functional (4) is

2 2 2

1 2 3 1 1 2 2 3

1
( ( ) ( ))

2
( )

o h h v v o
Q S Q I Q S Q I k u k u t k u t+ + + + + + is convex in the control set K.  

Also we can easily see that, there exists a constant 1σ > and positive numbers 
1

ω and 
2

ω

such that
2 2 2 2

1 2 3 1 1 2 3 2
( , , ) (| | | | | | ) ,J u u u u u u

σ

ω ω≥ + + − which is the existence of an 

optimal control problem. This end the result. 
 
To find the optimal solution, we apply Pontryagin's Maximum Principle [26] given by: If (x,u) 
is an optimal solution for an optimal control problem, then there exists a nontrivial vector 

function 
1 2

( , ,..... )
n

λ λ λ λ= which satisfying the following inequalities. 

 

( , , , )
,

( , , , )
0 ,

( , , , )
.

dx M t x u

dt

M t x u

u

d M t x u

dt x

λ

λ
λ

λ λ

∂
=

∂

∂
=

∂

∂
= −

∂        

(10) 

 

Now, we apply the necessary conditions to the Hamiltonian M in (7). 
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Theorem 4.2: Suppose 
* * * *
, , ,

h h h v
S I R S and 

*

v
I be the optimal state solutions with associated 

optimal control variables 
* * *

1 2 3
( , , )u u u for the optimal control (2)-(3). Then there exists adjoint 

variables 1, 2,....5,
i

for iλ =  satisfying 

 
* *

2 1 1 21

1 2 1 3 1 2* *

1 2

* *

1 2 32

1 2 2 3 4 5 1* 2 * 2

2 2

3

3 1 3

*

34

4 4 5

2

(1 ) (1 )
( )( ) ( ) ,

1 1

(1 )
( ) ( ) ( ) ,

(1 ) (1 )

( ) ,

( )
1

v h
h o

v h

h v
h h h h

h h

h h

h
v

h

I u I ud
u u Q

dt I I

S u Sd
Q

dt I I

d

dt

Id

dt I

β βλ
µ λ λ λ λ

α α

β βλ
λ λ µ δ γ λ γ λ λ λ

α α

λ
λ λ λ µ λ

βλ
γ λ λ λ

α

− −
= + − + − + −

+ +

−
= − + + + − + − −

+ +

= − +

= + −
+

3 1 4 2*

* *

5 2

1 2 5 3 2 5 3* 2

1

,

( ) ( ) ,
(1 )

h v
v v

v

u Q

d S I
u Q

dt I

λ

λ β
λ λ λ γ δ λ

α

+ −

= − + + + −
+

ε

ε

(11) 

 
With transversallity conditions (or boundary conditions) 
 

( ) 0, 1, 2,....5.
i end

T iλ = =
       

(12) 
 

Furthermore, optimal controls 
* * *

1 2 3
,u u and u are given by 

 
* *

*1 2 2
3*

* 2

1

1

( )

(1 )
max min{ ,1},0 ,{ }

h v
h

v

S I
S

I
u

k

λ λ β
λ

α

−
−

+
=

    

(13) 

 
* *

1 2 1

*

* 2

2

2

( )

1
max min{ ,1},0 ,{ }

h h

h

S I

I
u

k

λ λ β

α

−

+
=

     

(14) 

 
* *

* 1 1 2 2 2

3

3

(
max min{ ,1},0 .{ }v v

S I
u

k

λ λ+
=

ε ε ε

     

(15) 

 
Proof: To find the adjoint equations and the transversality conditions, we use the 
Hamiltonian (7). By setting  
 

* * * * *
( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) ( ) ( ),

h h h h h h v v v v
S t S t I t I t R t R t S t S t and I t I t= = = = = and  
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differentiating the Hamiltonian (7) with respect to , , ,
h h h v V

S I R S and I respectively, we get 

(11).
 

 Then solving the equations,

1 3 3

0, 0, 0
M M M

u u u

∂ ∂ ∂
= = =

∂ ∂ ∂
on the interior of the control set 

and then using the optimality conditions and also the property of control space K, then we 
derive (13)-(15). 
 
Here we are calling the formulas (13)-(15) for the characterization of the optimal control. The 
optimal control and the state are determined by solving the optimality system, which 
consisting of the state system (1),the adjoint system (11), initial conditions at (2), boundary 

conditions (12) and the characterization of the optimal control variables 
* * *

1 2 3
( , , )u u u which is 

given by (12)-(15). In addition, the second derivative of the Lagrangian with respect to
* * *

1 2 3
, ,u u u , respectively are positive, which shows the minimum of the optimal control

* * *

1 2 3
,u u and u .  Substituting the values of

* * *

1 2 3
,u u and u in the control system (3), we obtained 

the following system, 
 
 
 

* * * *
*2 1 2 1 2 1

3* *
* *1 2

2 1*
* * *1 2

* *

1 2

( ) ( )

(1 ) 1
(1 max min{ ,1},0 ) (1 max min{ ,1},0 )

,
1 1

{ } { }
( )

h v h h
h

v h
v h

h
h h h h h h

v h

S I S I
S

I I
I I

dS k k
b S S R

dt I I

λ λ β λ λ β
λ

α α
β β

µ λ
α α

− −
−

+ +
− −

= − − + +
+ +  

 
* * * *

*2 1 2 1 2 1
3* *

* *2 2
2 1*

* *1 2

* *

1 2

* *

1 2 2

*

* * * 2

( ) ( )

(1 ) 1
(1 max min{ ,1},0 ) (1 max min{ ,1},0 )

( ) ,
1 1

( )

(1
( ) max min{

{ } { }
( )

( {

h v h h
h

v h
v h

h
h h h h h

v h

h v

h
h h h h h h

S I S I
S

I I
I I

dI k k
S I

dt I I

S I

dR
I R S

dt

λ λ β λ λ β
λ

α α
β β

µ δ γ
α α

λ λ β

α
γ µ λ

− −
−

+ +
− −

= + − + +
+ +

−

+
= − + +

* *
* 1 2 1

3* *

2

1 2

( )

) 1
,1},0 max min{ ,1},0 ,} { })

h h
h

v h

S I
S

I I

k k

λ λ β
λ

α

−
−

+
+

 
* * * * *

* *3 1 1 2 2 2

1*

2 3

* * * * *

* * *3 1 1 2 2 2

2*

2 3

(
max min{ ,1},0 ,

1

(
max min{ ,1},0 .

1

( { })

( { })

v v h v v
v v v v

h

v v h v v
v v v v v

h

dS S I S I
b S S

dt I k

dI S I S I
I I I

dt I k

β λ λ
γ

α

β λ λ
γ δ

α

+
= − − −

+

+
= − − −

+

ε ε ε

ε

ε ε ε

ε

  

(16) 

 

And 
* *

*1 2 2

3*

* * * * * 22

1 2 3

* *

1 2 1

* * *

2 22 1 1 2 2 2

1 2

1 2

* * * *

1 2 3 4

( )

(1 )1
( max min{ ,1},0 )

2

( )

1 (
(max min{ ,1},0 , ) (max min{ ,1},0 ) )

{ }

{ } { }

h v
h

v
o h h v v o

o

h h

h v v

h h h v

S I
S

I
M Q S Q I Q S Q I k

k

S I

I S I
k k

k k

dS dI dR dS

dt dt dt

λ λ β
λ

α

λ λ β

α λ λ

λ λ λ λ

−
−

+
= + + + +

−

+ +
+ +

+ + + +

ε ε ε

*

5
.v

dI

dt dt
λ+

 

(17) 
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5. NUMERICAL RESULTS AND DISCUSSION 
 
In this section, we discuss the numerical results of our proposed model (1) and the control 
system (3). First, we solve the system (1) and then solve the control system (3) with the 
backward Runge-Kutta order four schemes. Then we solve the adjoint system and the 
characterized solution is obtained. The Numerical results show that the optimal controls are 
affective, by using some educational campaign and awareness about the disease spread in 
the human. The numerical results from Figs. 1 to 8, it is proven that the disease may control. 
The values of parameters used for the numerical simulation in the optimal control problem 
are shown in Table 1. The constants used in the objective functional are 
 

2 1 2 1 2 3
0.37, 0.7, 0.03, 0.1, 0.003, 1, 0.1, 3, 0.9

o o
k k k Q Q Q Q= = = = = = = = =ε ε   

 
were used. Figs. 1 and 2 shows the population of susceptible and infected individuals in both 
the system respectively. The bold shows the without control and the dashed line shows 
without control system. The dashed line in Fig. 1 increase, that the control is effective and 
we want that, the increase in susceptible population. In Fig. 2 the dashed line shows the 
control system. The dashed line decreases as compared to bold. The infected individuals in 
the human population decreases. Fig. 3 and Fig.4 shows the control in both the system with 
and without control. In Fig. 3 the recovered individuals increases which shows by a dashed 
line and in Fig. 4 the susceptible vector population decreases which shown by a dashed line 
in the control system. The bold line shows without control. Fig. 5 shows the control in the 
infected vector in both the system. The dashed line shows the control system and the bold 
line shows the control in without control system. 
 

 
 

Fig. 1. The plot shows the comparison between the two models with and without 
control 
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Table 1. Parameter values used in numerical simulations of the optimal control model 
 

Notation parameter Value Source 

h
b Recruitment rate for human population 

1
β Transmission rate for human population 

1.2 
 
0.04 

Assumed 
 
Assumed 
 

2
β Transmission rate for vector population 0.04 Assumed 

3
β Transmission rate between

v
S  and 

h
I  

h
µ  Natural mortality rate of human population 

h
λ Proportionality constant 

0.04 
 

5
4.6 10

−×  
3

2.85 10
−×  

Assumed 
 
[6] 
 
[6] 

h
δ Disease death rate for human population 3

0.4 10
−×  [27] 

 

vγ Natural mortality rate of vector population 

 
 

v
δ   Disease death rate for vector population   

 

1
α Human inhibitory effect 

2
α Vector inhibitory  effect 

v
b Recruitment rate for vector population

 

h
γ Recovery rate from infection 

3
1.8 10

−×  

 
 
0.0067     
 
0.83 
 
0.83 
 
1.3 
 

3
2.7 10

−×  

 

[6] 
[6] 
 
Assumed 
 
Assumed 
 
Assumed 
 
Assumed 
 
 
[21] 
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Fig. 2. The plot represents the comparison between the two models with and without 

control 
 

 
 

Fig. 3. The plot represents the recovered individual comparison between the two 
models with and without control 
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Fig. 4. The plot represents the susceptible vector comparison between the two 
models with and without control 

 

 
 

Fig. 5. The plot represents the infected vector comparison between the two models 
with and without control 
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Fig. 6. The plot represents the control variable u1 
 

 
 

Fig. 7. The plot represents the control variable u2 
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Fig. 8. The plot represents the control variable u3 
 

4. CONCLUSION 
 
We have presented an epidemic model of leptospirosis disease with optimal control 
techniques. First, we have obtained a mathematical model by applying the optimal control 
techniques. We have defined the control variables in detail in Section. Due to unavailability 
of the vaccine in the world, except a few countries, like Cuba and China in which human 
vaccine are available, we have to prevent from the disease by adapting the above mention 
prevention in the form of control variables u1, u2 and u3.Animal vaccines are only for a few 
strains. Dog vaccines are effective for at least one year. Currently, no human vaccine is 
available in the US. Then we define our control set and the Objective functional and then we 
find the optimality conditions, the control variables characterizations and the adjoint system 
are obtained. Also the existence of the problem is discussed. In the last, the numerical 
results of both the system is analyzed for comparison. The optimal control technique is one 
of the most powerful and efficient techniques that we can completely characterizes the 
problem. We can see the plot and the variation of the parameters, we can know about the 
disease eradication in the host population. 
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