
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: sachinnagre92@jnkvv.org, sachinnagre92@gmail.com; 
 
Int. J. Plant Soil Sci., vol. 35, no. 19, pp. 121-138, 2023 

 
 

International Journal of Plant & Soil Science 
 
Volume 35, Issue 19, Page 121-138, 2023; Article no.IJPSS.104491 
ISSN: 2320-7035 

 
 

 

 

Enhancing Crop Improvement through 
Synergistic Integration of Advanced 

Plant Breeding and Proximal Remote 
Sensing Techniques: A Review 

 
Kumar Jai Anand 

a
, Sachin Prakash Nagre 

b*
,  

M. K. Shrivastava 
a
, Pawan K. Amrate 

a
, Teena Patel 

a
  

and Vijay Kumar Katara 
c
 
 

a 
Department of Plant Breeding & Genetics, JNKVV, Jabalpur, Madhya Pradesh, India. 

b 
Department of Plant Physiology, JNKVV, Jabalpur, Madhya Pradesh, India. 

c 
ICAR-PC Unit (Sesame and Niger), JNKVV, Jabalpur, Madhya Pradesh, India. 

  
Authors’ contributions  

 
 This work was carried out in collaboration among all authors. Author KJA conceptualized the idea of 

the review article and wrote the first draft of the manuscript. Author SPN was responsible for gathering 
and organizing relevant data and proofreading the final manuscript. Authors MKS and PKA collected 

and managed the references for the review. Authors TP and VKK took charge of formatting the 
manuscript according to the journal's guidelines. All authors read and approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/IJPSS/2023/v35i193533 

 
Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  
peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/104491 
 
 

Received: 27/05/2023 
Accepted: 02/08/2023 
Published: 16/08/2023 

 
 

ABSTRACT 
 

Accelerating crop improvement with enhanced adaptability to changing climatic conditions and 
meeting the ever-increasing global food demand requires urgent action. To achieve this, we must 
employ advanced molecular breeding techniques, such as marker-assisted selection, marker-
assisted backcrossing, genomic selection, genome editing, and targeted mutation. However, these 
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approaches demand the screening of large populations to identify potential genes and genotypes. 
Unfortunately, a significant bottleneck lies in the absence of high-throughput plant phenotyping 
methods that can rapidly and cost-effectively facilitate data-driven genotype selection in plant 
breeding. Traditional phenotyping methods, reliant on trained experts, are slow, expensive, labour-
intensive, subjective, and often require destructive sampling. Proximal remote sensing 
technologies, including RGB imaging, thermal imaging, hyperspectral imaging, multispectral 
imaging, and fluorescence imaging, offer a non-destructive and rapid collection of detailed 
phenotypic data, providing valuable insights into various plant traits at different growth stages. 
High-throughput phenotyping platforms, such as Conveyor-Type Indoor, Benchtop-Type Indoor, 
Unmanned Aerial Platform (UAP), and Manned Aerial Platform (MAP), utilize a combination of the 
aforementioned remote sensing technologies. This review article aims to explore the integration of 
proximal remote sensing and molecular breeding approaches, showcasing how this synergistic 
approach can expedite crop improvement efforts. By emphasizing the benefits, challenges, and 
future prospects of this integrative approach, we hope to pave the way for sustainable and 
productive agriculture, ensuring food security in the face of changing environmental conditions. 
 

 
Keywords: Molecular breeding; marker assisted selection; proximal remote sensing; thermal imaging; 

high-throughput phenotyping platforms. 
 

1. INTRODUCTION 
  
The challenges faced by global crop production 
due to the increasing human population and the 
impact of climate change, urbanization, soil 
degradation, water shortages, and pollution [1-3] 
ensuring food security in the face of these 
challenges necessitates the development of new 
crop varieties that exhibit higher yield potential 
and stress tolerance. This is where plant 
breeding plays a crucial role, with a focus on 
creating varieties resistant or tolerant to major 
plant diseases affecting modern agriculture. 
Fortunately, modern plant breeders have access 
to cutting-edge technologies that aid in 
generating large numbers of superior new 
varieties for selection. These technologies 
include advances in genomics, doubled haploid 
technology, rapid cycling, and molecular 
breeding [4,5]. Molecular breeding, including 
techniques like Marker-Assisted Selection 
(MAS), Marker-Assisted Backcrossing (MABB), 
Genome wide association mapping (GWAS), 
Genomic Selection, and Targeted mutation via 
genome editing, enables the discovery and 
generation of new genetic variability for improved 
crop traits [6]. 
 
However, a significant bottleneck hindering the 
rapid selection of improved varieties is the time-
consuming and labor-intensive process of 
screening large populations, such as mapping 
populations and mutants. High-throughput 
genetic improvement breeding requires precise, 
cost-effective, and quick assessment of 
phenotypic expressions in the field [7-11]. Plant 
phenotyping, which involves the measurement of 

various visible characteristics and physiological 
traits of plants at both the single plant level and 
canopy scale, is essential for the success of 
molecular breeding efforts [12]. 
 
Traditional phenotyping methods often rely on 
the visual assessment of crop vigor and other 
abiotic stresses by trained experts, but they are 
slow, costly, laborious, and not easily scalable to 
large areas and numerous varieties. Additionally, 
these methods may involve destructive sampling 
[13] and pose the risk of damaging fully 
developed canopies [14-16]. 
 
The advent of advanced molecular breeding 
techniques has increased the demand for high-
throughput, accurate, repeatable, and novel 
phenotyping methods. Image-based phenotyping 
tools, capable of imaging thousands of plants or 
plots within a few hours with high accuracy, are 
meeting this demand [17]. There is also a 
growing need for non-destructive, timely, and 
repeatable phenotyping methods, particularly for 
studying senescence dynamics and measuring 
novel phenotypes like the leaf-to-panicle ratio 
(LPR) and canopy occupation volume (COV) 
[18]. 
 
Here, we explore various molecular breeding 
approaches and advanced proximal remote 
sensing techniques and their integration for the 
rapid development of climate-resilient crop 
varieties. Remote sensing involves collecting 
spectral readings based on the interaction 
between incoming radiation and target objects, 
resulting in characteristic signatures of reflected 
light. These signatures are used to calculate 
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spectral indices, providing information on the 
light absorption properties of plants at specific 
wavelengths [19,20]. Recent advancements in 
remote sensing technologies and data 
processing have made it possible to apply these 
techniques in both field and controlled growing 
conditions [21,8], offering a rapid and non-
destructive approach to plant screening [22]. 
Integrating high-throughput phenotyping through 
remote sensing tools, along with the ability to 
account for environmental factors, will 
significantly improve selection efficiency in plant 
breeding [10]. 
 

2. THE USE OF GENOMIC 
TECHNOLOGIES IN THE 
INVESTIGATION OF CROP GENETICS 

 
The critical role of genotyping in plant breeding is 
essential, as it is essential to have a diverse pool 
of plant individuals with varying genetic 
variations. During the early days of Mendelian 
genetics, genotyping primarily relied on 
phenotypic variations, which limited the selection 
of target traits for plant breeding. However, the 
introduction of the polymerase chain reaction 
(PCR) method revolutionized genotyping 
technology, offering superior PCR-based 
molecular markers such as random amplification 
length polymorphism (RAPD) and amplified 
fragment length polymorphism (AFLP). These 
marker types became popular choices for many 
studies due to their cost-effectiveness and the 
fact that they did not require nucleotide sequence 
information, although their reproducibility across 
different populations posed challenges.  
 
Among the PCR-based markers, simple 
sequence repeat (SSR) markers stood out as an 
alternative that was both cheap and very useful. 
They are found in large numbers in the genomes 
of plants. The development of expressed 
sequence tags (ESTs), which capture actively 
expressed genes, synergized with SSRs, 
enhancing their power as genetic markers. 
 
The most recent advancement in molecular 
markers is single nucleotide polymorphisms 
(SNPs), which are theoretically unlimited in plant 
genomes. While scientists initially favored SSRs 
over SNPs in the 1990s, early NGS technologies 
have made SNPs the primary choice in many 
breeding studies due to their high flexibility, 
speed, and cost-effectiveness [23,24]. SNP 
markers have the potential to be universally used 
for genotyping from different sources, enabling 
integrated analysis across different species due 

to certain levels of similarities in nucleotide 
sequences. 
 
In cases where desirable alleles cannot be 
found, breeders often investigate mutant lines, 
either artificially induced or naturally occurring. 
For facilitating the identification of mutant alleles, 
genomic tools known as Target-Induced Local 
Lesions in Genomes (TILLING) [25] or Ecotype 
TILLING (EcoTILLING) [26] prove to be valuable. 
These methods have been successfully applied 
to major crops such as rice [27], wheat [28], 
barley [29], and maize [30]. 
 
The continuous advancement of breeding 
techniques has significantly accelerated the pace 
of genetic enhancement [4]. Farmers and plant 
breeders have historically selected desired plants 
based on phenotypes, even before the discovery 
of DNA and molecular markers. Crop breeding 
involves a numbers game: the more crosses and 
conditions used for selection, the greater the 
chance of finding superior varieties. Therefore, 
efficient and specific phenotyping of vast 
numbers of lines becomes essential for plant 
breeders to easily identify the best progeny. 
Improving breeding productivity is crucial to 
meeting future needs, and high-throughput 
genotyping has played a pivotal role in this 
regard. The technology has enabled the creation 
of thousands of recombinant inbred lines for 
phenotyping large mapping populations and 
diversity panels [31]. Despite the focus of 
molecular breeding strategies, such as marker-
assisted selection and genomic selection, on 
genotypic information-based choices, phenotypic 
information remains essential [32]. Similarly, 
phenotyping is crucial for classifying promising 
events in transgenic experiments [33,34]. 
Successful phenotyping is likely to be necessary 
to capitalize on advances in traditional, 
molecular, and transgenic breeding and ensure 
effective genetic enhancement of crops. There is 
an increasing demand for efficient phenotyping 
methods across various domains, as phenotypes 
are robust predictors of important biological traits 
such as disease and mortality [35]. Molecular 
biologists and breeders emphasize that 
advanced molecular techniques can only be truly 
valuable in breeding if the collection of 
quantitative traits is based on reliable 
phenotyping techniques [36]. 
 
In this review, we provide an overview of 
important advanced molecular techniques like 
marker-assisted selection, marker-assisted 
backcross breeding, Genome-wide association 
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mapping, genomic selection, and next-generation 
Sequencing (NGS), which facilitate the study of 
genetic diversity and are crucial for germplasm 
management, enhancement, and utilization. 
 

2.1 Marker-Assisted Selection 
 
Marker-assisted selection, which involves 
selecting a trait based on genotype using 
associated markers instead of relying solely on 
the phenotype. This method helps with several 
breeding activites, such as identifying cultivars, 
measuring genetic diversity and purity, choosing 
parents, figuring out which parts of the genome 
are being chosen, and studying heterosis [37]. 
The identification of plants carrying specific 
genes, or QTLs, is primarily determined by their 
genotype, which is achieved through the analysis 
of molecular (DNA-based) markers [38]. 
Remarkably, marker-assisted selection holds 
immense promise for the development of BLB 
disease-resistant rice varieties, as demonstrated 
by various studies [39, 40, 41]. 
 

2.2 Next-Generation Sequencing 
Technologies 

  
DNA marker identification perspectives have 
moved from fragment-based polymorphism 
identification to sequence-based single 

nucleotide polymorphism (SNP) identification 
owing to the availability of whole genome 
sequences (WGS). While WGS technologies 
based on Sanger sequencing were once time-
consuming, costly, and limited to providing 
information on individual targets, the emergence 
of next-generation sequencing (NGS) 
technologies and powerful computational 
pipelines has revolutionized the process. 
 
The utilization of NGS has drastically reduced 
the cost of whole genome sequencing, enabling 
the discovery, sequencing, and genotyping of 
thousands of markers in a single step, which was 
previously unattainable [42]. This has opened up 
new possibilities for next-generation plant 
breeding, as NGS serves as a powerful tool to 
rapidly detect numerous DNA sequence 
polymorphisms within a short timeframe. 
Consequently, NGS technologies are gaining 
widespread acceptance in the field of crop 
breeding [103-106]. Moreover, many NGS-based 
marker discovery techniques now allow for SNP 
discovery and genotyping simultaneously, further 
expediting the entire process [43]. Because of 
this breakthrough, WGS technologies are no 
longer limited by how long they take and how 
much they cost. This makes NGS a key tool for 
large breeding populations and finding specific 
genes in agriculture. 

 

 
 

Fig. 1. Marker assisted selection 
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Fig. 2. Workflow of next generation sequencing 
 

2.3 Genome-Wide Association Studies 
(GWAS) 

 

GWAS aims to detect differences in the allele 
frequency of genetic variants among ancestrally 
similar individuals who exhibit phenotypic 
variations. While GWAS can consider copy-
number variants [6] or sequence variations in the 
genome, single-nucleotide polymorphisms 
(SNPs) are the most commonly studied genetic 
variants in this context [44].  
 

GWAS, based on linkage disequilibrium (LD), 
proves to be an effective approach for detecting 
marker trait associations (MTAs) using whole 
genome-wide variants, especially for complex 
quantitative traits in various crop species [45,46]. 
However, conducting GWAS successfully 
requires careful assessment of the population 
structure of the diversity panel to establish 
genetic relatedness among individuals and 
minimize the risk of false associations [47, 48]. 
Additionally, the reliability of GWAS results 
depends on the use of a sufficiently large number 
of markers to capture the genetic variability 
adequately.  
 

2.4 Genomic Selection for Predictive 
Breeding 

  

Genomic selection represents an extension of 
marker-assisted selection (MAS) in plant 
breeding. MAS predicts the genotypic values of 
individuals [49] based on the effects of a few 
selected markers, which facilitates indirect 

selection. In contrast, genomic selection takes 
advantage of all markers without the need for 
significance testing. Consequently, in genomic 
selection, the predicted genomic values replace 
the marker score used in MAS [50, 32, 51]. 
 

Genomic selection (GS) is a promising approach 
that leverages molecular genetic markers to 
design novel breeding programs and develop 
marker-based models for genetic evaluation. It 
offers significant opportunities to increase the 
genetic gain of complex traits per unit time and 
cost in plant breeding [52]. GS estimates the 
genetic value of individuals based on a large set 
of marker information distributed across the 
entire genome, rather than relying on a limited 
number of markers as in MAS. The GS method 
creates a prediction model using genotypic and 
phenotypic data from a training population (TP), 
which is then used to derive genomic estimated 
breeding values (GEBVs) for all individuals in the 
breeding population (BP) based on their genomic 
profiles [53]. Researchers recognize the potential 
of genomic selection as a powerful tool in 
agriculture to accelerate breeding progress and 
enhance the development of improved crop 
varieties with desirable traits. 
 

3. DIFFERENT PROXIMAL REMOTE 
SENSING TECHNIQUES FOR HIGH 
THROUGHPUT PHENOTYPING 

 

In the pursuit of genetic improvement, plant 
phenotyping plays a vital role. Thanks to recent 
progress in proximal remote sensing and the 
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development of new sensors and computer 
science applications, cost-effective high-
throughput phenotyping (HTP) is now achievable 
[54,8,55]. HTP enables the collection of time-
series measurements that monitor a crop's 
development throughout its life stages and its 
responses to the environment. This wealth of 
information includes gene function, gene 

activation, and gene network interactions at 
various stages of plant growth and in response to 
environmental stimuli [54]. Consequently, plant 
breeders can now perceive light interception, 
biomass accumulation, and response to drought 
stress as dynamic traits rather than fixed points 
in time [54,56]. 

 

 
 

Fig. 3. Different step of GWAS 
 

 
 

Fig. 4. Showing the different steps of genomic selection (GS) 
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Primarily employ ground-based proximal sensing 
approaches, canopy temperature (CT) has 
proven to be strongly linked to plant 
performance, especially under stress, as it is 
closely associated with water status and stomatal 
conductance (Blum et al., 1982; Berliner et al., 
1984; Amani et al., 1996). Additionally, the 
Normalized Difference Vegetation Index (NDVI) 
allows us to estimate relative crop biomass at 
different growth stages (Babar et al., 2006) [57] 
and assess factors like nitrogen deficiency and 
crop senescence rate (Babar et al., 2006; 
Olivares-villegas et al., 2007)[58].  
 

3.1 Thermal Imaging for Stress Detection 
and Monitoring 

 

Thermal sensing or imaging stands out as one of 
the most potent tools for phenotyping, especially 
when studying traits associated with water stress 
responses [59, 60, 61]. This approach capitalizes 
on the fact that surfaces experience cooling due 
to evaporation, causing their temperatures to 
decrease in correlation with the evaporation rate. 
Consequently, any stomatal closure resulting 
from drought stress will be apparent as a warmer 
temperature. By detecting emitted infrared 
radiation in the thermal infrared range (8 to 12 
mm) using thermographic and infrared cameras, 
we can create false color images where each 
pixel represents the temperature value of the 
object being measured [62]. This enables 
utilization of thermal imaging effectively in 
quantifying stomatal closure. 
 

However, akin to spectral reflectance sensing, 
one of the primary challenges in thermal sensing 
is interference from various factors such as 
background effects, sunlight, rainfall, or wind 
speed. The temperature of the soil, for instance, 
tends to be significantly warmer than that of the 
transpiring canopy [107-109]. To overcome this 
hurdle, specialized techniques are required to 
obtain a pure signal from the canopy alone. 
Some of these techniques involve overlaying 
multispectral images and extracting shaded or 
sunlit canopy temperatures [63, 64,65]. 
Additionally, the use of thresholding has also 
been proposed as an effective method [65]. 
Several automated or semi-automated 
approaches have been put forward for extracting 
canopy temperature data from different 
experimental plots [64]. 
 

3.2 RGB-imaging  
 

RGB-imaging in plant breeding as a valuable tool 
for evaluating morphological traits. The utilization 

of digital cameras has become pivotal due to 
their user-friendly nature, allowing for easy 
handling and quick capture of RGB (red, green, 
and blue) digital images. These images play a 
crucial role in detecting, identifying, and 
quantifying both biotic and abiotic stresses. Over 
time, there have been remarkable improvements 
in the technical parameters of these handheld 
devices. Factors such as light sensitivity of the 
photo sensor, spatial resolution, and optical and 
digital focus have undergone significant 
enhancements on an annual basis, as outlined 
by Mahlein in [62]. 
 

3.3 Multispectral Reflectance Sensors  
  
Spectral sensors play a crucial role in research, 
and they can be categorized based on their 
spectral resolution, spatial scale, and type of 
detector (imaging or non-imaging sensor 
systems). Among the earliest spectral sensors 
developed were the multispectral sensors, which 
assess the spectral information of objects using 
several relatively broad wavebands. For 
instance, multispectral imaging cameras typically 
capture data in the red (R), green (G), and blue 
(B) wavebands, along with an additional near-
infrared (NIR) band. 
 
The optical properties of leaves are complex and 
involve various interactions. These properties 
encompass light transmission through a leaf, 
light absorption by leaf chemicals (such as 
pigments, water, sugars, lignin, and amino 
acids), and light reflection from internal leaf 
structures or directly from the leaf surface [110-
113]. Consequently, the reflectance of light from 
plants depends on multiple biophysical and 
biochemical factors. In the visible range (VIS, 
400 to 700 nm), leaf pigment content significantly 
influences the reflectance. The near-infrared 
reflectance (NIR, 700 to 1,100 nm) depends on 
the leaf structure, internal scattering processes, 
and the absorption by leaf water. Additionally, the 
short-wave infrared (1,100 to 2,500 nm) is 
influenced by the composition of leaf chemicals 
and water [66]. 
 
Higher yield among cultivars is correlated with a 
greater green area per square meter and a 
higher NDVI around the heading or anthesis 
stages, regardless of drought or irrigated 
conditions. Our stepwise multi-linear regression 
analysis has confirmed that green area per 
square meter and NDVI are among the most 
significant traits contributing to grain yield (GY) 
under drought conditions [67]. These insights are 
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invaluable for the ongoing efforts to enhance 
agricultural productivity and adapt to varying 
environmental conditions. 
 

3.4 Hyperspectral Reflectance Sensors 
  
The advancement of modern hyperspectral 
sensors now cover an extensive spectral range, 
spanning from 350 to 2,500 nm, and offer the 
potential for narrow spectral resolution below 1 
nm (Steiner et al., 2008). Unlike non imaging 
sensors, which average spectral information over 
an area, hyperspectral imaging sensors provide 
both spectral and spatial data for the imaged 
object. The resulting hyperspectral data is 
represented as large matrices, with spatial x- and 
y-axes, and spectral information as reflectance 
intensity per waveband in the third dimension, z 
(Mahlein et al., 2012b). 
 
Spectral reflectance is an effective means of 
deriving valuable information about canopy 
biochemistry, including water content, stem 
soluble carbohydrates, and pigments like 
chlorophyll, carotenoids, and xanthophylls. While 
broadband multispectral sensors can be utilized 
for this purpose, narrow-band or hyperspectral 
sensors provide more accurate information [68] 
(Tejada et al., 2005) [69,70]. 
 

3.5 Fluorescence Imaging 
  
Chlorophyll fluorescence parameters serve as 
essential tools for estimating variations in the 
photosynthetic activity of plants. Chlorophyll 
fluorescence imaging instruments, commonly 
classified as active sensors, employ LED or laser 
light sources to assess photo- synthetic electron 
transfer [71,114-119]. This approach proves 
valuable in studying differences in photosynthetic 
activity resulting from both biotic and abiotic 
stresses across the leaf area [72]. Furthermore, 
the combination of fluorescence imaging with 
image analysis techniques has demonstrated 
utility in discerning and quantifying fungal 
infections [73]. 
 
Despite its advantages, one drawback of current 
chlorophyll fluorescence imaging systems is the 
necessity for strict plant preparation protocols, 
making it challenging to implement in regular 
agricultural greenhouses or field environments. 
Consequently, ongoing research has focused on 
extracting fluorescence parameters from sun-
induced reflectance in the field, which holds 
promising potential for assessing plant diseases 
at the canopy or field level (Rossini et al., 2014). 

3.6 LiDAR and Time of Flight sensor 
  
Various sensors are available to provide crucial 
3D structural information of crops and vegetation. 
Among these, LiDAR stands out as the most 
well-known and extensively utilized sensor for 3D 
canopy reconstruction [74,75,76]. Leveraging 
laser technology, LiDAR has proven effective in 
rapidly mapping Leaf Area Index (LAI) and 
estimating plant area density profiles within 
wheat canopies [77,78]. 
 
However, for simpler alternatives, there are other 
sensors with slightly reduced spatial resolution or 
range compared to LiDAR. These options include 
depth cameras based on time-of-flight [79], 
ultrasonic sensors, and even consumer-grade 
gaming interfaces like the Microsoft Kinect. 
Surprisingly, these alternative sensors have also 
found utility in characterizing various types of 
canopies [80]. It is essential to explore and utilize 
a diverse range of sensors to gather 
comprehensive 3D structural information for crop 
monitoring and analysis. 
 

3.7 Sensors for Assessing Plant 
Biomass and Plant Architecture 

  
Plant architecture and biomass is crucial for 
assessing health status and detecting diseases 
at both individual plant and field scales. Various 
advanced technologies, such as stereo cameras, 
3D laser scanners, ultrasonography, and 
densitometry, hold promise in providing valuable 
insights into plant biomass and architecture 
(Busemeyer et al., 2013; Paulus et al., 2013; 
Wahabzada et al., 2015b). By employing these 
technologies, it becomes possible to 
automatically determine single plant organs and 
extract volume information, such as the 
measurement of wheat panicles. Remarkably, 
this volume data exhibits a strong correlation with 
the actual thousand kernel weight, a crucial 
parameter in assessing grain quality. 
Photogrammetric techniques also find application 
in detecting wheat kernels infected with Fusarium 
spp., offering a potential solution for disease 
detection [120-126].  

 
Stereo cameras and 3D laser scanners further 
enrich the data by capturing color and 
reflectance intensity information, which can be 
harnessed for disease detection through image 
and reflectance analysis, respectively (Paulus et 
al., 2014). These innovative technologies 
presents exciting opportunities for precise plant 
health assessment and disease monitoring in 
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crops, enabling timely interventions and informed 
decision-making for improved agricultural 
productivity. 
 

4. ADVANCEMENTS IN PROXIMAL 
REMOTE SENSING PLATFORMS AND 
TECHNOLOGIES 

 
Recent years have witnessed the advent of 
diverse High-throughput phenotyping platforms 
(HTPP) that have revolutionized plant breeding 
[81]. These advanced platforms leverage novel 
sensors, image analysis, robotics, and remote-
sensing data to enable rapid and accurate 
evaluation of numerous agricultural traits. By 
adopting HTP, plant breeders can efficiently 
handle large volumes of phenotypic data and 
effectively match them with the vast amount of 
genotypic information, facilitating more 
comprehensive and insightful analyses. The 
integration of HTP with genomics data paves the 
way for more informed and efficient breeding 
decisions, leading to the development of 
improved crop varieties that can address 
agricultural challenges and enhance overall 
productivity. 
 

4.1 Conveyor-Type Indoor HTPP 
  
We utilize a conveyor-type HTPP system, which 
operates in the “plant-to-sensor” mode. This 
system involves transporting potted plants into 
an imaging room using a conveyor, where 
cameras are strategically placed on the top and 
sides of the darkroom. The process is fully 
automated, with the computer controlling an 
automatic door that allows the plants to pass 
through for imaging. After imaging, the plants are 
returned to their original growth positions. To 
facilitate data acquisition, the plants may also be 
rotated during the imaging process. This setup 
effectively eliminates interference from ambient 
light, ensuring accurate measurements. 
Furthermore, halogen lamps are used to provide 
consistent and controlled illumination during the 
imaging procedure. Ge et al. [82] employed RGB 
and hyperspectral imaging rooms to analyze the 
growth, leaf water content and water-use 
dynamics of maize crop. 
 

4.2 Benchtop-Type Indoor HTPP 
  
The importance of accurately measuring 
phenotypic traits that can be affected by 
environmental factors such as temperature and 
wind, particularly for small plant species with 
delicate stems. To achieve precise 

measurements without disturbing the plants, the 
benchtop HTPP system operates in a “sensor-to-
plant” mode. In this setup, the imaging head is 
equipped with multiple sensors and mounted on 
a computer-controlled mechanical arm. The 
mechanical arm automatically locates the 
position of the growing plant and collects its 
phenotypic data directly at the site where it is 
situated. By keeping the plants stationary while 
the sensors move around them, we can ensure 
reliable and undisturbed data acquisition. 
 
The benchtop HTPP also boasts other valuable 
features. It includes a precisely controlled 
irrigation and weighing system, ensuring the 
plants receive the required amount of water while 
accurately monitoring any changes in their 
weight. Additionally, the system incorporates 
supplemental light sources to provide controlled 
illumination, maintaining consistent growth 
conditions for the plants throughout the 
phenotyping process [80]. 

 
4.3 Unmanned Aerial Platform (UAP) 
  
The UAP serves as an aerial platform, equipped 
with various on-board sensors, a GPS unit, and 
an inertial measurement unit (IMU), a battery, 
and a crucial gimbal for stabilizing pitch and roll 
motion. This integration allows the UAP to collect 
phenotypic data at the plant canopy scale. To 
ensure high-precision geographic positioning of 
plots, the use of Ground Control Points (GCPs) 
and calibration boards is essential. The 
successful phenotyping of plants with UAPs 
depends on the characteristics of the unmanned 
aerial vehicle (UAV) and the properties of the 
deployed sensors [10]. UAPs can be classified 
into two main types based on their most 
distinguishing feature: multi-rotor and fixed-wing 
UAVs.  
 
UAV-based phenotyping offers a higher degree 
of resolution, crucial for detecting subtle changes 
in plant responses, such as those caused by 
disease infection, heat and drought stress, or 
mineral deficiencies [83]. UAV-based 
phenotyping operates at the plot level, providing 
instantaneous records of single or multiple plots, 
making it highly applicable to plant breeding [8, 
84]. 
 

4.4 Manned Aerial Platform (MAP) 
  
The Multispectral Aerial Phenotyping (MAP) 
system is typically adapted from either a manned 
helicopter or a fixed-wing aircraft. This adaptation 
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involves the installation of a phenotype 
acquisition kit, which can be housed in a cargo 
pod or directly affixed to the aircraft's step using 
a bracket. During operation, a passenger or 
passengers are responsible for evaluating the 
captured images and providing real-time 
feedback on their quality to the pilot. This 
feedback is communicated via., a video monitor 
located within the cockpit. The phenotypic 
equipment used in this study comprises sensors, 
a GPS unit, gyroscopes, and inertial 
measurement units [80]. 
 

5. INTEGRATION OF PROXIMAL 
REMOTE SENSING TECHNIQUES AND 
ADVANCE MOLECULAR TECHNIQUES 

  
Challenges in phenomics for the upcoming 
years, particularly in understanding the interplay 
between genotype and environmental influences 
that shape phenotypes. One promising approach 
is the utilization of multi-omics analysis to unravel 
the intricate spatio-temporal regulatory networks 
governing crucial agronomic traits [85]. While 
significant progress has been made in gene 
discovery based on phenotypic variation, there is 
still a long way to go, especially with the adoption 
of PRS-derived phenomics [86]. The concept of 
“genetic gain” remains fundamental in our 
quantitative genetics and breeding endeavors, 
signifying the incremental improvement achieved 
through artificial selection over time [87]. 
 
To maximize genetic gain and expedite breeding 
cycles, the aim should be to integrate various 
phenotyping approaches with modern breeding 
techniques such as marker-assisted selection 
(MAS), QTLs, and GWAS [88]. Recent studies 
have explored using hyperspectral traits, RGB 
images combined with KASP markers, and CT 
scans to investigate genetic variation at different 
organizational levels, from populations to 
cells/tissues [89,67,90]. Additionally, time-series 
phenotyping has shed light on the genetic basis 
of dynamic plant phenotypes [91]. 
 
Collaboration between high-throughput 
phenotyping and functional genomics has been 
instrumental in identifying novel genetic variants, 
ultimately expediting precision breeding and 
cultivating crops while bridging the gap between 
genomics and phenomics [92, 93,43]. Another 
important aspect of the genomics and phenomics 
combination is predicting phenotypes based on 
genetic variation, which holds great potential for 
guiding gene editing and achieving smart 
breeding (G2P) [94, 95].  

In the era of breeding 4.0, where phenomics, 
genomics, bioinformatics, and biotechnology 
converge, researchers have gained insights into 
diverse molecular mechanisms that govern 
phenotype formation through DNA expression 
[96]. By correlating molecular phenotypes with 
organism-wide traits, we can further uncover 
genetic loci associated with plant phenotypes 
and establish a comprehensive information flow 
model from DNA to phenotypic traits [97]. These 
models can help explain the causal relationship 
between genetic variants and phenotypic 
variation, leading to the removal of deleterious 
alleles and the introduction of beneficial ones, 
significantly accelerating the crop improvement 
process [97,98]. Through continuous 
advancements in remote sensing technologies 
and interdisciplinary collaborations, we can 
revolutionize agriculture by harnessing the power 
of genomics and phenomics to create more 
resilient and productive crop varieties. 
 

6. CHALLENGES AND CONSIDERATION 
 

6.1 Data Integration and Analysis 
Challenges 

  
The advancements molecular breeding 
techniques, which have contributed to a vast 
array of genetic variability on a large scale. To 
fully leverage this potential for plant breeding 
programs, it is imperative to establish strong 
connections between genotypic data and 
phenotypic traits. This linkage allows us to utilize 
the genetic information effectively in our efforts to 
improve crop varieties. In this endeavour, the 
analysis of a substantial number of plants 
becomes essential to identify specific genes or 
QTLs (Quantitative Trait Loci) of interest. 
However, handling such complex datasets 
requires advanced bioinformatics tools and 
algorithms (Grosskinsky et al., 2015) [12]. These 
computational resources play a crucial role in 
processing and extracting meaningful insights 
from the vast amount of genetic and phenotypic 
information. 
 

6.2 Scaling Up to Large Breeding 
Populations 

  

The importance of scalable high-throughput 
phenotyping techniques, especially when dealing 
with large breeding populations. To identify 
potential mutant alleles and transgressive 
segregants for closely linked genes or QTLs, 
breeders need to screen a substantial number of 
plants with high accuracy. Therefore, there is a 
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pressing need for phenotyping methods that can 
efficiently handle this increased workload [8]. 
Achieving scalability in phenotyping requires 
embracing automation and robotics to streamline 
the phenotyping process and reduce the labor 
and time involved [17]. By automating repetitive 
tasks and employing robotic systems, we can 
significantly increase the throughput and 
accuracy of phenotyping, making it feasible to 
analyze a large number of plants or plots 
efficiently. 
 

6.3 Ethical Considerations and 
Intellectual Property Rights 

  
The ethical considerations and intellectual 
property rights issues that accompany the 
adoption of high-throughput phenotyping 
techniques in our field. The increasing use of 
molecular breeding methods, such as genome 
editing technologies, has brought forth important 
questions about the regulation and oversight of 
genetically modified crops [54]. To foster public 
trust and ensure transparency, it is crucial to 
address concerns related to the development 
and deployment of high-throughput phenotyping 
methods. Open communication and clear 
dissemination of information about the processes 
and outcomes of these techniques are              
essential in gaining public acceptance and 
support. 
 

6.4 Adoption and Implementation in 
Breeding Programs 

  
The successful adoption and implementation of 
high-throughput phenotyping in breeding 
programs come with certain challenges that must 
be addressed. To effectively utilize and interpret 
the phenotypic data generated through advanced 
technologies, it is essential to provide training 
and equip breeders and researchers with the 
necessary skills and knowledge (Grosskinsky et 
al., 2015). 
 
Bridging the gap between technology 
development and practical application in 
breeding programs requires strong collaboration 
between different experts. Plant breeders, 
phenotypic and genotypic data scientists, and 
bioinformaticians must work together to ensure 
seamless integration and meaningful utilization of 
high-throughput phenotyping data [8]. Moreover, 
it is crucial to consider the cost-effectiveness and 
practicality of high-throughput phenotyping 
methods to encourage their widespread adoption 
by breeders. Making these technologies 

accessible and economically viable will facilitate 
their integration into breeding pipelines [12]. 
 

7. CONCLUSION AND FUTURE 
PERSPECTIVES 

  
Plant Phenotyping (PP) has become a bottleneck 
technology for high-throughput breeding and a 
key valve for increasing yield production. Our era 
has witnessed tremendous advances in PRS and 
PP, strengthening the spatial and temporal 
consistency of PRS data The plant phenotype 
involves comprehensive traits (e.g., biomass) 
that also show spatio-temporal changes with 
plant growth and development owing to the co-
regulation of genomics and the environment [99]. 
PRS enables high throughput, high precision, 
and multi-dimensional phenotyping, benefiting 
from various available and affordable sensors 
and platforms. Some considerations are 
recommended to improve phenotypic data 
quality. First, choose an appropriate spectral, 
spatial, and temporal resolution based on the 
phenotypic targets. Second, standardize data 
collection processes to ensure comparability and 
improve processing efficiency by following 
standards published by international 
organizations [100, 101]. More importantly, 
because of the increasing need for repeatable 
phenotyping, data sharing, and interdisciplinary 
collaboration, a more serious challenge for PRS-
based phenotyping is maintaining the spatio-
temporal consistency of multisource data. PRS 
usually has comparability problems between 
different sensors due to their different working 
settings and spatio-temporal resolutions [102]. 
Therefore, it is necessary but challenging to 
improve the spatio-temporal consistency of PS-
based phenotyping.  
 
Specific PRS technologies (sensor and platform 
types), phenotypic research fields, working 
environments, species, and traits as a bridge for 
multi-omics research, PRS-based PP involves 
multi-dimensional data acquisition, processing, 
and modelling, which can be used to accelerate 
multi-omics studies to identify new genetic loci, 
screen plants, and accelerate breeding. For 
example, the strategy of developing drought-
tolerant wheat varieties depends on 
understanding and identifying below-ground and 
above-ground traits for drought tolerance, 
together with the use of marker-assisted 
selection. 
 
By integrating proximal remote sensing 
techniques with genomic approaches, 
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researchers and breeders can enhance their 
understanding of crop genetics, improve 
selection efficiency, and accelerate the 
development of improved varieties. This review 
article provides valuable insights into the current 
status, challenges, and future directions of this 
integrative approach, offering guidance for 
researchers and practitioners aiming to leverage 
the power of proximal and remote sensing. 
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