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ABSTRACT 
 

Aeronautical navigation systems installed at specific locations within Saudi Arabia report the actual 
observed data of the times to failure (TTFs) for many types of engineering elements made by some 
typical international highly-acclaimed manufacturers. There is a need to compare these observed 
data to the estimated data provided by the manufacturers themselves. The paper gathers a lot of 
data on the actual failure instances of many components produced by a variety of manufacturers 
and installed at different locations within the extensive area of Saudi Arabia. These data are used 
to calculate the mean times between failures for these components. The paper points to an 
inadvertent discrepancy between these data and the corresponding mean times between failures 
(MTBFs) suggested by some prominent manufacturers. Such suggested MTBFs are typically 
optimistic and unrealistically high irrespective of the elements, the location, and the manufactures. 
The work reported herein is a preliminary assessment of this phenomenon that might lead to its 
theoretical modeling and subsequent understanding. 
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1. INTRODUCTION 
 
This paper reports a phenomenon concerning 
many types of components used in aeronautical 
navigation systems in Saudi Arabia. This 
phenomenon is unusual, strange, peculiar, 
surprising, and difficult to understand or explain. 
For certain manufacturers, there is a significant 
disagreement between the observed times 
between failure (TBFs) of many types of 
components and the corresponding MTBFs 
suggested by the manufacturers, regardless of 
the location in which the component is being 
used. Such a disagreement is always in the 
undesirable direction, i.e., the observed TTFs are 
always lower (and sometimes significantly much 
lower) than the manufacturer’s suggested MTBF. 
In fact, the observed data do not look like data 
obtained under normal operating conditions, but 
are similar to data obtained under burn-in testing 
or accelerated failure [1-5].  Ironically enough, 
this observed phenomenon is in direct 
contradiction with (a) a common practice in  
many developing countries, wherein attempts are 
made to maintain and support complex systems 
that are being operated beyond their designed 
life [6,7], and (b) the situation where 
obsolescence is a major concern, such as when 
dealing with legacy electronic military systems 
[8,9]. 
 
This paper attempts to establish the existence of 
the aforementioned phenomenon, a preliminary 
step towards an extensive exploration, hopefully 
leading to full understanding of it, which might 
include or lead to: 

 
 The assertion of a plausible explanation of 

the phenomenon, and whether it is due to 
harsh working conditions, severe desert 
climate, ineffective maintenance policies, 
optimistic (or even fraudulent) prediction by 
some of the manufacturers, or something 
else. 

 The construction of necessary 
mathematical or statistical models to 
capture the essence of this phenomenon. 

 The comparison of the model predictions 
and the actual data for various 
components and locations. 

 The comparison of the situation in the 
Aeronautics Sector with the situation in 
other Industrial Sectors. 

 The comparison of the situation in Saudi 
Arabia with that in other countries of similar 
climates, and other countries worldwide. 

 The forwarding of a model-based 
mathematized theory that gives an 
acceptable interpretation of the real-life 
data. 

 The assessment of inherent economic 
losses associated with the aforementioned 
phenomenon. 

 The decision whether the concerned 
manufacturer is to be blamed for this 
discrepancy, i.e. whether the manufacturer 
officers made their predictions on good 
faith using agreed-upon scientific 
methodology in a competent and honest 
manner, and, if not, whether they were 
scientifically incompetent or they 
deliberately cheated so as to sell an 
inferior product for an undeserved high 
price. 
 

The main theme or premise of this paper might 
be compatible with ongoing discussions that 
attempt to correlate degradation of reliability 
metrics (such as the MTBF) to the existence of 
adverse or even hostile operating conditions 
[10,11]. Turl and Wood [12] observe that “all too 
often, laboratory-proven, sophisticated and 
effective instrumentation can suffer from 
degraded performance, and even failure, when 
deployed in demanding or harsh conditions.” If 
this premise does not suffice to justify the 
observed phenomenon, then doubts about the 
competency or integrity of manufacturers cannot 
be avoided, though these doubts cannot be 
raised to the status of public or formal 
accusations. In fact, the possibility of 
incompetency or even deliberate fraud cannot be 
entirely ruled out [13-15]. However, since the 
burden of proof will be on the customer and not 
on the manufacturer, the achievement of due 
justice will face a long way to go. Cressey [16] 
implicitly asserts the existence of management 
fraud in our contemporary world, and hopes it will 
decline in frequency and severity when we 
develop knowledge about its causes and then 
use that knowledge in prevention programs.  
 
The organization of the rest of this paper is as 
follows. Section 2 presents an overall picture of 
the possibilities of the relation between actual 
observed data and predicted data. Section 3 
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reports many samples of actual observed data, 
individually for singled-out components used in 
specific locations, and then collectively by 
aggregating the data for many components, 
several locations and a variety of manufacturers. 
Section 4 concludes the paper. The paper relies 
heavily on some technical reliability terminology 
that might be found in many texts and papers 
(see, for example, [17-28]).  Appendix A is a 
handy glossary for some of the technical 
nomenclature used in the paper, and explains 
some of the underlying terms and mathematical 
relations to make the paper self-contained. The 
reason of relegating this material to the appendix 
(rather than incorporating it within the main text) 
is to avoid distracting the reader from the 
essence of the message conveyed by the paper. 
We do not want our readers to fail to see the 
forest for the trees, or to get too involved in the 
details to observe the picture as a whole. 
 

2. POSSIBILITIES OF THE RELATION 
BETWEEN ACTUAL AND PREDICTED 
DATA 

 

The actual data recorded for each component at 
a specific location provides the instant Ti at which 
the ith failure occurs. We need a subtraction 
operation to obtain the times between two 
successive failures TBFi, namely   
 

TBFi  =  Ti  ــ Ti 1 ــ,   i ≥ 1, T0 = 0.                  (1) 

Implicit in the above equation are typical 
assumptions of reliability theory [29,30], including 
the following assumptions 
 

(a)  The component is perfect when it is new, 
i.e., the reliability R(t) satisfies.  
 

R(t)  ] t = 0       = 1.0                               (2) 
 

(b) When the component fails, its failure is 
detected and reversed (via replacement or 
repair) in a supposedly negligible time, 
such that the component becomes as good 
as new, and hence the reliability jumps 
again to 1.0 when a failure (with 
subsequent repair or replacement) occurs, 
i.e., 
 

  R (t)  ] t = Ti       = 1.0                           (3) 
 

Fig. 1 displays a hypothetical scatter of TTF data 
(of a specific component at a given location) in 
two cases: Case 1 depicts a narrow spread of 
data (good precision), while Case 2 has a wide 
spread of data (low precision). The data is 
compared to four estimates of the MTBF that are 
possibly submitted by the manufacturer: 
 

(a) MTBF1 (optimistic prediction), 
(b) MTBF2 (accurate prediction), 
(c) MTBF3 (conservative prediction), and  
(d) MTBF4 (overly conservative or too    

pessimistic prediction). 
 

 
 

Fig. 1. Hypothetical scatter of actual TTF data in two cases: Case 1 (narrow spread, good 
precision), and Case 2 (wide spread, low precision). The data is compared to four estimates of 

the MTBF submitted by the manufacturer: (a) MTBF1 (optimistic prediction), (b) MTBF2 
(accurate prediction), (c) MTBF3 (conservative prediction), and (d) MTBF4 (overly conservative 

or too pessimistic prediction) 
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In the next section, we report actual data, taken 
from the Database of System Failure, 
Maintenance Control Administration, 
Aeronautical Navigation Services, Saudi Arabia 
[31].  We try to see how this data compares with 
that in Fig. 1, and subsequently classify it as one 
of the four types suggested in the figure.                   
We note that, strangely enough, optimistic 
prediction is prevalent for many components, 
many locations, and many manufacturers. We 
have deliberately used the neutral                            
non-aggressive non-offensive label of ‘optimistic’ 
for a kind of prediction that uses an               
exaggerated value for the MTBF. We refrain from 
giving any judgment on such a prediction,                  
which might or might not be scientifically and 
morally sound. Our purpose is simply to alert 
researchers to our large-scale observation. 
Definitely, further investigations are needed to 
replicate our results, and to make them more 

specific and quantitative. Whether these results 
have ramifications concerning competency or 
honesty is still an open question. Further 
extensive study, based on advanced statistical 
methods, is warranted for answering this 
question. 
 
3. SAMPLES of ACTUAL OBSERVED 

DATA 
 

We start by the good or normal news first. Figs. 
2(a)–2(c) show the TTF variation with locations 
for specific components made by certain 
manufacturers, with the MTBF suggested by the 
manufacturer appearing as a constant or 
horizontal line independent of the location, and 
fortunately, it is almost a lower bound for the 
observed data. The manufacturer’s suggestions 
here are rather conservative and this is what is 
expected of a manufacturer who is  

 

 
 

Fig. 2.(a)                                                                        Fig. 2.(b) 
 

 
 

Fig. 2.(c) 
 

Fig. 2 (a) – (c). MTTF variation with locations for specific components made by a certain 
manufacturer. The MTTF estimated and promised by the manufacturer (shown in blue) is 

constant irrespective of the location, while the actual MTTF observed by the operators 
(depicted in red) varies with location 
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Fig. 3.(a)                                                                        Fig. 3.(b) 

 

    
 

Fig. 3.(c)                                                                        Fig. 3.(d) 
 

 
 

Fig. 3.(e)                                                                        Fig. 3.(f) 

 
Fig. 3 (a) – (f). Case when the MTBF suggested by the manufacturer sets an upper bound for 

the graph of MTTF variation with location 
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a. scientifically and technically competent. 
b. of sound moral integrity. 
c. knowledgeable about its target market, 

and taking into consideration the harsh 
operating conditions and the severe 
desert climate in most regions of the 
Arabian Peninsula. 

 
Figs. 3(a)–3(f) demonstrate the phenomenon we 
need to report. Here, the constant MTBF 
suggested by the manufacturer sets an upper 
bound for the graph of TTF variation with 
location. It is alarming to see that the situations 
depicted in Figs. 3(a)-3(f) are much more 
frequent than those noted in Figs. 2(a)-2(c). 
 

4. CONCLUSIONS 
 
This paper presents a thought-provoking 
observation on the validity of manufacturer’s own 
assessment of their own products. While a few 
particular manufacturers give conservative 
predictions of the MTBFs for their components, 
some other manufacturers give optimistic and 
occasionally, too optimistic predictions. As we 
pointed out in the introduction, there are 
potentially many potential subsequent studies 
and several ramifications for the phenomenon 
observed herein. 
 
In passing, we note that the manufacturer’s 
supplied data is restricted to the MTBF which is 
the same as the MTTF under the assumption 
that a component becomes as good as new 
when repaired, and that repair time is negligible. 
This is a questionable practice, since the random 
variable TTF cannot be adequately described by 
a single measure of its central tendency, namely, 
the mean. In engineering, one needs, at least 
another metric that measures the spread about 
this mean, namely the variance, or its square 
root (the standard deviation). Statisticians might 
be more demanding and ask for the next central 
moments represented by the coefficient of 
skewness and the coefficient of kurtosis [32-47].  
 
A misconception concerning the MTBF is 
widespread, which is due to its being only a 
rough estimate of the life of an individual part. 
Using the MTBF to predict the time to failure 
(TTF) of a single part is fundamentally flawed, 
because the MTBF does not apply to a specific 
part [48]. Using the MTBF as a synthetic 
indicator of reliability often represents the wrong 
choice, albeit its use is often imposed by 
regulations or contracts [49]. Therefore, 
alternative structured ways of communicating 

about reliability, based on further concepts than 
the bare MTBF, are currently being proposed 
[49-51]. 
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APPENDIX A 

 

The bath-tub curve representing the failure rate (hazard rate) versus time consists of three operation 
intervals namely; (a) the debugging (burn-in, or infant mortality) interval, (b) the prime-of-life (useful 
life) interval, and (c) the wear-out interval. These three intervals in the bath-tub curve correspond to a 
decreasing failure rate (DFR), a constant failure rate (CFR), and an increasing failure rate (IFR), 
respectively [17-28].  

 

Reliability R(t) of a system (component) is defined as the probability that the system (component) will 
function over the interval (0, t] (provided it was functioning at t = 0). It is related to the random variable 
T representing time to failure (T ≥ 0) by [23, 25, 43, 44, 52-58]: 

 

R (t) = Pr {T ≥ t} = 1 – F(t)                                                                                                       (4) 

 

Where F(t) is the Cumulative Distribution Function (CDF) of the random variable T. Therefore, we 
have:  

 

f (t) = dF(t)/dt                                                                                                                           (5) 

 

as the probability density function (pdf) of t. The MTTF (life expectancy) for a non-repairable system 
(component) is given by: 

 

MTTF=E{T}=∫_o^∞▒〖R(t)    dt〗                                                                                            (6) 

 

If we adopt the somewhat controversial assumption [59-64] that a non-repairable component has a 
constant failure rate (CFR) λ, then the reliability of that component follows an exponential distribution 
as p(t)=e^(-λt), and hence its life expectancy is simply the reciprocal of this CFR, namely: 

 

 〖MTTF〗_component=∫_o^∞▒〖p(t)  dt〗  =∫_o^∞▒〖e^(-λt) dt〗= λ^(-1),                (7) 

 

The MTTF has a “dual” quantity called the mean-time-to-repair (MTTR), which is usually presumed 
negligible for critical systems, for which repair might amount to immediate replacement. Together the 
two quantities determine the steady-state availability of a repairable system as MTTF / 
(MTTF+MTTR), and its steady-state unavailability as MTTR/(MTTF+MTTR).  While reliability denotes 
success within the interval (0, t], availability denotes instantaneous success at moment t [29]. 

 

If the system (component) is repairable, it alternates between good (up) and failed (down) states, as it 
experiences an alternating sequence of failures (switching it from up to down) and repairs (recovering 
it from down to up) The concepts of time-to-failure (TTF) and its mean (MTTF) are then generalized to 
those of time-between-failures (TBF) and its mean (MTBF). The mean-time-between-failures (MTBF) 
is the average time between system breakdowns, and is a crucial maintenance metric, especially for 
critical or complex systems, such as those involved in the aeronautical industry. For these systems, 
the metric MTTF is still used, but now it might denote the mean time to first failure. 
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