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Abstract

Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the
planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ~4.67 days, a
planetary radius of 5.14 + 0.16 R, a mass of 14.957%4) M., and a density of p = 0.6170{5 gcm . TOI-3785b
belongs to a rare population of Neptunes (4 Ry, < R, <7 Ry) orbiting cooler, smaller M-dwarf host stars, of which
only ~10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity
to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-
transmission spectroscopy metric of ~150 combined with a relatively cool equilibrium temperature of
T.q=582+16 K and an inactive host star, TOI-3785b is one of the more promising low-density M-dwarf
Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785b
may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Radial velocity (1332); Transits (1711); M

dwarf stars (982)

1. Introduction

The success of the Kepler (Borucki et al. 2010) and TESS
missions (Ricker et al. 2015) have produced a catalog of over
5000 confirmed exoplanets. Multiple studies have leveraged
these detections to derive planetary occurrence rates across a
wide range of parameter spaces. Planetary occurrence rates
around M-dwarf stars (the most common spectral type in our
galaxy) are of particular interest. Using Kepler, Dressing &
Charbonneau (2013) found that small, short-period planets
(such as super-Earths and sub-Neptunes, 1.4 Ry <R, <4 R)
are more common around M dwarfs than that of the Neptune-
and Jupiter-sized planets. According to the NASA Exoplanet
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Archive (Akeson et al. 2013) there are only ~10 transiting
planets within the Neptune radii bounds (4 Ry, <R, <7Ry)
with confirmed masses orbiting M-dwarf stars, significantly
less than the terrestrial population. The processes by which
these larger Neptunes orbiting low-mass stars form is still an
open question—one that requires a larger sample of planets to
answer. Discovering and characterizing more of these planets
with precise radius and mass measurements will continue to aid
efforts to quantify occurrence and understand the specific
mechanisms behind M-dwarf planetary formation.

We present a new planet inhabiting this sparsely populated
M-dwarf Neptune parameter space, TOI-3785b. We used a
combination of ground-based photometric (transit) and spectro-
scopic (radial velocity) follow up to confirm this TESS
discovered planet which we describe in Section 2. Using
stellar spectra, we update the stellar parameters (Section 3)
confirming that TOI-3785 is an inactive M dwarf. We derive
precise mass and radius measurements for TOI-3785b in
Section 4. In Section 5 we highlight TOI-3785 b’s place across
a variety of stellar and planetary parameters and discuss its
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Table 1

Stellar Parameters
Parameter Description Value Source
Main identifiers:
TOI TESS object of interest 3785 ExoFOP-TESS (NExScI 2022)
TIC TESS input catalog 458419328 ExoFOP-TESS (NExScI 2022)
2MASS J08433613 + 6304413 ExoFOP-TESS (NExScI 2022)
Gaia DR3 1044013542142711296 ExoFOP-TESS (NExScI 2022)
APASS 59229225 ExoFOP-TESS (NExScI 2022)
Equatorial coordinates:
2000 R.A. 8:43:36 ExoFOP-TESS (NExScI 2022)
012000 decl. +65:03:41 ExoFOP-TESS (NExScl 2022)
Proper motion:
L Proper motion (R.A.) —42.86 +0.01 GAIA (DR3; Gaia Collaboration et al. 2022)
s Proper motion (decl.) —16.95 +0.01 GAIA (DR3; Gaia Collaboration et al. 2022)
Distance and maximum extinction:
d Geometric distance (pc) 79.4 £0.1 Bailer-Jones et al. (2021)
Ay max Maximum visual extinction 0.03 Green et al. (2019)
Magnitudes:
TESS TESS mag 12.496 + 0.007 ExoFOP-TESS (NExScl 2022)
g PS1 g’'mag 15.244 £ 0.013 PS1 Chambers et al. (2016), Magnier et al. (2020)
r PS1 r’'mag 14.076 £ 0.008 PS1 Chambers et al. (2016), Magnier et al. (2020)
y PS1 y’mag 12.248 £ 0.022 PS1 Chambers et al. (2016), Magnier et al. (2020)
J 2M J mag 11.051 £ 0.026 2MASS (Cutri et al. 2003)
H 2M H mag 10.387 £ 0.029 2MASS (Cutri et al. 2003)
K 2M K mag 10.165 £ 0.022 2MASS (Cutri et al. 2003)
Wl1 WISEI mag 10.034 £ 0.023 WISE (Wright et al. 2010)
w2 WISE2 mag 9.966 £ 0.019 WISE (Wright et al. 2010)
w3 WISE3 mag 9.860 £ 0.045 WISE (Wright et al. 2010)

potential for various in-depth studies into comparative
planetology. We conclude and summarize this work in
Section 6.

2. Observations
2.1. TESS Photometry

TOI-3785 (Table 1) was first observed in TESS Sector 20,
from 2019 December 24 to 2020 January 20. Similar to the
TOI-1899 (Cafias et al. 2020) and TOI-3629 (Caiias et al. 2022)
systems, we identified TOI-3785b as a planetary candidate
using a custom pipeline to search for transiting candidates in
short and long-cadence TESS data. This target was indepen-
dently identified by the Quick Look Pipeline (Huang et al.
2020) when a 4.67 days transiting signal was flagged during an
observation in long-cadence mode (1800 s exposure). An
identical periodic signal from TOI-3785 was again observed by
TESS in Sector 47 from 2021 December 30 to 2022 January 28
with a two-minute exposure time. We retrieved both long- and
short-cadence sectors using the 1ightkurve package (Light-
kurve Collaboration et al. 1812). The Pre-search Data
Conditioning Simple Aperture Photometry (Jenkins et al.
2016) flux was used during our analysis (Caldwell et al.
2020). We show this photometry along with the best-fit model
from our joint fit in Figure 1.

2.2. Ground-based Photometric Follow Up
2.2.1. Red Buttes Observatory 0.6 m

One transit of TOI-3785 b was observed on 2021 November
11 using the 0.6 m telescope at the Red Buttes Observatory
(RBO) in Wyoming (Kasper et al. 2016). We observed TOI-
3785 b using the Bessell I filter at an exposure time of 240 s,

from an airmass of 1.26 to 1.08. The post-transit observations
were cut short due to increased cloud cover (Figure 1).

2.2.2. ARC 3.5 m Telescope

We obtained one transit of TOI-3785 b on the night of 2022
April 5 using the Astrophysical Research Consortium (ARC)
Telescope Imaging Camera (ARCTIC; Huehnerhoff et al.
2016) at the ARC 3.5m Telescope at Apache Point
Observatory (APO). This target was observed with ARCTIC’s
narrow-band Semrock filter (between 842 and 873 nm;
Stefansson et al. 2017, 2018), with an exposure time of 56 s,
in the quad amplifier, fast readout mode, and with 4 x 4 on-
chip binning mode in effect. Relatively photometric skies and
the use of this narrow-band Semrock filter (designed to avoid
regions of telluric water absorption), enabled us to obtain high-
precision photometry even at a significant airmass change
(airmass 1.38-3.81) over the entirety of the transit event. The
increasing airmass toward the end (airmass >3) resulted in
significant scatter in the post-transit baseline (Figure 1).

2.2.3. NESSI at WIYN

The NN-EXPLORE Exoplanet Stellar Speckle Imager
(NESSI; Scott 2018) is mounted on the WIYN 3.5 m telescope
at Kitt Peak National Observatory (KPNO). We used NESSI
speckle photometry to search for faint stellar targets in close
proximity to TOI-3785 that may contaminate the primary, or
introduce additional photometric error. We observed this target
on 2022 April 17 in the Sloan 7’ filter (865-960 nm).

The 50 contrast curve in Figure 2 reveals no bright (Az’
mag < 4) stellar companions within a 0.3”-1.2" range of TOI-
3785. We also include the 2D NESSI speckle image for TOI-
3785 as an inset.
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Figure 1. The transit observations conducted for TOI-3785 b. In each case, we fit a model to the light curve via exoplanet (Section 4). The best-fit model is shown
in black, with the 1, 2, and 3o confidence intervals in progressively lighter shades of blue. A 10 minute bin of our data is included as red points in each panel. It is also
important to note that the reported median errors are dependent on their respective exposure time of the instrument used. The subpanels show the ARCTIC transit
observed in the Semrock filter (top left), the RBO transit observed in Bessell I (top right), TESS Sector 20 data taken at long cadence (1800 s; bottom left), and TESS

Sector 47 data taken at short cadence (120 s; bottom right).

NESSI Contrast Curve

A Magnitude

0.2 O.’4 OTG OIB le 1j2
Angular Separation (arcseconds)

Figure 2. 50 contrast curve from NESSI in Sloan z’, showing no evidence of
faint companions within 1.2”. Inset: The 2D reconstructed image of the 1.2”
region surrounding TOI-3785.

Additionally, we use Gaia Data Release 3 (DR3; Gaia
Collaboration et al. 2022) to further rule out stellar companions
within a 25” range. According to Ziegler et al. (2018), Gaia has
the capabilities to recover 93% of targets at a distance > 2”. In
TOI-3785’s case, Gaia DR3 reveals the closest object at 26"
Therefore, considering data from NESSI and Gaia, we can
conclude that no source of significant photometric dilution is
present from nearby stellar companions.

2.3. Radial Velocity Follow Up
2.3.1. The Habitable-zone Planet Finder

The Habitable-zone Planet Finder (HPF; Mahadevan et al.
2012, 2014) is designed to obtain high-precision near-infrared
(808-1278 nm) radial velocity observations. Located on the
10 m Hobby-Eberly Telescope (HET; Ramsey et al. 1998; Hill
et al. 2021) in Texas, this spectrograph is rigorously
environmentally controlled (Stefansson et al. 2016) and fiber
fed, allowing for simultaneous science and sky observations
(Kanodia et al. 2018). From the raw HPF data, we correct for
bias noise, cosmic rays, and nonlinearity using HxRGproc
(Ninan et al. 2018).
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Table 2
HPF RV Points of the High S/N Points used in the Analysis

BID1ps RV (ms™h) o(ms™h S/N
2459157.97334* 23.98 16.08 80
2459182.02270° 24.38 30.28 45
2459320.64060" —15.41 18.21 72
2459513.00857* 7.44 15.69 83
2459514.00493 25.61 17.30 56
2459515.98987 2.52 14.34 65
2459547.90755 3.92 10.06 91
2459557.00253 24.52 15.63 61
2459564.87333 9.37 13.59 68
2459565.85709 10.60 11.69 80
2459570.84041 0.34 17.46 52
2459572.83906 7.83 17.39 56
2459575.96782 10.38 16.12 59
2459577.94491 —16.59 17.21 55
2459593.77216 —8.50 16.38 58
2459604.88419 3.60 11.49 82
2459626.67754 33.26 21.17 46
2459628.68188" 0.75 32.24 46
2459629.68568 —1.94 11.05 85
2459630.68258 10.46 14.14 67
2459631.68481* 22.92 24.79 57
2459644.63493 8.00 13.10 72
2459647.64145 —13.73 11.86 82
2459678.67461 18.21 12.85 75
2459680.66011 —24.19 11.09 86
2459683.64781 7.76 10.76 88
2459684.65200 13.47 12.45 76
2459686.64437 -2.79 12.09 79
2459688.62032 —13.99 21.92 45
Note.

 Single 15 minute exposure during the nightly visit.

We apply a modified version of the SpEctrum Radial
Velocity AnaLyser pipeline (SERVAL; Zechmeister et al.
2018), as outlined in Metcalf et al. (2019), to derive the binned
radial velocity (RV) points. To accomplish this, SERVAL
combines all observations of TOI-3785 to extract a master
spectrum (Anglada-Escudé & Butler 2012) after first identify-
ing and masking telluric and sky emission lines. SERVAL then
fits this template to each individual spectrum by shifting it in
wavelength space to minimize x°. We use the python package
barycorrpy (Kanodia & Wright 2018) to further correct for
barycentric motion.

We observed TOI-3785 with HPF for 34 visits, with most
visits consisting of two 15 minutes exposures per night that
were then binned, between 2020 November 4 and 2022 April
19. A median signal-to-noise ratio (S/N) of 69 was calculated
at a wavelength of 1070 nm. Of the 34 collected RV points, 29
were kept for the final analysis. Discarded points were done so
on the grounds of either unideal weather conditions or
significant deviation from the average S/N. Binned RV points
along with their errors are listed under Table 2, and the final
binned HPF RVs are plotted as dark red points in Figure 3.

2.3.2. NEID

NEID (Halverson et al. 2016; Schwab et al. 2016) is a high-
resolution (R ~110,000) spectrograph located on the WIYN
3.5 m telescope at KPNO. NEID covers optical /near-infrared
wavelengths ranging from 380 to 930 nm. We observed TOI-

Powers et al.

3785 between 2021 November 10 and 2022 May 16, obtaining
10 RV points with NEID in high-resolution mode. As NEID
allows for longer exposure times than HPF, we obtained a
single spectrum per visit with an exposure time of 1800 s,
resulting in a median S/N of 15 at 850 nm. The raw spectra
were reduced through the NEID Data Reduction Pipeline,’
and we retrieved the Level-2 2D extracted spectra.”” We
derived RVs using a modified SERVAL pipeline designed
specifically for NEID data (Stefansson et al. 2022). NEID RVs
and errors are reported in Table 3 and plotted in gold in
Figure 3.

3. Stellar Parameters

We used the HPF spectra and HPF-SpecMatch (Stefans-
son et al. 2020) to derive the effective temperature (7.g),
metallicity (Fe/H), vsini, and logg priors for the host star,
TOI-3785. Based on Yee et al. (2017), HPF-SpecMatch uses
a spectral database of well-characterized stellar targets with
high S/N HPF observations comparing each star to that of
TOI-3785. By creating a composite of library spectra and
minimizing the x* of the composite, we obtain best-fit values
for each parameter. Uncertainties in the spectroscopic para-
meters were then determined from cross-validation estimates
(for additional details see Stefansson et al. 2020). We estimate
the following stellar  priors, T=3576+88 K,
log(g) = 4.747 £ 0.0458, and Fe/H=0.099 +0.117
(Table 4).

We then estimate the stellar mass, radius, and age by
modeling the spectral energy distribution (SED) using the
MIST model grids Dotter (2016), Choi et al. (2016) as
implemented in the EXOFASTv2 (Eastman et al. 2019)
package. The SED fit used Gaussian priors on the (i) 2MASS
J, H, K magnitudes (Cutri et al. 2003), PS1 g/, r/, y' PSF
magnitudes from Chambers et al. (2016), Magnier et al. (2020),
and Wide-field Infrared Survey Explorer magnitudes (Wright
et al. 2010);% (ii) spectroscopic parameters derived from HPF -
SpecMatch; and (iii) the geometric distance calculated from
Bailer-Jones et al. (2021). The upper limit to the visual
extinction is determined using estimates of Galactic dust
(Green et al. 2019) calculated at the distance determined by
Bailer-Jones et al. (2021). The R, = 3.1 reddening law from
Fitzpatrick (1999) is employed to convert the extinction from
Green et al. (2019) to a visual magnitude extinction. This fit
calculates that the host star TOI-3785 has a mass of 0.52 £ 0.02
M_.,, radius of 0.50 £ 0.01 R, luminosity of 0.0367 0000 L,
and an estimated age of 8.0f3j§ Gyr (Table 4). These
parameters, combined with the SED derived effective temper-
ature of 3580 £ 47 K, classifies the star as a M2-dwarf spectral-
type star (Damiani et al. 2016).

To evaluate the activity of TOI-3785, we examine a Lomb—
Scargle periodogram (Lomb 1976) derived from the short
cadence TESS light curve. We find no significant peaks
corresponding to stellar rotation. We also used the publicly
available photometry from the Zwicky Transient Facility (ZTF;
Bellm et al. 2019) in the g’ and ' filters and the All-Sky
Automated Survey for Supernovae (Kochanek et al. 2017) in its
V filter. The Lomb—Scargle analysis from both sources again
reports no statistically significant rotation signals in the

21 https://neid.ipac.caltech.edu/docs /NEID-DRP/
22 hitps: //neid.ipac.caltech.edu/search.php
2 Stellar magnitudes are listed in Table 1
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Figure 3. Phase-folded RV points from both HPF (dark red) and NEID (gold) with the best-fit model plotted in blue along with the 1, 2, and 3¢ contours (similar to

Figure 1) generated from the exoplanet joint fit.

Table 3 Table 4
NEID RV Points TOI-3785 b System Parameters
BID1ps RV (ms™ ") o(ms™h S/N Parameter Label (Units) Value
2459529.01052 15.7 5.26 15 Orbital parameters:
2459532.01789 —4.52 391 20 RV semiamplitude K@ms™") 9.24 +2.68
2459533.01626 11.74 5.07 16 Orbital period P (days) 4.6747373 £ 0.0000038
2459533.91777 12.63 3.69 21 Transit midpoint T, (BJD) 2458861.49553 7530089
2459538.97354 —9.06 443 18 Scaled radius R,/Ry 0.0962 + 0.0017
2459569.04250 —9.32 727 11 Scaled semimajor axis a/Ry 18.89°08
2459586.75088 ~8.23 5.89 14 Impact parameter b 0.60:402
2459619.89833 7.11 5.43 15
2459629.91089 0.82 7.47 11 Planetary parameters:
2459715.67442 18.02 6.51 13 Eccentricity e 0.1153% 20 < 0.26)
Inclination i (degrees) 88.1+0.01
Omega w (degrees) 96.26131:2,
photometry. This lack of detection is expected given our Transit duration Tpy, (days) 0.071 + 0.001
estimated v sini is below our detection threshold from HPF- Transit depth (R,/R+)* (ppm) 9254 +£3
SpecMatch (<2 kms™"). We further support this claim by Mass M, (My) 14954349
investigating the Calcium Infrared Triplet lines (Mallik 1997; Radius R, (Rg) 5.14+0.16
Andretta et al. 2005; Cincunegui et al. 2007; Martin et al. 2017) Density pp (g/cm’) 061013
observed by HPF and Ha lines observed by NEID. No lines Semimajor axis a (AU) 0.043+0.001
exhibited signs of emission, suggesting low activity in the Isolation Sp (Se) 19.1£2.0
chromosphere of TOI-3785 (Newton et al. 2016). Thus, we Equilibrium temperature Teq (K) 582:+16
conclude that TOI-3785 is a slowly rotating, inactive M2- Stellar parameters:
dwarf star. Mass M, (M) 0.52 + 0.02
Radius Ry (R.) 0.50 & 0.01
4. Analysis Lumin.osity Ly, (L@ 0.0367+3:5508
Effective temperature T.r (Kelvin) 3576 + 88 K
4.]. Data Reduction Surface gravity logg (cgs) 4.74740.0458
: : P —1
We use Astro Imag’eJ (Collins et al. 2016) to perform the ;?;Tﬁ;?ly velocity v[;z/lH(;qz;zx)) 0.099120.1 17
reductions of TOI-3785’s ground-based photometry. For each Age (Gyp) 8.0+

of the ground-based observations, we subtract a median master
bias file, and for the RBO photometry, we additionally subtract
a median master dark current file (at short exposure times there
is no significant dark current for the ARCTIC observations).
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Table 5

Photometry /Radial Velocity Correctional Terms
Parameter Label (Units) Value
Photometric parameters: TESS S20 TESS S47 APO RBO
Linear limb-darkening coefficient u 0.367930 0.267938 027793 0.3550%2
Quadratic limb-darkening coefficient 1 0.1729%7 0.147932 0.046793¢8 0.105037
Photometric jitter Tphoi(PPM) 53133 110193 3056758 3830740
Dilution factor D 0977598 0.9240.05
RV parameters: HPF NEID
RV jitter orv (ms™h 2,931 7732
RV offset Ary (ms™h 47 433 1.1 429
RV trend® 4 (mms~' day ") —2.1742
Absolute RV* ARV (ms™) 4657 + 152

Note.
 Not instrument specific

The bias and dark corrected images were then divided by their
respective normalized sky flats.

After initial data reductions were completed, we select
appropriate aperture sizes for the target and reference stars to
minimize both the background noise and any potential stellar
interference in our photometry. We then perform differential
aperture photometry using AstroImaged, of the primary
target and five to seven reference stars assuming a constant
aperture size with a radius of 5.48"” and 7.8” for APO and RBO,
respectively. Background values were measured by assuming a
median value derived from annuli around each star with an
inner and outer radius of 9.12”, 14.6" for APO and 10.4”,
13.0” for the RBO data. Uncertainties were calculated by
AstroImaged assuming photon noise from the star, back-
ground, and dark current (for RBO) and respective read noise
for the individual instruments. In post-processing, we found it
was unnecessary to detrend the light curves using any external
parameters (airmass, background, etc.).

4.2. Joint Fitting

Using the python package exoplanet (Foreman-Mackey
et al. 2021), we perform a joint fit of all transit photometry
(TESS + ARCTIC + RBO) and RV measurements (HPF +
NEID). We derived the final transit and radial velocity models
in addition to a collection of stellar and planetary parameters
that were previously estimated in the AstroImaged fit.
Tables 4 and 5 list the finalized transit and system parameters
produced by this joint fit.

From the transit observations, we derive a best-fit a/R,,
impact parameter (b), transit depth (Rp/RS)z, and midtransit
ephemeris. We reparameterized and then fit the limb-darkening
parameters as suggested in Kipping (2013) to ensure
uninformative sampling of quadratic parameters. As each
instrument employs a different bandpass, we fit for individual
quadratic limb-darkening terms. We also include a photometric
noise jitter term added in quadrature to the error bars and the
addition of a flux offset value to each light curve.

Due to TESS’s large pixel sizes, photometric dilution is a
common source of error in transit depth estimations (Sullivan
et al. 2015). TESS dilution may cause photometric variation in
our reported transit depth causing our errors to inflate. We
account for this by fitting a separate dilution term multiplied to
the transit depth for each TESS Sector (as described in Bryant

et al. 2020)). For TESS Sector 20, we measure a dilution factor
of Drgss,, = 0.97+3:3¢ and for TESS Sector 47 a dilution factor
of Drgss,, = 0.92 £ 0.05. Our high-precision uncontaminated
ground-based photometry from ARCTIC (which we use as the
baseline fixed to a dilution of 1) enabled us to properly account
for this variation.

Figure 1 displays our best-fit photometric transit models.
These folded light curves report a transit depth of 0.9254% +
0.0003% and transit duration of Tgyraion = 0.071 £ 0.001 days
(~1.7 hr). Each transit plot presents a 10 minute bin of the
reduced data and residuals as well as values of median
photometric error.

For the radial velocity observations, we include linear RV
trend terms for both HPF and NEID to account for any slight
positive or negative slopes in the RVs caused by instrumental
drift. In addition, we report the instrument-specific factors of
RV jitter and offset. The jitter term is used to estimate the
degree of RV error inflation in order to meet an expected RV
fit. All photometric and radial velocity correction terms are
reported in Table 5. We plot, in Figure 3, the exoplanet RV
fit including all HPF and NEID points. The best-fit model
indicates an RV semiamplitude of 9.24 +2.68 ms™ "' and an
eccentricity of e = 0.1170:0%. From this analysis, we determine
that TOI-3785b has a radius of 5.14 £ 0.16 R, and a mass of
14.957%49 M,,.. Table 4 lists the finalized planetary and orbital
parameters produced by this joint fit.

4.3. Planetary Companions

Further analyzing the transit data, we search for additional
periodic signals by implementing a box least squared (BLS;
Koviacs et al. 2002) algorithm of all available TESS data
extracted from the MAST archive (MAST Team 2021). The
known transit of TOI-3785b in both Sectors 20 and 47 were
masked to twice the duration in order to search for other
potential period detections that may indicate additional
transiting planets in the TOI-3785 system. The masked BLS
periodograms report no significant peaks over the false alarm
probability (FAP) of 10%.

Additionally, periodograms of HPF and NEID also show no
additional significant peaks (stellar or planetary in nature). The
existing data does not reveal the presence of a close-period
companion in this system as the known signal of TOI-3785b
recovers the lowest FAP at10%. However, the limited
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coverage of this system with both TESS and RV monitoring
cannot rule out the potential for additional long-period planets.
From our available transit and RV data, we see no detection of
additional orbiters, but a more in-depth analysis is required for
a concrete claim to be made.

5. Discussion
5.1. TOI-3785 b in Parameter Space

In order to emphasize the unique planetary characteristics of
TOI-3785b we compare this system to other confirmed
exoplanet targets in Figure 4. We plot TOI-3785b in both
planetary mass—radius (Figure 4; top) and Tg—radius (Figure 4;
bottom) space. These systems were compiled from the NASA
Exoplanet Archive (Akeson et al. 2013) as of 2023 March 1
using the following parameter constraints: an upper planetary
radius limit of 14 R, and a radius and mass significance cut off
at >30. For the mass-radius plot we limit the stellar effective
temperature to <4000 K (the upper temperature boundary of M
dwarfs; Casagrande et al. 2008) and include planetary density
contour lines at 0.5, 1, 3, and 10 gcm73.

The parameter spaces of Figure 4 both show TOI-3785 b,
indicated by a blue circle, to be a meaningful addition to the
current number of known M-dwarf-hosted targets. Due to its
planetary radius , TOI-3785b occupies the rare M-dwarf
Neptune population (4 Ry, < R, < 7 Rg) of which only eight
others have been confirmed with a >30 mass and radius
(Figure 4). This dearth in the Neptune population becomes
clear when the vast number of lower radii targets (<3Rg) is
considered. It is widely known that lower mass M dwarfs have
a higher occurrence rate for smaller (and likely terrestrial in
composition) close-in planets with Dressing & Charbonneau
(2013) discovering a sharp decrease in occurrence rate at 4 R,

The M-dwarf Jupiter population (>7 Rg) is seen to be
relatively sparse compared to FGK occurrence totaling only
~15 mass significant targets. M-dwarf Jupiters do not come
close to rivaling the M-dwarf Earth population (<3 Rg) in
which ~35 >30 mass targets are known. Still, first
approximations of occurrence rates have been derived for
close-in Jupiters orbiting M dwarfs, even with this small
sample size (~1%; Bryant et al. 2023; Gan et al. 2023).
However, the occurrence of M-dwarf Neptunes (4 < R, < 7
R4) has yet to be the focus of a targeted study—in part due to
the <10 confirmed detections. TESS’s focus on nearby M
dwarfs is steadily growing the Neptune population. With the
discovery of additional Neptunes similar to TOI-3785b, we
may soon derive the first occurrence rates for Neptunes and
move closer toward a complete picture regarding the
occurrence of all M-dwarf populations.

5.2. Constraints on M-dwarf Planetary Formation

The leading theory of Neptune formation around M dwarfs is
core accretion (Laughlin et al. 2004), in which the formation of
a solid core generates a disk of gas and dust from surrounding
debris that is slowly accreted onto the surface of the
protoplanet. In cases of ample material and undisturbed mass
accumulation, a protoplanet may reach a critical mass
triggering runaway accretion in which a planet’s mass
exponentially increases. This is the traditional formation
pathway for many Jupiter mass planets (e.g., Bodenheimer &
Pollack 1986; Pollack et al. 1996). In the case of the less
massive Neptune population, there must be an inhibitor to
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prevent runaway accretion from taking place: either the
protoplanet lacks sufficient material to accrete onto its surface
or it lacks sufficient time to grow to a critical mass (Deleuil
et al. 2020). Laughlin et al. (2004) argues that due to the
smaller M-dwarf disk masses, gas giant cores require additional
time to form. If they reach the critical mass threshold to begin
accumulating H/He, their runaway growth stage is cut short
due to disk dispersion.

TOI-3785 b appears to support this formation theory. Using
the Exoplanet Compositional Interpolator”* based on models
from Lopez & Fortney (2014), we estimate a H/He mass
fraction of 20% (~3 M) with a heavy-element (core) mass
fraction of 80% (11.95 M) for TOI-3785 b. As this is slightly
more massive than the predicted core mass required for
runaway accretion, we conclude that TOI-3785b’s core must
have formed slowly following the predicted pathway high-
lighted in Laughlin et al. (2004). With 20% of its mass in a H/
He envelope, it appears TOI-3785b was poised to begin
runaway accretion. However, this accretion stalled potentially
due to the disk dispersing or the planet migrating inwards to its
present-day location. By further investigating TOI-3785b’s
composition, we may constrain the formation timeline of
M-dwarf hosting Neptunes to derive reasonable evolutionary
pathways for these rare targets.

5.3. The Neptune Desert

The Neptune desert is a region of parameter space in which
remarkably few Neptune-sized targets have been confirmed
around FGK stars. Targets that inhabit this region are defined
by their Neptune radii as well as low orbital periods and high
insolations. TOI-3785 b lies within the Neptune-desert regime
as defined in radius—period space in Mazeh et al. (2016;
Figure 5; top). However, the bounds of this desert were derived
from FGK targets confirmed by the Kepler mission. M-dwarf
targets, such as TOI-3785 b, may have misleading placements
within the desert as low-temperature stars will produce planets
with low insolation even at short periods. TOI-3785b
possesses a short orbital period of 4.67 days and its cooler
host star yields a significantly smaller insolation (19x Earth
Insolation) when compared to planets around FGK stars that
normally yield insolations within the range of 100-1000 Sg.
Therefore, the Neptune Desert should be considered in radius-
insolation space for M-dwarf hosting systems. TOI-3785 b sits
outside of the Insolation Neptune Desert space as defined by
Kanodia et al. (2021; Figure 5; bottom).

TOI-532b (Kanodia et al. 2021) is a similarly-sized planet
compared to TOI-3785 b orbiting a slightly larger MO dwarf.
TOI-532b is also the only M-dwarf Neptune that possesses a
large enough insolation (94 S;) to be considered within the
FGK bounds of the insolation Neptune Desert. While similarly
sized, this planet possesses a substantially higher mass and
density than all other M-dwarf Neptunes suggesting it
experienced significant H/He escape during its lifetime. With
its low insolation, TOI-3785 b likely experienced little to no
atmospheric escape during its evolution.

5.4. Atmospheric Comparative Planetology

TOI-3785 b joins the growing list of promising targets for
atmospheric characterization (Table 6). We calculate its

24 https: / /tools.emac.gsfc.nasa.gov/ECI/
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Figure 4. Top: planet radius against planet mass of only M-dwarf targets (restricted by an upper bound on effective temperature of T < 4000K). The points with
attributed effective temperatures are M-dwarf planets that have >3¢ mass precision. Gray points represent >3 FGK targets. The dashed lines are density contours
with specific values listed in the bottom right. Bottom: planetary radius against stellar effective temperature, to place TOI-3785 b against a broader range of stellar host
types. Colored points represent >30 mass precision while targets under this threshold are grayed out. We also highlight the lack of planetary confirmation between
(4000 K < T.i < 4700 K). This is most likely a result of the shallow transit depths that are characteristic of K-dwarf stars. This creates a detection bias as K-dwarf
planets produce weaker transiting signals. In both figures, similar M-dwarf Neptunes to TOI-3785 b are labeled and listed in Table 6.

transmission spectroscopy metric (TSM) following Equation
(1) in Kempton et al. (2018) finding a TSM value of 147
(Figure 6). TOI-3785 b possesses one of the highest TSMs for
any planet cooler than 600 K-with AU Mic b the only other
planet in this temperature regime with a higher TSM. Since AU
Mic is an active star (Plavchan et al. 2020), difficulties probing
AU Mic b’s atmosphere may arise due to stellar interference.

Thus, the inactivity of TOI-3785 b's host star makes it the best
target for exploring this temperature regime.

TOI-3785b also possesses similar planetary and stellar
parameters as two Neptunes with well-characterized transmis-
sion spectra: GJ 3470 b (e.g., Crossfield et al. 2013; Ehrenreich
et al. 2014; Dragomir et al. 2015) and GJ 436 b (e.g., Knutson
et al. 2014). Both of these targets possess featureless spectra
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within Hubble’s Wide Field Camera 3 bandpass (1.1-1.7 pm)
indicating hazy atmospheres; a characteristic that TOI-3785 b
could share (Yu et al. 2021; Dymont et al. 2022). By leveraging
JWST’s NIRSpec-Prism longer wavelength coverage, the hazes
should become translucent at wavelengths beyond 3 microns
allowing for both characterization of the haze layer and the
atmospheric composition beneath (Kawashima et al. 2019).
TOI-3785b therefore presents an opportunity to not only
explore the atmosphere of a warm-Neptune but also enable
insightful atmospheric comparisons with similar planets around
similar stars. Interestingly, both GJ 3470 b and GJ 436 b have

escaping atmospheres observed via helium (for GJ 3470b
Ninan et al. 2020) or Ly« (for GJ 436 b Ehrenreich et al. 2015)
absorption features. TOI-3785 b’s low density of ~0.6 gcm >
along with similarities between this system and GJ 3470 (stellar

parameters) makes it a promising target for helium follow up.

6. Summary

Using both ground-based and TESS transit photometry as
well as spectroscopic RV follow up of the TOI-3785 system,
we confirm the existence of a single planetary companion, TOI-
3785 b, a warm-Neptune with a 4.67 days circular orbit around
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Table 6
Similar M-dwarf Neptune Targets Ordered by Planet Density
Planet / Source Tetr (K) TSM Tgo (K) S, (Se) M, (M) R, (Ry) o (g cm ™)
[1] GJ 436 b Maciejewski et al. (2014) 3586+36 453 686+ 10 41+4 221423  4.17040.168  1.80 +0.29
[2] TOI-532 b Kanodia et al. (2021) 3927437 43 867+ 18 9410+800  61.573] 5824019 172+ 031
[3] LP 714-47 b Dreizler et al. (2020) 3950+51 140 70011 46 +2 308+ 1.5 47403 17403
[4] AU Mic b* Plavchan et al. (2020) 3700+ 100 414 569.5731 2242 20.127137  438+0.18 132501
[5] TOI-1728 b Kanodia et al. (2020) 3980432 130 767+8 5778 £348  26.787IH 5.055018 1147928
[6] TOI-674 b Murgas et al. (2021) 3514457 215  635+15 384400 23.6+33 525+0.17 091+0.15
[7] GJ 3470 b Awiphan et al. (2016) 3622138 272 615+ 16 42+6 139+15 4574018  0.80+0.13
[8] TOI-3884 b* Almenara et al. (2022) Libby-Roberts et al. 31804+ 88 230 441 +15 6294084 32597731  643+0.20 0.67+018
(2023)
TOI-3785 b
This work 3576 +88 147  582+16  19.1+20 149573  514+0.16 0.617913
Note.
4 Active host star.
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Figure 6. The TSM of known exoplanets with both a measured (>30) mass and radii >4 R, as a function of equilibrium temperature. Planets orbiting M dwarfs are
labeled according to Table 6 and are noted with colors varying by their respective planetary radii, while planets orbiting FGK-dwarf stars are plotted as gray points.
TOI-3785 b (navy blue circle) possesses one of the highest TSMs for any planet cooler than 600 K, making it a promising target for future transmission spectroscopy

observations.

an M2V-dwarf star. Using the package exoplanet we model
both the transit observations and RVs to derive a planetary
mass of 14.957339M,, and radius of 5.14 4 0.16R.. The
confirmation of TOI-3785b proves to be a valuable addition
to the small number of M-dwarf-hosted Neptunes as increased
target confirmation in this space may support Neptune
formation models such as the joint efforts of core accretion
and situational disk dispersion. Future investigations into this
target via transmission spectroscopy are warranted as it
possesses an ideal TSM along with favorable constraints on
atmospheric hazing. The noteworthy similarities to GJ 3470 b
and GJ 436 b may also demonstrate similarly influential results

10

on the composition and formation pathways of M-dwarf gas
planets. Furthermore, we discuss TOI-3785 b’s place relative to
the radius—period and radius-insolation Neptune Deserts and
the necessary cautions that accompany M-type hosts and desert
classifications.
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