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CALCULATING DEGREE BASED TOPOLOGICAL INDICES

OF LINE GRAPH OF HAC5C6C7[p, q] NANOTUBE VIA

M-POLYNOMIAL

AZIZ UR REHMAN1, WASEEM KHALID

Abstract. The application of graph theory in chemical and molecular
structure research far exceeds people’s expectations, and it has recently
grown exponentially. In the molecular graph, atoms are represented by
vertices and bonded by edges. In this report, we study the M-polynomial
of line graph ofHAC5C6C7[p, q] and recover many degree-based topological
indices from it.
Key words and phrases: Line graph; Zagreb index; Molecular graph; Nan-
otube.

1. Introduction

Graph theory provides chemists with a variety of useful tools, such as topological
indices. Molecular compounds are often modeled using molecular graphs. The
molecular graph represents the structural formula of the compound in the form
of graph theory, the vertices of which correspond to the atoms of the compound
and the edges correspond to the chemical bonds [1].
Chemical informatics is a new area of research that integrates chemistry, math-
ematics, and information science. It studies the quantitative structure-activity
(QSAR) and structure-property (QSPR) relationships [2, 3, 4, 5] used to predict
the biological activity and properties of compounds. In the QSAR / QSPR study,
the physical and chemical properties and topological indices such as Szeged in-
dex, Wiener index, Randi’c index, ABC index and Zagreb index etc were used
to predict the biological activity of compounds. A molecular graph can be iden-
tified by topological index, polynomials, sequences or matrices [6].
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The topological index is a number associated with the graph [7]. It represents the
topological structure of the graph and is invariant under the automorphism of the
graph. There are some major topological index categories, such as distance-based
topological indices [8, 9], degree-based topological indices [10, 11], and counting-
related polynomial and graph indices [7]. In these categories, the degree-based
topological index is very important and plays a crucial role in chemical graph
theory, especially in chemistry [12, 13, 14, 15]. More precisely, the topological
index Top(G) of the graph is a number with the following characteristics: If a
graph H is isomorphic to G, then Top(H) = Top(G). The concept of topological
index comes from Wiener [16]. When he studied the boiling point of paraffin,
he named the index as the path number. Later, the path number was renamed
Wiener index.
Carbon nanotubes form an interesting class of non-carbon materials [17]. There
are three types of nanotubes, namely chiral, zigzag and armchairs nanotubes
[18]. These carbon nanotubes show significant mechanical properties [17]. Ex-
perimental studies have shown that they belong to the most rigid and elastic
known materials [19]. Diudea [20] was the first chemist to consider the topology
of nanostructures.
HAC5C6C7[p, q] [21]shown in Figure 1 is constructed by alternating C5, C6 and
C7 carbon cycles. It is tube shaped material but we consider it in the form of
sheet shown in Figure 2. The two dimensional lattice of HAC5C6C7[p, q] con-
sists of p rows and q periods. Here p denotes the number of pentagons in one
row and q is the number of periods in whole lattice. A period consist of three
rows (See references [22, 23]). Figures are taken from [24]. Figure 3 is 2D graph
of HAC5C6C7[p, q] and figure 4 is line graph of HAC5C6C7[p, q] .

Figure 1. HAC5C6C7[p, q] Nanotube

Figure 2. 2D graph of HAC5C6C7[p, q]
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Figure 3. HAC5C6C7

Figure 4. L(HAC5C6C7)

The aim of this paper is to compute M-polynomial of the line graph ofHAC5C6C7[p, q]-
nanotube. We also recover many degree-based topological indices of the line
graph of HAC5C6C7[p, q] nanotube from this M-polynomial. A line graph has
many useful applications in physical chemistry [25, 26] and is defined as: the
line graph L(G) of a graph G is the graph each of whose vertex represents an
edge of G and two of its vertices are adjacent if their corresponding edges are
adjacent in G.

2. Basic definitions and Literature Review

Throughout this article, we take G as a connected graph. V (G) is the vertex set
and E(G) is the edge set. The degree of a vertex v is denoted by

Definition 2.1. [27] The M-polynomial of G is defined as:

M(G, x, y) =
∑

δ≤i≤j≤△
mij(G)xiyj

where δ = min{dv : v ∈ V (G)}, △ = max{dv : v ∈ V (G)} and mij(G) is the
edge uv ∈ E(G) such that du = i and dv = j.

Wiener index and its various applications are discussed in [28, 29, 30]. Randić
index, R− 1

2
(G), is introduced by Milan Randić in 1975 defined as: R− 1

2
(G) =

∑

uv∈E(G)

1√
dudv

. For general details about R− 1
2
(G), and its generalized Randic

index, Rα(G) =
∑

uv∈E(G)

1
(dudv)α

please see [31, 32, 33, 34, 35]. The inverse

Randić index is defined as RRα(G) =
∑

uv∈E(G)

(dudv)
α Clearly R− 1

2
(G) is a spe-

cial case of Rα(G) when α = 1
2 . This index has many applications in diverse
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areas. Many papers and books such as [36, 37, 38] are written on this topo-
logical index as well. Gutman and Trinajstić introduced two indices defined as:
M1(G) =

∑

u∈V (G)

(du+dv) andM2(G) =
∑

uv∈E(G)

du×du. The second modified Za-

greb index is defined as: mM2(G) =
∑

uv∈E(G)

1
du×du

. We refer [39, 40, 41, 42, 43]

to the readers for comprehensive details of these indices. Other famous indices

are Symmetric division index: SDD(G) =
∑

uv∈E(G)

{

min(du,dv)
max(du,dv)

,
max(du,dv)
min(du,dv)

}

har-

monic index: H(G) =
∑

uv∈E(G)

2
du+dv

inverse sum index:I(G) =
∑

uv∈E(G)

dudv

du+dv

and augmented Zagreb index: A(G) =
∑

uv∈E(G)

{

max(du,dv)
max(du,dv)

}3

[39, 40, 41]. Tables

presented in [44, 45, 46, 47, 48] relates some of these well-known degree-based
topological indices with M-polynomial with following reserved notations Where

Dxf = x
∂(f(x,y))

∂x
, Dyf = y

∂(f(x,y))
∂y

, Sx =
∫ x

0
f(y,t)

t
dt, Sy =

∫ y

0
f(x,t)

t
dt,

j(f(x, y)) = f(x, x), Qα(f(x, y)) = xαf(x, y), for non zero α, j(f(x, y)) = f(x, x)

3. computational Results

In this section, we give our computational results.

Theorem 3.1. Let G be the line graph of HAC5C6C7[p, q] nanotube. Then the

M-Polynomial of G is

M(G, x, y) = 2x2y2+12x2y3+(16p+1)x3y3+(12p+10)x3y4+(70p−37)x4y4 (1)

Proof. Let G be the line graph of HAC5C6C7[p, q] nanotubes where p denotes
the number of pentagons in one row and q denotes the number of periods in
whole lattice . The edge set of line graph of HAC5C6C7[p, q] with p ≥ 1 and
q = 2 has following five partitions,
E2,2 = {e = vu ∈ E(HAC5C6C7[p, q])|du = 2, dv = 2}
E2,3 = {e = vu ∈ E(HAC5C6C7[p, q])|du = 2, dv = 3}
E3,3 = {e = vu ∈ E(HAC5C6C7[p, q])|du = 3, dv = 3}
E3,4 = {e = vu ∈ E(HAC5C6C7[p, q])|du = 3, dv = 4}
and
E4,4 = {e = vu ∈ E(HAC5C6C7[p, q])|du = 4, dv = 4}.
Now,

|E2,2| = 2

|E2,2| = 12

|E2,2| = 6p+ 1

|E2,2| = 12p+ 10

and

|E2,2| = 70p− 37
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So, The M-polynomial of (HAC5C6C7[p, q]) is equal to:

M(G, x, y) =
∑

i≤j

mij(G)xiyj

=
∑

2≤2

m2,2(G)x2y2 +
∑

2≤3

m2,3(G)x2y3

+
∑

3≤3

m3,3(G)x3y3 +
∑

3≤4

m3,4(G)x3y4

+
∑

4≤4

m4,4(G)x4y4

=
∑

E2,2

m2,2(G)x2y2 +
∑

E2,3

m2,3(G)x2y3

+
∑

E3,3

m3,3(G)x3y3 +
∑

E3,4

m3,4(G)x3y4

+
∑

E4,4

m4,4(G)x4y4

= |E2,2|x
2y2 + |E2,3|x

2y3 + |E3,3|x
3y3 + |E3,4|x

3y4

+|E4,4|x
4y4

= 2x2y2 + 12x2y3 + (16p+ 1)x3y3 + (12p+ 10)x3y4

+(70p− 37)x4y4.

�

Proposition 3.2. Let G be the line graph of (HAC5C6C7[p, q]) nanotube, then

(1) M1(G) = 2(85p− 19)
(2) M2(G) = 1318p− 383
(3) mM2(G) = 145

24 p+
163
144

(4) Rα(G) = (2.32α+1 + 22(α+1).3α+1 + 35.24α+1)p+ (22α+1 + 2α+23α+1

(32α + 22α+1.3α.5− 37.24α)
(5) RRα(G) =

(

2
32α−1 + 1

22(α−1).3α−1 + 35
24α+1

)

p+ ( 1
22α−1 + 1

2α−23α−1

1
32α + 5

22α−1.3α − 37
24α )

(6) SSD(G) = 177p+ 127
6 .

(7) H(G) = 321
14 p+

109
420

(8) I(G) = 1187
7 p+ 2727

70

(9) A(G) = 168657029
108000 p− 19007957

43200

Proof. Let

M(G, x, y) = 2x2y2 +12x2y3 +(16p+1)x3y3 + (12p+10)x3y4 +(70p− 37)x4y4

Then,

Dxf(x, y) = 4x2y2+24x2y3+3(16p+1)x3y3+3(12p+10)x3y4+4(70p−37)x4y4.
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Dyf(x, y) = 4x2y2+36x2y3+3(16p+1)x3y3+4(12p+10)x3y4+4(70p−37)x4y4.

DyDxf(x, y) = 8x2y2+72x2y3+9(6p+1)x3y3+12(12p+10)x3y4+16(70p−37)x4y4.

SxSyf(x, y) =
1

2
x2y2+2x2y3+

1

9
(16p+1)x3y3+

1

12
(12p+10)x3y4+

1

16
(70p−37)x4y4.

Dα
xD

α
y f(x, y) = 22α+1x2y2 + 2α+23α+1x2y3 + 32α(16p+ 1)x3y3

+3α4α(12p+ 10)x3y3 + 42α(70p− 37)x3y3.

Sα
xS

α
y f(x, y) =

1

22α−1
x2y2 +

1

2α−23α−1
x2y3 +

1

32α
(16p+ 1)x3y3

+
1

3α4α
(12p+ 10)x3y4 +

1

42α
(70p− 37)x4y4.

SyDxf(x, y) = 2x2y2+8x2y3+(16p+1)x3y3+
3

4
(12p+10)x3y3+(70p−37)x4y4.

SxDyf(x, y) = 2x2y2+18x2y3+(16p+1)x3y3+
3

4
(12p+10)x3y3+(70p−37)x4y4.

SxJf(x, y) =
1

2
x4 +

12

5
x5 +

9

6
(6p+ 1)x6 +

12

7
(12P + 10)x7 + 2(70p− 37)x8.

SxJDyDxf(x, y)f(x, y) = 16x4+
72

5
x5+

9

6
(6p+1)x6+

12

7
(12P+10)x7+2(70p−37)x8.

S3
xQ−2JD

3
xD

3
yf(x, y) = 16x2 + 96x3 +

729

64
(6p+ 1)x4

+
1728

125
(12P + 10)x5 +

4096

216
(70p− 37)x6.

1. First Zagreb Index

M1(G) = (Dx+Dy)[f(x, y)]y=x=1 = 2(85p− 19).

2. Second Zagreb Index

M2(G) = (Dx ·Dy)[f(x, y)]y=x=1 = 1318p− 383.

3. Second Modified Zagreb Index

mM2(G) = (SxSy)[f(x, y)]x=y=1 =m M2(G) =
145

24
p+

163

144
.

4. Randić Index

Rα(G) = (Dα
xD

α
y )[f(x, y)]y=x=1 = (2.32α+1 + 22(α+1).3α+1 + 35.24α+1)p

+(22α+1 + 2α+23α+1(32α

+22α+1.3α.5− 37.24α)

5. General Randić Index

RRα(G) = (Sα
xS

α
y )[f(x, y)]x=y=1 =

(

2

32α−1
+

1

22(α−1).3α−1
+

35

24α+1

)

p

+
( 1

22α−1
+

1

2α−23α−1

1

32α

+
5

22α−1.3α
−

37

24α

)

.
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6. Symmetric Division Index

SSD(G) = (DxSy +DySx)[f(x, y)] = 177p−
127

6
.

7. Harmonic Index

H(G) = 2SxJ [f(x, y)]y=x=1 =
321

14
p+

109

420
.

8. Inverse Sum Index

I(G) = Sx[J(DxDy)][f(x, y)]y=x=1 =
1187

7
p+

2727

70
.

9. Augmented Zagreb Index

A(G) = S3
xQ−2JD

3
xD

3
y[f(x, y)]x=y=1 =

168657029

108000
p−

19007957

43200
.

�

4. conclusion

In the present article, we computed closed form of M-polynomial for the line
graph of HAC5C6C7[p, q] and then we derived many degree-based topological
indices as well. Topological indices thus calculated can help us to understand
the physical features, chemical reactivity, and biological activities. In this point
of view, a topological index can be regarded as a score function which maps each
molecular structure to a real number and is used as descriptors of the molecule
under testing. These results can also play a vital part in the determination of the
significance of silicon-carbon in electronics and industry. For example Randić
index is useful for determining physio-chemical properties of alkanes as noticed
by chemist Melan Randić in 1975. He noticed the correlation between the Randic
index R and several physico-chemical properties of alkanes like, enthalpies of
formation, boiling points, chromatographic retention times, vapor pressure and
surface areas.
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