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Abstract 
This paper develops an SIBR cholera transmission model with general inci-
dence rate. Necessary and sufficient conditions for local and global asymptot-
ic stability of the equilibria are established by Routh Hurwitz criterium, Lya-
punov function, and the second additive composite matrix theorem. What is 
more, exploiting the DED is cover simulation tool, the parameter values of 
the model are estimated with the 1998-2021 cholera case data in China. Fi-
nally, we perform sensitivity analysis for the basic reproduction number to 
seek for effective interventions for cholera control. 
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1. Introduction 

Cholera, a grave waterborne ailment caused by Vibrio cholerae, exhibits a re-
markable ability to persist in certain aquatic environments for durations span-
ning three months to two years. Its clinical manifestations are characterized by 
intense diarrhea and vomiting, with severe cases leading to potentially fatal de-
hydration due to significant loss of bodily fluids and electrolytes. Categorized as 
a class A infectious disease in China, cholera is distinguished by its sudden onset 
and rapid transmission dynamics. The primary mode of transmission involves 
the interaction between humans and their environment, particularly through the 
ingestion of food or water contaminated by the Vibrio cholerae bacteria [1] [2]. 
Additionally, a secondary transmission route occurs through direct human-to- 
human interactions, specifically close contact with infected individuals [3] [4]. 
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Globally, cholera imposes a substantial burden, resulting in 3 - 5 million new in-
fections annually and causing 28,800 - 130,000 deaths each year. Despite a typi-
cally low mortality rate of under five percent, this rate can skyrocket to fifty per-
cent in regions where access to treatment is limited. Children, especially in Afri-
ca and Southeast Asia, bear the brunt of this disease’s impact. Cholera continues 
to pose a significant public health threat in developing nations, attracting sus-
tained attention and research interest from scholars [5]-[10]. 

Significantly, Wang et al. [8] introduced a distinctive SIBR cholera transmis-
sion model, encompassing both direct human-to-human and indirect environ-
ment-to-human transmission pathways: 
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In this framework, the entire human population, denoted by the constant size 
N, is categorized into distinct compartments: the susceptible (S), the infectious 
(I) and the recovered (R) [11] [12] [13]. Additionally, there is an auxiliary com-
partment B to quantify the concentration of Vibrio in contaminated water. The 
transmission rates and bacterial shedding rates are contingent upon the number 
of infectious individuals. Within this context, the parameters are defined as fol-
lows: µ  represents the natural mortality rate, δ  signifies the net mortality 
rate of bacteria, γ  denotes the recovery rate, σ  represents the rate of host 
immune loss, ( )g I  represents the infection rate of patients, influenced by the 
virus’s spread function ( ),f I B . Furthermore, ( )Iη  signifies the host shed-
ding rate. It stands to be reasonable that all the parameters keep nonnegative. 

Furthermore, this model accounts for the influence of human behavior arising 
from health education, improved hygiene, and sanitation practices [14] [15]. 
Importantly, given that immunity gradually wanes, individuals who have recov-
ered from cholera remain susceptible to reinfection after a certain period. Stu-
dies findings indicate that diminished exposure due to altered human behavior 
can lead to a reduction in the scale of both epidemics and endemic diseases. Build-
ing upon the concepts used in [8], we delve into a more comprehensive model. 
Specifically, we explore the properties of a generalized SIBR cholera transmission 
model with a broadened incidence function. The proposed model is expressed as 
follows: 
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′ = − − − +

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 ′ = − +

             (1.2) 

Assume that the total population is constant N S I R= + + . The model is 

https://doi.org/10.4236/jamp.2023.1111236


D. J. Li, L. W. Wang 
 

 

DOI: 10.4236/jamp.2023.1111236 3749 Journal of Applied Mathematics and Physics 
 

based on the standard SIR (susceptibility-infection-recovery) compartment struc-
ture and has an additional compartment B indicating the concentration of Vibrio 
cholera in contaminated water. Based on the above assumptions, model (1.2) can 
be established [16] [17] [18]. 

The structure of this article unfolds as follows: Section 1 is the proof of the 
positivity and boundedness of solutions for the model (1.2). Section 2 is dedi-
cated to establishing the existence and stability of equilibria, encompassing both 
the disease-free equilibrium and the positive equilibrium points. Some numeri-
cal simulations and sensitivity analyses are performed in Section 3 for the para-
meter 0R , corroborating the theoretical analysis mentioned earlier. Finally, the 
article concludes in Section 4 with a concise discussion summarizing our find-
ings. 

2. Positive and Boundedness of Solutions 
2.1. Positivity of Solutions 

Theorem 2.1. Under nonnegative initial conditions, for 0t > , the solution  
( ) ( ) ( ) ( )( ), , ,S t I t B t R t  of model (1.2) is nonnegative. 

Proof. Let { }0 | 0, 0, 0, 0t Sup t S I B R= > > > > > . Now, from the first equa-
tion of model (1.2), we obtain 

( ) ( ) ( )( ),
dS t

N g I f I B S
dt

µ µ≥ − + + . 

From the above equation, we can reduce that 
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Similarly, we can obtain the bounds for the other components of the solution. 

2.2. Boundedness of Solutions 

Theorem 2.2. All solutions of model (1.2) are bounded. 
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Proof. The model (1.2) consists of two populations, namely human and pa-
thogen. Therefore, we will break the model (1.2) into two parts, of which one 
involves the human population ( ), ,S I R  and the other the pathogen popula-
tion B. According to model (1.2) we obtain 

( ) ( ) ( )/ .
d S I R

d S I R dt N S I R
dt

µ
+ +

+ + = − − −
 

Further, from the first equation of the model (1.2), we have 

( ) ( ).S N Sµ σ µ σ′ ≤ + − +  
Hence, we conclude that S N< . Now, from the last equation of the model, 

we deduce that ( )R rN r Rµ σ′ ≤ − + + . We can obtain ( )/R rN r µ σ≤ + + . 
According to the third equation of the model (1.2) and assumptions in reference 
[8], we can arrive at 

( )3 3 3 3 .B b m I B Bα δ α δ′ = − − ≤ −  
Therefore, 3 /B α δ≤ . From the above discussion, it is clear from the above 

discussion that all solutions are bounded. Next, we obtain the feasible region for 
the human population as 

( ) ( ){ }, , | ,0 ,0 / .H S I R S I R N S N R rN r µ σΩ = + + = ≤ ≤ ≤ ≤ + +
 

And the feasible region for pathogen population is 

{ }3| 0 / .B B B α δΩ = ≤ ≤  

Define H BΩ = Ω ×Ω . Now, Ω  is a positively invariant region for the model 
(1.2). Moreover, the model (1.2) is mathematically and epidemiologically well- 
posed with the method utilized in [19]. 

3. Main Content 
3.1. The Existence of the Equilibria 

The existence of equilibria is discussed below, we define 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0, 0, 0, ,0 0, 0 0, 0,0 0, , , / ,

, 0,0 , , / ,0 / ,0 / .
I I

I B

g f B f I f f I B f I B I

f I B f I B f I B B I I I g I g I I

η

η η

′ ′= ≥ = = = <

′ ′ ′ ′< ≤ ≤ ≤ ≤ ≤ ≤  

Theorem 3.1 When 0 1R > , then model (1.2) has two equilibria 0E  and *E , 
when 0 1R ≤ , model (1.2) has a unique equilibrium 0E . 

Proof. Due to N S I R= + + ,  
( ) ( ) ( ) ( )/ /R I S N I R N I Iγ µ σ µ σ γ µ σ φ= + = − − = − + + + = , and 

( )
( ) ( ) )(

( )
( ) ( ) ( ) ( ) ( ) )(( ), , / / .

, /
I

S I h I g I f I I I
h Ig I f I I

µ γ µ γ
ψ η δ

η δ

+ +
= = = +

+


 

Because of ( ) 0S Iφ= > , then ( ) ( ) max0 /I N Iµ σ µ σ γ< < + + + = . Thus, 
considering ( )S Iφ=  and ( )S Iψ=  at the intersection where )max0, I  
Thus, we can obtain 
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This indicates that ( ) 0Iψ ′ ≥ , On the other hand  

( ) ( ) ( )max0, 0 , 0I N Iφ φ φ′ ≤ = =  and ( )max 0Iψ > , then 

( ) ( ) ( ) ( ) ( ) ( )0 1

0 lim .
0 0,0 0,0 0 /I I B

N
h I g f f T
µ γ µ γψ

η δ+

+

→

+ +
= = =

′ ′ ′ ′+ +  

Therefore, when 1 1T > , ( ) ( )0 0φ ψ +>  is the only one node, denoted as I ∗ . 
When 1 1T ≤ , ( ) ( )0 0φ ψ +≤ , there is no node. With the utilization of next 
generation matrix method mentioned in [20] [21], the matrix sum F and V can 
be written as 

( ) ( )
( )

0 0,0 0
, .

0 0 0
BNg Nf

F V
µ γ

η δ
′ ′  + 

= =   ′     

Therefore, the basic reproduction number 0R  of the model can be obtained 
as follows 

( ) ( ) ( ) ( ) ( )2

0

0 0 0,0 01 4 .
2

BNg Ng Nf
R M

η
ρ

µ γ µ γ δ µ γ

 ′ ′ ′ ′  = = + +  + + +    

At the same time, if disease control targets at a particular host type, a useful 
threshold is called the reproduction number T. The reproduction number de-
fines the expected number of secondary infections due to a typical primary case 
in a fully susceptible population [22] [23]. It is an extension of the basic repro-
duction number 0R . According to literature [23], it is concluded that  

( ) ( )0 11 1 1 1R T< ≥ ⇔ < ≥ . In the following analysis, we will use both and realize 
that the two are equivalent in characterizing the disease threshold dynamics. 

3.2. Stability of Disease-Free Equilibrium E0 

Theorem 3.2.1. When 0 1R < , the disease-free equilibrium point of model (1.2) 
is locally asymptotically stable. When 0 1R > , the disease-free equilibrium point 
of model (1.2) is unstable. 

Proof. According to the model (1.2), we take R N S I= − − . Thus, it can be 
seen that 

( ) ( ) ( ) ( )
( ) ( ) ( )
( )

, ,
, ,

.

S N Sg I Sf I B S I
I Sg I Sf I B I
B I B

µ σ µ σ σ
γ µ

η δ

′ = + − − − + −
 ′ = + − +
 ′ = −

        (3.1) 

Then, its Jacobi matrix of (3.1) at 0E  is 
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′ ′ ′− − − + − − − − 
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The characteristic equation is ( )( )2
1 2 0a aλ µ σ λ λ+ + + + = . 

As for ( )1 0a Ngγ µ δ ′= + + − , ( )( ) ( ) ( )2 0 0,0 0Ba Ng Nfδ γ µ η′ ′ ′= + − − . It is 
easy to know that one of the eigenvalues is ( )λ µ σ= − + , rest up to  

( )2
1 2 0a aλ λ+ + = , take advantage of  
( ) ( ) ( ) ( ) ( )1 0 / 0,0 0 /BT Ng Nfµ γ η µ γ δ′ ′ ′= + + + , 1 1T < , 1 0a > , and 2 0a > . 

By the Hurwitz criterion, when 1 1T < , all the eigenvalues are negative, the 
disease-free equilibrium is locally asymptotically stable. When 1 1T > , the cha-
racteristic equation consists of one positive root and two negative roots, so the 
disease-free equilibrium is unstable, completing the proof. 

Theorem 3.2.2. When 0 1R ≤ , model (1.2) has a globally asymptotically sta-
ble disease-free equilibrium point. 

Proof. Now we use the next generation matrix method to prove this theorem. 
Establish 

( ) ( )
( )1 1

00 0,0
, .

00 0
BNg Nf

F V
µ γ
η δ
+′ ′   

= =    ′−     
Because of 0I ≥ , ( ) 0g I ≥ . If and only if 0I = , ( ) 0g I′′ ≤ . So  
( ) ( ) ( )0g I I g I g I′ ′≤ ≤ . When ( ), Ty I B= , model (3.1) satisfies 

( )1 1 .dy dy F V y
dt

≤ −
 

Le ( ) )(( )0 , 0,0Bw Ng Nf′ ′= , due to ( ) ( )1 1
1 1 1 1 1T FV V Fρ ρ− −= =  we can prove 

1
1 1 1wV F T w− = . From [24] we define a Lyapunov function as follows 1

1L wV y−= , 
then the derivative of L can be written as 

( ) ( )1 1
1 1 1 1 1 1 .dyL wV wV F V y T wy

dt
− −′ = ≤ − = −

 
When 1 1T ≤ , the disease-free equilibrium is globally asymptotically stable. 

3.3. Stability of Positive Equilibrium E* 

Consider the differential equation ( ),x f x x D= ∈ . Let ( )0,x t x  be the solution 
to this equation with the initial value ( )0 00,x x x=  satisfying two hypotheses 
listed as follows [25]. 

(H1) There exists a compact attractive subset K D⊂ , 
(H2) Model (3.1) has a unique equilibrium x D∈ . 
Lemma 3.3.1. [26] If ( )( )* 0tr M E < , ( )( )* 0det M E < , and  

[ ] ( )( )2 * 0det M E < , then all eigenvalues are negative real numbers. 

Theorem 3.3.1 When 0 1R > , the positive equilibrium point *E  is locally 
asymptotically stable. 

Proof. The Jacobi matrix of model (3.1) at *E  is 
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( ) ( ) ( ) ( ) ( ) ( )
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* * * * * * * *
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*
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 ′ ′ ′= + + − +
 
 ′ −   
Therefore  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * *, ,Itr M E Sg I Sf I B g I f I B γ µ δ γ µ′ ′= + − − − + + − + , 

take advantage of ( ) ( ) ( )( ), /Sg I Sf I B Iµ γ+ = + , it is easy to derive 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

* * * * * * * * *

* * *

/ , , /

,

0.

Itr M E Sg I Sg I I Sf I B Sf I B I
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− − − + +

<  
The determinant of ( )*M E  is 
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* * * * * *

* * * * *
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′ ′+ + − +
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We can write 

[ ] ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * * *
11

2 * * * * * * * *

* * * * * *
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B B

I

I

M E Sf I B Sf I B
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g I f I B Sg I Sf I B

η µ σ δ σ
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 ′ ′ ′= − − − + + − − −
 
 ′ ′+ + − + +   

Among ( ) ( ) ( ) ( ) )( ( )* * * * * * *
11 , , 2IM E Sg I Sf I B g I f I B σ γ µ′ ′= + − − − + + . 

Calculate its determinant as 
[ ] ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

* * * * * *

* * *

2

*

*

* *

, ,

                     

det

      

    

               

  , / ,

    0.

I

B

M E Sg I Sf I B g I f I B

Sf I B I I Sf I B

γ µ δ

δ η

′ ′+ − + + − −

′ ′−

<

<  
It’s made use of  
( ) ( ) ( ) ( ) ( ) ( ), , / , / , /B B BI Sf I B I Sf I B I BSf I B I Sf I B Iη η δ δ′ ′ ′ ′≤ ≤ ≤ . In conclu-

sion, when 0 1R > , *E  is locally asymptotic stability, the theorem is proven. 
Lemma 3.3.2. [19] If the region D is simply connected and conditions (H1) 

and (H2) hold. When 0q < , the only internal equilibrium solution *E  of the 
model ( )x f x=  is globally asymptotically stable. 

Since (H1) is equivalent to the consistent persistence of model (3.1) [26] and 

bounded in the feasible domain 
°
Γ . Then the consistent persistence of model 

(3.1) is equivalent to 0E  being unstable [27]. According to Theorem 2.3.1, when 

0 1R > , 0E  is unstable. So, the following lemma holds. 

Lemma 3.3.3. When 0 1R > , model (3.1) is consistent and persistent. 
Theorem 3.3.2. When 0 0R > , the positive equilibrium point *E  is globally 

https://doi.org/10.4236/jamp.2023.1111236


D. J. Li, L. W. Wang 
 

 

DOI: 10.4236/jamp.2023.1111236 3754 Journal of Applied Mathematics and Physics 
 

asymptotically stable. 
Proof. First, based on the *( )M E  obtained above, the Lyapunov function is 

established as follows. 

( ) ( ){ }2 , max , /V x u X I Y Z B= + . 

According to model (3.1), it can be concluded that 

( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

11 , ,
, , ,

, , .

B

I

I

X M X Sf I B Y Z
Y I X g I f I B Y Sg I Sf I B Z

Z g I f I B Y Sg I Sf I B Z

η µ σ δ σ

γ µ δ

 ′ ′= + +
 ′ ′ ′ ′= − + + + + − + +
 ′ ′ ′= + − − − + + +

(3.2) 

Then 

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

11 , ,

, , ,

, , .

B

I

I

B ID X M X Sf I B Y Z
I B

D Y I X g I f I B Y Sg I Sf I B Z

D Z g I f I B Y Sg I Sf I B Z

η µ σ δ σ

γ µ δ

+

+

+

 ′≤ + + 
 

′ ′ ′≤ − + + + + − + +

′ ′≤ + − − − + + +

 

The derivative of 2V  along the positive solution of model (3.2) can be simpli-
fied as the following differential inequality 

( )

( ) ( ) ( ){ }

( )
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B B I B B
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η
γ µ σ
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′ ′   + = −  +  +  +          

′≤ − + + − + + +

′ ′ + −  +     
′ ′

≤ + − − − − .Y Zδ −  +       

Obtained from model (3.1) that 
( ) ( ) ( )

,Sg I Sf I BI
I I I

γ µ
′
= + − +  and  

( )IB
B B

η
δ

′
= − , then 
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        , ,
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           ,

        <

I B
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By using inequalities (3.3) and (3.4) we have 

( ) ( ){ } ( ) ( ) ( )1 2( ) sup , .ID V t g t g t t
I

µ σ λ µ σ+

′
′< ≤ − + = − +

 
For satisfying that ( ) ( ) ( )( )0 , 0 , 0S I B K∈  (K is the inner compact attractive 

set 
°
Γ ) is the solution of the model (3.1) ( ) ( ) ( ) ( )( ), ,X t S t I t B t= , there must 

be 

( ) ( )
( ) ( )

0 0

1 1 1( ) ln .
0

t t I tID V t ds ds
t t I t I

µ σ µ σ+

′′
≤ − + = − +∫ ∫

 
Thereby ( ) ( ) / 2 0q µ σ µ σ≤ − + < − + < . Therefore, when 0 1R > , *E  is 

globally asymptotically stable. The proof is now complete. 

4. Numerical Simulation 

In this section, the DED is cover simulation tool [28] [29] was used to numeri-
cally simulate 24 case data from 1998 to 2021, sensitivity analysis for 0R  is 
conducted to reveal the influence degree on model outcomes. According to the 
assumption in reference [8], we obtain the basic regeneration number 

( )

2
2 31 1

0
1 4 .
2

NN NR
K

α αα α
µ γ µ γ δ µ γ

   = + +  + + +    
where 1α , 2α , and 3α  are the direct propagation rate, indirect propagation 
rate, and dropout rate, respectively. The biological meaning and the standard 
deviation of each parameters in model (1.2) are listed in Table 1. 

Figure 1 illustrates the trend of cholera cases from 1998 to 2021 in China, in-
dicating a decline in the transmission of this infectious disease. According to the 
simulation results, the transmission of cholera will eventually be gradually re-
duced and ultimately controlled. 

In Figure 2, sensitivity analysis was applied. The basic reproduction number 

0R  of model (1.2) may determine the transmissibility, severity, and outcome of 
the pandemic. In order to seek for effective disease control measures, we there-
fore shall be concerned with the effects of input parameters 1α , 2α , 3α , γ , 
on 0R . The results show that 1α , 2α , 3α  and γ  are highly correlated with 
cholera infected persons. In order of relevance 1α , γ , 2α , 3α . According to  

 
Table 1. Parameters value. 

Parameter Meaning Standard deviation Source 

µ  Natural mortality rate 0.013 [10] 

σ  Host immune loss rate 13 [12] 

γ  Recovery rate 19.75 [10] 

K Environmental capacity 106 [2] 

δ  Net bacterial mortality rate 12.1667 [11] 
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Figure 1. Comparison of the reported cholera case data in China and the simulated solu-
tion ( )I t  of model (1.2). 

 

 
Figure 2. The PRCC values affecting the key parameters of 0R  are obtained. 

 
numerical simulation, 1α , 2α , 3α  are positively proportional to I, γ  is ne-
gatively proportional to I. Undoubtedly, reducing the coefficient of disease 
transmission 1α  and 2α , such as epidemic prevention propaganda, isolation, 
sterilization, and wearing masks can effectively control the spread of cholera. On 
the other hand, shortening the disease course of disease γ  can reduce the 
number of infected individuals. Therefore, it is possible for policy-makers to use 
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multiple control measures jointly during the influenza pandemic. 

5. Conclusion 

Our study delves deep into the intricacies of the SIBR cholera transmission 
model, incorporating multiple modes of infection and a generalized incidence 
function. Initially, we derive the expression for the basic reproduction number. 
Subsequently, employing the Routh-Hurwitz condition and constructing the 
Lyapunov function, we establish a pivotal insight: when 0 1R ≤ , the disease-free 
equilibrium point is globally asymptotically stable. This implies that, absent any 
interventions, infectious diseases will eventually fade away. However, if 0 1R > , 
we ascertain that the endemic equilibrium point becomes globally asymptotically 
stable, indicating the disease’s perpetual presence. Notably, we address and sur-
mount the constraints posed by the existing literature [8], demonstrating that 
infectious diseases persist under specific conditions denoted by  

( )( ) ( )1 / 2S I Iβ γ σ′ ≤ − . Furthermore, through meticulous numerical simula-
tions, we elucidate the implications of the generalized incidence transmission 
model on the proliferation and containment of infectious diseases. These simu-
lations form a theoretical foundation, enabling the evaluation of the efficacy of 
disease control measures. In essence, our analysis furnishes invaluable insights 
into the dynamics of the cholera transmission model, underscoring the criticality 
of implementing robust control strategies to thwart outbreaks and curtail the 
disease’s spread. 
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