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Abstract: The concept of the brain’s own time and space is central to many models and theories 
that aim to explain how the brain generates consciousness. For example, the temporo-spatial theo-
ry of consciousness postulates that the brain implements its own inner time and space for con-
scious processing of the outside world. Furthermore, our perception and cognition of time and 
space can be different from actual time and space. This study presents a mechanistic model of mu-
tually connected processes that encode phenomenal representations of space and time. The model 
is used to elaborate the binding mechanism between two sets of processes representing internal 
space and time, respectively. Further, a stochastic version of the model is developed to investigate 
the interplay between binding strength and noise. Spectral entropy is used to characterize noise ef-
fects on the systems of interacting processes when the binding strength between them is varied. 
The stochastic modeling results reveal that the spectral entropy values for strongly bound systems 
are similar to those for weakly bound or even decoupled systems. Thus, the analysis performed in 
this study allows us to conclude that the binding mechanism is noise-resilient. 

Keywords: theory of consciousness; binding problem; consciousness; perceptual binding;  
perception; neural correlates of consciousness; spectral entropy; power spectrum; stochastic  
modeling; noise in neuronal networks 
 

1. Introduction 
A mechanism that provides a unified conscious representation of a scene that is 

characterized by different perceptual features is known as perceptual binding [1–3]. 
Thus, the primary function of the binding mechanism is to unify the sensory infor-
mation processed in different parts of the brain to give us a unitary conscious experience 
of an object or scene. Several mechanisms have been proposed to solve the binding prob-
lem. Temporal neuronal synchrony models propose that different perceptual features 
are bound together when the firing activities of neurons processing these features are 
synchronized [2–5]. Similarly, the temporo-spatial theory of consciousness (TTC) sug-
gests that temporal alignment permits binding between a stimulus and ongoing sponta-
neous neural activity [6,7]. Operational Architectonics suggests that binding is achieved 
with operational synchrony among neuronal processes occurring in different brain re-
gions [8,9]. Alternatives to temporal synchrony have also been proposed [10]. In this 
work, a stochastic mechanistic model of binding is developed and presented based on 
my previous works [11,12]. The model enables quantification of the interplay between 
noise and binding. 

Noise in neurons may generate significant fluctuations in neuronal responses 
[13,14], yet sensory features represented by neuronal circuits remain stable [15]. For ex-
ample, noise affects neuronal signals transmitted by the sensory-motor system [14], op-
eration of voltage-gated channels [16,17], synaptic activity [18,19], potential differences 
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across nerve cell membranes [20], propagation of action potentials [21], and spike train 
coding [22]. Furthermore, noise can change information processing in sub-threshold pe-
riodic signals by helping these signals cross the threshold. Such noise-induced transmis-
sion of information has been detected in sensory neurons [23] and mechanoreceptor cells 
[24,25]. The information capacity of neuronal networks also depends on noise [26]. Addi-
tive noise can increase the mutual information of threshold neurons [26–28]. Neverthe-
less, very little is known about how phenomenal states and perceptual binding remain 
robust against noise despite ubiquitous noise sources in neural circuits. In my previous 
work, I showed that entropy decreases with an increase in the size of a network that con-
tains negative feedback loops interconnecting processes [12]. In this study, I investigate 
the interplay between noise and binding strength using the same framework, in which 
bound phenomenal states are encoded in relationships among processes. A phenomenal 
state (quale) is postulated to be a dynamic property of running processes, and is isomor-
phic to the executed relationships among the processes [29,30]. 

Other theories of consciousness have also postulated that the emergence of a con-
scious experience is associated with a specific action or execution performed by the 
brain. The theory of neuronal group selection (TNGS) postulates that qualia are high-
dimensional discriminations of specific conscious scenes among a vast repertoire of dif-
ferent possible conscious scenes [31], and differences in qualia are determined by differ-
ences in neural structure and dynamics. Similarly, according to the integrated infor-
mation theory (IIT), qualia arise from the reduction of uncertainty when a particular 
conscious state occurs out of a repertoire of alternative states [32]. Complex systems with 
larger numbers of possible states generate more information by reducing uncertainty 
and, thus, generate complex and vivid conscious experiences. For example, consider the 
conscious experience of a spatial position of a point-like object (i.e., without shape or any 
other features except the location) in empty space. According to IIT, the conscious expe-
rience of the point location occurs when the brain reduces uncertainty by ruling out all 
possible different positions of that point in space. However, within this framework, it is 
not clear how the reduction of uncertainty can reoccur contentiously in time when the 
phenomenal state is retained in consciousness over time. By contrast, per the dynamical 
framework presented in my study, the continuous execution of processes is an inherent 
attribute of the framework. A phenomenal state arises from the execution of relation-
ships among processes and is then isomorphic to the executed relationships. Therefore, 
the phenomenal state is a dynamic property that exists as long as the execution of this 
property by the system continues in time. In the above example with the spatial position, 
the phenomenal state isomorphic to a specific position in space would arise when the re-
lationships among a process assigned to the specific position and other processes as-
signed to all other possible locations in space are executed. Furthermore, the phenome-
nal state, in this case, would represent not a single point by itself, but the point within 
the internal phenomenal space. 

In this work, I present a mechanistic model that describes perceptual binding be-
tween a system’s encoded space and time, which are isomorphic to Euclidean space and 
time, respectively. The same framework can also be applied to other examples of percep-
tual binding [11]. The main goal of this work is to investigate how binding is affected by 
noise. The implications of noise for the system are quantified using spectral entropy, and 
the results indicate that the binding mechanism is robust against noise. 

2. Materials and Methods 
The system of oscillating processes, along with the relationships among processes, 

are used to represent the physical carrier of phenomenal states. The system’s internal 
representations of space and time are assumed to be encoded in relationships among the 
processes that are described by the following variables: 𝑃𝑃(𝑡𝑡)��������⃗ = (𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡), … , 𝑝𝑝𝑛𝑛(𝑡𝑡)) 
and 𝑄𝑄(𝑡𝑡)���������⃗ = (𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(𝑡𝑡), … , 𝑞𝑞𝑚𝑚(𝑡𝑡)), where 𝑡𝑡 is regular external time. There are n number 
of oscillating processes to encode space and m number of processes to encode time. The 
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internal space and time are encoded in the relationships among processes, which de-
scribe how the processes influence each other or interact. For the brain or neural net-
works, such relationships would be set by entrainment with external stimuli that are 
placed at different spatial positions and act with varying time intervals. I assume that the 
system of processes is already entrained and, thus, each process has specific relation-
ships to all other processes as 𝑃𝑃�⃗ = 𝑨𝑨𝑃𝑃�⃗  and 𝑄𝑄�⃗ = 𝑩𝑩𝑄𝑄�⃗ , where the structure of A and B ma-
trices represents memory, which should be isomorphic to real space and time. The ele-
ments of A and B matrices are independent of time. However, the relationships among 
processes encoded in A and B are continuously executed as all processes continuously 
oscillate in time. This is an important concept of this framework, where a phenomenal 
state (quale) is assumed to be a property of a dynamical system, which emerges and ex-
ists when that property is realized or “happens”. Therefore, the relationships among 
processes must be continuously executed, yet the specific relationships among processes 
must be maintained over time, as long as the experience of the corresponding phenome-
nal state is unchanged. Although, in general, the relationships among processes can be 
nonlinear (e.g., the relationships between two processes which are represented by a limit 
cycle in the phase plane), here, I assume that phenomenal space and time are linear and 
isomorphic to Euclidean space. Therefore, the Euclidean distance hollow matrices below: 

A = �

0
ε

ε    …
0      …

(𝑛𝑛 − 1)2ε
(𝑛𝑛 − 2)2ε

⋮        ⋮            ⋱ ⋮
(𝑛𝑛 − 1)2ε (𝑛𝑛 − 2)2ε  ⋯ 0

� 

 

(1) 

and B = �

0
α

α    …
0      …

(𝑚𝑚 − 1)2α
(𝑚𝑚 − 2)2α

⋮        ⋮            ⋱ ⋮
(𝑚𝑚 − 1)2α (𝑚𝑚 − 2)2α  ⋯ 0

� 

 

(2) 

are used to represent the following relationships among processes: 𝑃𝑃�⃗ = 𝑨𝑨𝑃𝑃�⃗  and 𝑄𝑄�⃗ = 𝑩𝑩𝑄𝑄�⃗ . 
Thus, for the 𝑝𝑝𝑖𝑖  and 𝑞𝑞𝑖𝑖 components of 𝑃𝑃�⃗  and 𝑄𝑄�⃗ , we can also write: 

          𝑝𝑝𝑖𝑖 = �(𝑖𝑖 − 𝑗𝑗)2ε
𝑛𝑛

𝑗𝑗=1

𝑝𝑝𝑗𝑗 (3) 

and 𝑞𝑞𝑖𝑖 = ∑ (𝑖𝑖 − 𝑗𝑗)2α𝑚𝑚
𝑗𝑗=1 𝑞𝑞𝑗𝑗 , (4) 

where ε and α are scaling parameters for the “distance and interval” measures between 
processes. If the sets of processes 𝑃𝑃�⃗  and 𝑄𝑄�⃗  that describe the internal representations of 
space and time are not coupled, then their dynamics are described by the following sys-
tems of ordinary differential equations: 

        
𝑑𝑑𝑃𝑃�⃗
𝑑𝑑𝑑𝑑

= 𝑨𝑨𝑃𝑃�⃗ − �𝑋⃗𝑋 + 𝑃𝑃�⃗ � (5) 

𝑑𝑑𝑋⃗𝑋
𝑑𝑑𝑑𝑑

= 𝑃𝑃�⃗                                   (6) 

𝑑𝑑𝑄𝑄�⃗
𝑑𝑑𝑑𝑑

= 𝑩𝑩𝑄𝑄�⃗ − �𝑍𝑍 + 𝑄𝑄�⃗ �         (7) 

𝑑𝑑𝑍𝑍
𝑑𝑑𝑑𝑑

= 𝑄𝑄�⃗ ,                               (8) 

The systems of Equations (5)–(8) have the following analytical solutions: 𝑃𝑃�⃗ = 𝑨𝑨𝑃𝑃�⃗  
and 𝑄𝑄�⃗ = 𝑩𝑩𝑄𝑄�⃗  with oscillating 𝑃𝑃�⃗ =  𝐾𝐾��⃗ cos(𝜆𝜆𝜆𝜆) + 𝐿𝐿�⃗ sin(𝜆𝜆𝑡𝑡)  and 𝑄𝑄�⃗ =  𝐻𝐻��⃗ cos(𝜂𝜂𝜂𝜂) + 𝑅𝑅�⃗ sin(𝜂𝜂𝑡𝑡) , 
where 𝐾𝐾��⃗ , 𝐿𝐿�⃗ ,𝐻𝐻��⃗ , 𝑅𝑅�⃗  are sets of amplitude values and 𝜆𝜆 and 𝜂𝜂 are frequencies. Additionally, 
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𝑋𝑋(𝑡𝑡)��������⃗ = (𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡)) and 𝑍𝑍(𝑡𝑡)��������⃗ = (𝑧𝑧1(𝑡𝑡), 𝑧𝑧2(𝑡𝑡), … , 𝑧𝑧𝑚𝑚(𝑡𝑡)) are sets of auxiliary pro-
cesses. If the processes representing internal space and time are bound, then Equations 
(5) and (7) must be coupled by including the terms that describe an interaction between 
𝑃𝑃�⃗  and 𝑄𝑄�⃗  processes. Different coupling schemes were investigated in my previous study 
[11]. Here, the number of modeled processes is reduced to simplify the stochastic model-
ing that is used to investigate noise effects on the coupled systems. A dynamical system 
that contains a set of two processes, 𝑃𝑃(𝑡𝑡)��������⃗ = (𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡)) representing the internal space 
bound to two processes, and 𝑄𝑄(𝑡𝑡)���������⃗ = (𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(𝑡𝑡)) representing the internal time, can be 
described by the following system of coupled equations: 

𝑑𝑑𝑝𝑝1
𝑑𝑑𝑑𝑑

= ε𝑝𝑝2 − 𝑝𝑝1 − 𝑥𝑥1 + ω 𝑓𝑓1(𝑞𝑞1, 𝑞𝑞2) (9) 

𝑑𝑑𝑝𝑝2
𝑑𝑑𝑑𝑑

= ε𝑝𝑝1 − 𝑝𝑝2 − 𝑥𝑥2 + ω 𝑓𝑓2(𝑞𝑞1, 𝑞𝑞2) (10) 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

= 𝑝𝑝1                                                  (11) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑

= 𝑝𝑝2                                                   (12) 

𝑑𝑑𝑞𝑞1
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝛼𝛼2 − 𝑞𝑞1 − 𝑧𝑧1 − ω 𝑔𝑔1(𝑝𝑝1 , 𝑝𝑝2) (13) 

𝑑𝑑𝑞𝑞2
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑞𝑞1 − 𝑞𝑞2 − 𝑧𝑧2 − ω 𝑔𝑔2(𝑝𝑝1 , 𝑝𝑝2) (14) 

𝑑𝑑𝑧𝑧1
𝑑𝑑𝑑𝑑

= 𝑞𝑞1                                                   (15) 

𝑑𝑑𝑧𝑧2
𝑑𝑑𝑑𝑑

= 𝑞𝑞2                                                   (16) 

The binding interaction between the (𝑝𝑝1, 𝑝𝑝2, 𝑥𝑥1, 𝑥𝑥2) and (𝑞𝑞1, 𝑞𝑞2, 𝑧𝑧1, 𝑧𝑧2) sets of process-
es is described by 𝑓𝑓1(𝑞𝑞1, 𝑞𝑞2), 𝑓𝑓1(𝑞𝑞1, 𝑞𝑞2) and 𝑔𝑔1(𝑝𝑝1, 𝑝𝑝2), 𝑔𝑔1(𝑝𝑝1, 𝑝𝑝2) functions. Here, the func-
tions are set as: 𝑓𝑓1(𝑞𝑞1, 𝑞𝑞2) = 𝑞𝑞1, 𝑓𝑓2(𝑞𝑞1, 𝑞𝑞2) = 𝑞𝑞2, 𝑔𝑔1(𝑝𝑝1, 𝑝𝑝2) = −𝑝𝑝1,and 𝑔𝑔2(𝑝𝑝1, 𝑝𝑝2) = −𝑝𝑝2. This 
interaction scheme is shown in Figure 1a. The binding strength between the 𝑝𝑝𝑖𝑖  and 𝑞𝑞𝑖𝑖 
processes depends on the parameter ω. The sign of parameter ε determines whether the 
𝑝𝑝1 and 𝑝𝑝2 processes are mutually activating (ε > 0) or inhibiting (ε < 0) each other. Simi-
larly, the sign of parameter 𝛼𝛼 determines whether the 𝑞𝑞1 and 𝑞𝑞2 processes are mutually 
activating (𝛼𝛼 > 0) or inhibiting (𝛼𝛼 < 0) each other. This interaction scheme with a fixed 
coupling constant ω = 1 and an alternative wiring–𝑓𝑓1(𝑞𝑞1, 𝑞𝑞2) = 𝑞𝑞1 − 𝑞𝑞2, 𝑓𝑓2(𝑞𝑞1, 𝑞𝑞2) = 𝑞𝑞2 −
𝑞𝑞1, 𝑔𝑔1(𝑝𝑝1, 𝑝𝑝2) = 𝑝𝑝2 − 𝑝𝑝1, and 𝑔𝑔2(𝑝𝑝1 , 𝑝𝑝2) = 𝑝𝑝1 − 𝑝𝑝2–were investigated in my previous study 
[11]. In this work, the dynamic behavior of the system is analyzed as a function of cou-
pling strength parameter ω. As an example, numerical solutions of Equations (9)–(16) for 
the 𝑃𝑃(𝑡𝑡)��������⃗ = (𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡)) and 𝑄𝑄(𝑡𝑡)���������⃗ = (𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(𝑡𝑡)) processes obtained for three different 
binding strength parameter values (ω = 0.1, 0.5, and 1) are shown in Figures 1b–d. 
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Figure 1. The interaction diagram and dynamical relationships among processes. (a) A diagram 
that shows interactions among processes. (b–d) Numerical solutions for the time evolution of 
𝑃𝑃(𝑡𝑡)��������⃗ = (𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡))  and 𝑄𝑄(𝑡𝑡)���������⃗ = (𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(𝑡𝑡))  processes computed using different values of the 
coupling constant: (b) ω = 0.1, (c) ω = 0.5, (d) ω = 1. In all simulations, ε = −1 and 𝛼𝛼 = −1, thus, 
representing mutual inhibition between the 𝑝𝑝1 and 𝑝𝑝2 processes and between the 𝑞𝑞1 and 𝑞𝑞2 pro-
cesses. The following initial conditions are used: 𝑃𝑃(0)���������⃗ = (1, 0), 𝑋𝑋(0)���������⃗ = (0, 0), and 𝑄𝑄(0)���������⃗ = (1, 0), 
𝑍𝑍(0)���������⃗ = (0, 0). 

Next, the system of Equations (9)–(16) is converted into a stochastic model using 
Gillespie’s method. For the system 𝑆𝑆 = (𝑝𝑝1 , 𝑝𝑝2, 𝑥𝑥1, 𝑥𝑥2, 𝑞𝑞1, 𝑞𝑞2, 𝑧𝑧1, 𝑧𝑧2), the states are updated 
using the following general Gillespie’s scheme [33]: 
1. Initialize the process state vector, 𝑆𝑆, and set the initial time at 0. 
2. Calculate the propensities, 𝑎𝑎𝑘𝑘(𝑆𝑆). 
3. Generate a uniform random number, 𝑟𝑟1. 
4. Compute the time for the next event, 𝜏𝜏 = − 1

∑ 𝑎𝑎𝑘𝑘�𝑆𝑆�𝑘𝑘
ln 𝑟𝑟1. 

5. Generate a uniform random number, 𝑟𝑟2. 

6. Find which event is next, 𝐼𝐼 = 𝑖𝑖, if ∑ 𝑎𝑎𝑘𝑘�𝑆𝑆�
𝑖𝑖−1
𝑘𝑘=1
∑ 𝑎𝑎𝑘𝑘�𝑆𝑆�𝑘𝑘

≤ 𝑟𝑟2 < ∑ 𝑎𝑎𝑘𝑘�𝑆𝑆�
𝑖𝑖
𝑘𝑘=1
∑ 𝑎𝑎𝑘𝑘�𝑆𝑆�𝑘𝑘
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7. Update the state vector, 𝑆𝑆 → 𝑆𝑆 + 𝐲𝐲𝑖𝑖. 
8. Update time, 𝑡𝑡 → 𝑡𝑡 + 𝜏𝜏. 
9. Repeat steps (2)–(8). 

The stochastic model is used to characterize the interplay between the binding 
strength, ω, and noise. All numerical solutions of Equations (9)–(16) are obtained using 
XPP/XPPAUT software (http://www.math.pitt.edu/~bard/xpp/xpp.html, accessed on 4 
November 2023). The XPP/XPPAUT codes that are sufficient to reproduce all results pre-
sented in this work are provided in Appendix A. Code A is used to generate results for 
the deterministic model described by Equations (9)–(16), and Code B is used to perform 
stochastic simulations of the model and produce the corresponding model results. 

Spectrum analysis and spectral entropy are used to quantify noise effects on the 
system. Spectral analysis is a common tool in signal processing and in neurophysiologi-
cal studies [34–37]. Spectral entropy is based on Shannon’s entropy formalism, which is a 
foundational concept of information theory [38]. The entropy metric is an important 
component of the information integration theory of consciousness [39,40]. I have used 
spectral analysis tools to study noise effects on systems of different sizes, which are de-
scribed by Equations (5) and (6) [12]. Here, I use the same method to compute spectral 
entropy for two systems of bound processes (Equations (9)–(16)), in order to characterize 
the interplay between binding strength and noise. 

The spectral entropy value H is computed using the following equation: 

𝐻𝐻 = −𝑘𝑘 ∑ 𝑃𝑃𝑃𝑃𝐷𝐷𝚥𝚥�Log2(𝑃𝑃𝑃𝑃𝑃𝑃�𝑗𝑗)2048
𝑗𝑗=1 ,  (17) 

where 𝑘𝑘 = 1
Log2(2048)

≈ 0.1  and 𝑃𝑃𝑃𝑃𝑃𝑃�  is the normalized power spectral density that is 
computed by dividing the power spectral density by the total power [41]. The power 
spectral density is computed from the fast Fourier transform (FFT) obtained for each 
process trajectory 𝑝𝑝𝑖𝑖(𝑡𝑡) that is simulated using Code B in Appendix A. The Fourier Anal-
ysis function in Excel’s Analysis ToolPak is used to obtain the corresponding signal 𝑝𝑝𝑖𝑖(𝑓𝑓) 
in the frequency domain. 4096 points are used to compute 𝑝𝑝𝑖𝑖(𝑓𝑓), which corresponds to a 
total average simulation time of ~930 arb. u. where the period of oscillations ranges be-
tween ~4–7 arb. u. The sampling frequency, 𝑓𝑓, is obtained by dividing the number of 
points by the time interval, ∆𝑡𝑡. The frequency magnitudes are computed using Excel’s 
IMABS function. The power spectral density is calculated using the following formula: 
𝑃𝑃𝑃𝑃𝐷𝐷𝑗𝑗 = �𝑝𝑝�𝑓𝑓𝑗𝑗��

2/2∆𝑓𝑓. 2048 data points are used to compute spectral densities and the 
corresponding spectral entropy value from Equation (17). Finally, the coupling parame-
ter ω is varied to characterize the effect of binding strength on the system’s spectral en-
tropy values. For each fixed value of coupling parameter ω, simulations are repeated ten 
times. Then, those ten spectral entropy values are used to compute the average spectral 
entropy value and the corresponding standard deviation from the mean. 

3. Results 
In my previous work [11], the deterministic mathematical model described by 

thesystem of Equations (9)–(16) was successfully applied to study the perceptual binding 
between the location of a stimulus at two possible positions and the presence or absence 
of a light stimulus at these positions. However, the binding strength ω was assumed to 
be at its largest value, ω = 1. It was shown that the system of Equations (9)–(16) exhibits 
different regimes of modulated oscillations depending on the ε and 𝛼𝛼 parameter values 
[11]. By contrast, in this study, ε and 𝛼𝛼 are fixed and the binding strength ω is varied. 
Furthermore, the model is used to describe the possible binding mechanism between en-
coded space and time. Thus, the model allows one to investigate how the encoding sig-
nals may change if the binding strength between the encoded space and time is varied. It 
is assumed that space and time could be perceived independently as well as together. 
This assumption follows from the assumption that entrainment of the subsystem that 
encodes the internal representation of space can be performed either simultaneously 
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with, or independently from, entrainment of the subsystem that encodes the internal 
representation of time. In addition, stochastic simulations of the model are performed to 
characterize the robustness of the binding mechanism against noise. 

When two oscillatory systems are coupled, they modulate each other and, thus, the 
oscillatory dynamics of the coupled system are altered. The modulation depends on the 
parameter ω, that describes the binding strength between two oscillatory systems. This 
is seen in Figure 1a. Figures 1b–d demonstrate how the binding strength parameter in-
fluences the modulation of two coupled oscillatory systems. To characterize the robust-
ness of the coupled system against noise, stochastic simulations are performed. The re-
sults of the stochastic model simulations are shown in Figure 2. The stochastic model is 
simulated using different values of the binding strength parameter ω. Figures 2a,d,g 
present the stochastic trajectories for the 𝑃𝑃(𝑡𝑡)��������⃗ = (𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡)) and 𝑄𝑄(𝑡𝑡)���������⃗ = (𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(𝑡𝑡)) 
processes obtained for the binding strength parameter values ω = 0.1, 0.5, and 1. These 
results can be compared to the numerical results of the deterministic model shown in 
Figures 1b–d, which are obtained for the same ω parameter values; however, the initial 
conditions used for the simulation results in Figures 1 and 2 are different. Figures 2b,e,h 
show distribution histograms for the process 𝑝𝑝1, obtained from trajectories recorded over 
much larger time frames (>1000 arb. u.) than shown in Figures 2a,d,g. Also, for the 𝑝𝑝2 
and 𝑞𝑞1,2 processes, the corresponding histograms (not shown) appear similar to those 
shown in Figures 2a,d,g. Normalized power spectral densities are also computed from 
trajectories, as described in the Methods section. Alteration of the normalized power 
spectral densities for the process 𝑝𝑝1 as a function of varied binding strength parameter 
values is demonstrated in Figures 2c,f,i. There is a shift of normalized power spectrum 
peaks to higher frequencies as the binding strength ω increases. 

 
Figure 2. Numerical stochastic simulation results obtained using the following binding strength 
parameter values: (a–c) ω = 0.1, (d–f) ω = 0.5, and (g–i) ω = 1. (a,d,g) Stochastic trajectories for the 
𝑃𝑃(𝑡𝑡)��������⃗ = (𝑝𝑝1(𝑡𝑡), 𝑝𝑝2(𝑡𝑡)) and 𝑄𝑄(𝑡𝑡)���������⃗ = (𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(𝑡𝑡)) processes. Time is shown in arbitrary units. The fol-
lowing initial conditions are used: 𝑃𝑃(0)���������⃗ = (1000, 0), 𝑋𝑋(0)���������⃗ = (0, 0), 𝑄𝑄(0)���������⃗ = (1, 0), 𝑍𝑍(0)���������⃗ = (0, 0) in 
(a,g) and 𝑃𝑃(0)���������⃗ = (1000, 0), 𝑋𝑋(0)���������⃗ = (0, 0), 𝑄𝑄(0)���������⃗ = (1000, 0), 𝑍𝑍(0)���������⃗ = (0, 0) in (d). (b,e,h) Distribution 
histograms for process 𝑝𝑝1, computed using trajectories recorded over (b) 1580 arb. u., (e) 1120 arb. 
u., and (h) 1071 arb. u time frames. (c,f,i) Normalized power spectral densities for process 𝑝𝑝1. 
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Next, spectral entropy is calculated using the power spectra to quantify sensitivity 
of the coupled systems of processes to noise. For cases shown in Figure 2, spectral entro-
py values of ≈0.55, 0.57, and 0.55 are obtained using the power spectra shown in Figures 
2c,f,i, with binding strength parameter values ω = 0.1, 0.5, and 1, respectively. Because 
the spectral entropy values do not change significantly with alteration of the binding 
strength parameters, it can be concluded that strongly and weakly bound oscillatory sys-
tems are equally robust against noise. To test this hypothesis in a more systematic way, 
fifty independent simulation experiments for the coupled systems of processes are per-
formed, with ten simulation experiments for each of five different values of the binding 
strength parameter: ω = 0, 0.25, 0.5, 0.75, and 1. In each independent simulation, the 
spectral entropy value is computed. Then, the average over ten spectral entropy values is 
calculated for each specific ω parameter value. Figure 3 shows the average spectral en-
tropy values plotted versus the binding strength parameter. The error bars represent 
standard deviation values. The results indicate that the robustness of the coupled sys-
tems against noise does not vary significantly when the binding strength changes. There-
fore, the binding mechanism used to couple two oscillatory systems is resilient to noise. 

 
Figure 3. Dependence of spectral entropy on the coupling strength between two bound oscillatory 
systems. Open circles represent the average spectral entropy values obtained using different val-
ues of the binding strength parameter ω. Error bars provide standard deviation values. 

4. Discussion 
The brain’s ability to construct its own space and time provides an essential founda-

tion for conscious processing of the outside world. All other phenomenal aspects are 
built upon this foundation. When we have perceptual experiences of different phenom-
enal aspects, such as those related to our perceptions of colors, odors, tactile features, 
etc., they are always inseparably unified with our internal representations of space and 
time. Thus, a solution to the perceptual binding problem must include phenomenal 
space and time as the common foundation that unifies other phenomenal aspects into a 
single experience. 

In this work, I present a mechanistic stochastic model of perceptual binding be-
tween encoded space and time. Because variations in spatial patterns and temporal 
changes could, in principle, be perceived as separable events, I assume that phenomenal 
representations of space and time can be unbound, or weakly or strongly bound. Thus, 
the mechanistic model of binding is used to investigate how the oscillating processes 
that encode the internal (phenomenal) representations of space and time are modulated 
when the binding strength between them is varied. Furthermore, stochastic simulations 
of the model are used to analyze the interplay between the binding strength and noise. 
The model results suggest that the binding mechanism is robust against inherent noise. 
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Therefore, the model provides some explanation as to why perceptual experiences and 
perceptual binding can be robustly retained and unchanged despite ubiquitous noise 
sources in neuronal circuits. In my previous work, it was shown that large systems in-
volving more interconnected oscillating processes are less noise sensitive than small sys-
tems with fewer processes [12]. Noise is suppressed in large systems by negative feed-
back loops that are involved in a network of interconnected processes. The peaks of 
power spectral densities were shifted from low to high frequency values with an in-
crease in the number of processes [12]. Figures 2c,f,i also show a shift in normalized 
power spectrum peaks to higher frequencies as the binding strength increases. This shift 
to higher frequencies occurs because the binding mechanism involves negative feedback 
loops, as seen in Figure 1a. Similar observations have been reported for gene regulatory 
networks with negative feedback loops [42,43]. Moreover, it has also been observed that 
noise-like signals associated with scale-free brain activity may play an important role in 
determining the state of consciousness [44]. Therefore, an important future direction 
would be to apply the mechanistic model to investigate the implications of scale-free 
dynamics on perceptual binding. 

In this study, the interplay between binding strength and noise is characterized us-
ing power spectral density and spectral entropy values. Spectral analysis has often been 
used to analyze electroencephalograms to study the neurophysiology of sleep [34], pre-
dict changes in memory performance [41], and detect differences in brain activities of 
subjects under different conditions [35–37]. Because the same spectral analysis tools are 
used in this work, it should be relatively easy to compare results and validate conclu-
sions derived from the model simulations with results obtained in neurophysiological 
experiments. 

However, it should be noted that the oscillating processes described by the model 
cannot be explicitly related to membrane potentials and the spiky oscillations exhibited 
by individual neurons. The dynamics of a spiking neuron can be better represented by 
the Hodgkin-Huxley and FitzHugh–Nagumo models, which employ nonlinear differen-
tial equations [45–48]. However, the nonlinear neuronal impulses have complex relation-
ships that are not isomorphic with Euclidian space and time, which are the subjects of 
this study. The processes described by my model can be attributed to the dynamics of 
neural populations [49]. For example, averaged evoked potentials (AEP) recorded from 
different parts of the brain using electroencephalography (EEG) are well-fitted using si-
nusoidal functions [50,51]. Linearized approximation has been successfully applied to 
describe cortical evoke potentials [50–53]. Thus, the model results can be compared with 
neural population responses recorded by EEG techniques. Some oscillating patterns of 
the EEG with varying amplitudes are similar to the oscillation patterns obtained in this 
work (compare Figure 2a in this work with Figure 3 on page 33 in Ref. [50]). Although  
many EEG signals appear complex and noisy, the principle of superposition can be ap-
plied to separate the complex composite signals into components [52]. Then, in line with 
the hypothesis employed in my model, the oscillating electric field components that 
form relationships isomorphic with a conscious percept can contribute to the conscious 
state. It is possible that no “meaningful” contribution can emerge from electric field 
components that do not retain the relationships isomorphic with the percept. 

It should also be noted that the internal representations of space and time modeled 
in this work are different from the inner space and time postulated in the temporo-
spatial theory of consciousness (TTC) [6,7]. The inner time in TTC is related to the tem-
poral ranges of neural oscillations that arise in different forms of neural activity. The in-
ner space is related to spatial ranges of neural activity across different regions in the 
brain. Therefore, inner space and time in TTC are constructed using characteristic spatial 
ranges and timescales in different forms of neural activity. The inner space and time in 
TTC are, thus, different from the internal phenomenal representations of space and time. 
Furthermore, TTC suggests that binding between different forms of neural activity is de-
termined by “temporo-spatial alignment”. Temporo-spatial alignment dictates whether 
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different forms of neural activity and their respective contents can be merged and asso-
ciated with consciousness. Importantly, the temporal integration of different forms of 
neural activity is based on their temporal properties and is independent of their specific 
contents. Thus, TTC highlights the difference between binding based on the temporal 
alignment and a content-based integration. Similarly, the binding mechanism in my 
model concerns interactions among oscillating processes. The mechanism permits the 
mutual modulation of processes regardless of specific phenomenal content carried by 
the processes. However, content integration is governed by relationships among pro-
cesses and their changes occurring due to interactions. 

Overall, the mechanistic model allows us to better understand how binding can al-
ter dynamics of neural-like oscillatory systems. The model results can help to interpret 
some neural population activity patterns as recorded by EEG techniques. Furthermore, 
the model can be applied to describe the binding mechanism between any two percepts 
that can be represented by two systems of oscillating processes, as has been demonstrat-
ed in my previous work [11]. The stochastic version of the model gives us a useful tool to 
study noise effects on systems that involve binding. It can also be used to investigate 
mechanisms with which the brain suppresses or employs inherent noise to make our 
perceptual binding and experiences sturdy. 
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Appendix A 
The XPP/XPPAUT Code A is used to simulate results in Figure 1b–d. 

# Code A 
init p1=1, p2=0, x1=0, x2=0, q1=1, q2=0, y1=0, y2=0 
par eps=-1.0, alpha=-1.0, w=1.0 

dp1/dt =eps*p2-p1-x1+w*q1 
dp2/dt =eps*p1-p2-x2+w*q2 
dx1/dt =p1 
dx2/dt =p2 
dq1/dt =alpha*q2-q1-z1-w*p1 
dq2/dt =alpha*q1-q2-z2-w*p2 
dz1/dt =q1 
dz2/dt =q2 

@ dt=.025, total=100, xplot=t, yplot=p1 
@ xmin=0, xmax=100, ymin=-1, ymax=1 
done 

The XPP/XPPAUT Code B is used to generate trajectories and histograms in Figure 
2. 

# Code B 

init p1=1000, p2=0, x1=0, x2=0, q1=1, q2=0, z1=0, z2=0 
par eps=-1.0, alpha=-1.0, w=1 
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# compute the cumulative event 
x11=abs(eps*p2) 
x12=x11+abs(eps*p1) 

x13=x12+abs(alpha*q2) 
x21=x13+abs(alpha*q1) 

x22=x21+abs(p1) 
x23=x22+abs(p2) 
x31=x23+abs(q1) 
x32=x31+abs(q2) 

x33=x32+abs(x1) 
x41=x33+abs(x2) 
x42=x41+abs(z1) 
x43=x42+abs(z2) 

#binding 

x44=x43+abs(w*p1) 
x51=x44+abs(w*p2) 
x52=x51+abs(w*q1) 
x53=x52+abs(w*q2) 

# choose a random event 
s2=ran(1)*x53 
y1=(s2<x11) 
y2=(s2<x12)&(s2>=x11) 
y3=(s2<x13)&(s2>=x12) 
y4=(s2<x21)&(s2>=x13) 
y5=(s2<x22)&(s2>=x21) 
y6=(s2<x23)&(s2>=x22) 
y7=(s2<x31)&(s2>=x23) 
y8=(s2<x32)&(s2>=x31) 
y9=(s2<x33)&(s2>=x32) 
y10=(s2<x41)&(s2>=x33) 
y11=(s2<x42)&(s2>=x41) 
y12=(s2<x43)&(s2>=x42) 
y13=(s2<x44)&(s2>=x43) 
y14=(s2<x51)&(s2>=x44) 
y15=(s2<x52)&(s2>=x51) 
y16=(s2>=x52) 

# time for the next event 
tr'=tr-log(ran(1))/x53 

p1'=p1+sign(eps)*sign(p2)*y1-sign(p1)*y5-sign(x1)*y9+sign(q1)*y15 
p2'=p2+sign(eps)*sign(p1)*y2-sign(p2)*y6-sign(x2)*y10+sign(q2)*y16 
q1'=q1+sign(alpha)*sign(q2)*y3-sign(q1)*y7-sign(z1)*y11-sign(p1)*y13 
q2'=q2+sign(alpha)*sign(q1)*y4-sign(q2)*y8-sign(z2)*y12-sign(p2)*y14 
x1'=x1+sign(p1)*y5 
x2'=x2+sign(p2)*y6 
z1'=z1+sign(q1)*y7 
z2'=z2+sign(q2)*y8 
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@ bound=100000000, meth=discrete, total=10000000, njmp=1000 
@ xp=tr, yp=p1 
@ xlo=0, ylo=-1000, xhi=40, yhi=1000 

done 
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