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Featured Application: Marine centrifugal pumps’ online status recognition. 

Abstract: Marine centrifugal pumps (MCPs) are widely used in ships, so it is important to identify 
their status accurately for their maintenance. Due to the influence of load, friction, and other non-
linear factors, the vibration signal of an MCP shows non-linear and non-stationary characteristics, 
and it is difficult to extract the state characteristics contained in the vibration signal. To solve the 
difficulty of feature extraction of non-linear non-stationary vibration signals generated by MCPs, a 
novel MCP frequency domain signal feature extraction method based on a stacked sparse auto-en-
coder (SSAE) is proposed. The characteristic parameters of MCP frequency domain signals are ex-
tracted via the SSAE model for classification training, and different statuses of MCPs are identified. 
The vibration signals in different MCP statuses were collected for feature extraction and classifica-
tion training, and the MCP status recognition accuracy based on the time domain feature and fuzzy 
entropy feature was compared. According to the test data, the accuracy of MCP status recognition 
based on the time domain feature is 71.2%, the accuracy of MCP status recognition based on the 
fuzzy entropy feature is 87.7%, and the accuracy of MCP status recognition based on the proposed 
method is 100%. These results show that the proposed method can accurately identify each status 
of an MCP under test conditions. 

Keywords: marine centrifugal pumps; stacked sparse auto-encoder; vibration signal; status  
recognition 
 

1. Introduction 
In the marine industry, MCPs comprise about 15% to 20% of all machinery and equip-

ment [1]. MCPs are very critical for the operation of the entire ship: MCP failure, while caus-
ing economic losses, also affects the safety of ship navigation, endangering the safety of 
personnel, so it is particularly important to accurately identify the statuses of MCPs. 

Condition monitoring of MCPs has always been the focus of research on marine ma-
chinery and equipment. For example, Ning [2] implemented an MCP condition monitoring 
and analysis system with the help of LabVIEW2009 programming software. In the system, 
signal analysis and performance curves can be drawn, and real-time display and condition 
monitoring of MCP performance parameters can be realized. Peng [3] also implemented the 
MCP monitoring system with the help of LabVIWE2009 programming software. In this sys-
tem, the vibration signal of an MCP and whether it was abnormal was judged online 
through spectrum analysis, and the vibration level of the MCP was determined according 
to the mean square value of velocity. Liu et al. [4] established a mathematical model for 
online monitoring of centrifugal pump status and fault diagnosis. Using online monitoring 
of the centrifugal pump flow, pressure, head, and other performance parameters, Liu et al. 
identified the four states of cavitation, loosening, rotor misalignment, and rotor unbalance 
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according to threshold comparison method. Luo et al.Luo et al.[5]  established the relation-
ship between characteristics and state by analyzing the time domain and frequency domain 
characteristics of the vibration signal of the centrifugal pump. Cao et al. [6] extracted 15 
characteristic indexes of the vibration acceleration signal of the centrifugal pump, estab-
lished the relationship between cavitation and characteristic indexes, and realized cavitation 
state monitoring of the centrifugal pump according to the characteristics of the vibration 
signal. By calculating the vibration signal characteristics of an MCP, Cheng et al. [7] realized 
the recognition of different statuses of the MCP by using multi-dimensional characteristic 
indexes. In the above literature, some scholars developed an online monitoring system for 
condition monitoring of MCPs, and realized online status identification of MCPs. Some 
scholars extract different features for state recognition according to the different states of 
centrifugal pumps, among which, vibration signal feature extraction is the most common. 

Condition monitoring via vibration signals is an important method for condition as-
sessments of mechanical equipment that depends on feature extraction of the vibration sig-
nals of mechanical equipment. Common feature extraction methods mainly extract fault 
features from the time domain and frequency domain. The fault information of the equip-
ment is hidden in the original time domain vibration data, and the fault information can be 
mined by calculating the time domain characteristic index [8]. Li et al. [9] proposed two new 
time domain indicators based on existing time domain eigenvalues, namely, the TALAF in-
dex based on the RMS value and kurtosis coefficient, and the THIKAT index based on kur-
tosis, RMS, and peak values, and used probabilistic neural networks to classify the health 
status of rolling bearings. Jing Liu et al. [10] calculated 25 statistical features of vibration 
signals in the time domain, used the Pearson correlation coefficient to determine the valid 
features among the 25 statistical features, and proposed a new method for diagnosing the 
spalling fault of ball bearings. Long Wen et al. [11] converted their original vibration data 
into grayscale graphs through time domain calculations for feature extraction, and input 
them into the proposed LeNet-5-based convolutional neural network to identify the health 
status of bearings. A variety of frequency domain characteristics can be obtained from the 
frequency domain, such as the mean square frequency, frequency variance, root mean 
square frequency, frequency amplitude variance, etc. Appana et al. [12] used the envelope 
spectrum of vibration data as the feature input for their convolutional neural network; 
Shaobo Li et al. [13] used RMS mapping of the fast Fourier transform of vibration data col-
lected by two sensors as the feature input for their convolutional neural network. Wentao 
Mao et al. [14] used fast Fourier transform results of vibration data as a feature input to a 
multi-layer extreme learning machine. Feature extraction using time domain and frequency 
domain processing is better in stationary vibration signals than in non-stationary vibration 
signals. Because an MCP is affected by load, turbulence, friction, and other factors, its vibra-
tion signal will show a non-stationary and non-linear situation relative to flow, pressure, 
and other signals, so the traditional time domain and frequency domain feature extraction 
is not suitable for MCP vibration signal feature extraction. 

In order to better extract equipment operation features contained in non-stationary vi-
bration signals, some scholars choose to use the time–frequency analysis method to extract 
features from original vibration signals. Common methods include short-time Fourier trans-
form (STFT), wavelet transform (WT), and wavelet packet transform (WPT). Hongmei Liu 
et al. [15] chose to use the time spectrum diagram of STFT as a feature to achieve fault diag-
nosis for rolling bearings. Chen et al. [16] chose to use WT as a feature and input it into a 
diagnostic model combining a convolutional neural network and extreme learning machine 
for further analysis and processing, so as to realize the diagnosis of rolling bearing health 
status. Islam M et al. [17] used discrete WPT and quantified each sub-band of the signal by 
defining a new evaluation index defect ratio, and finally input it into a new adaptive deep 
convolutional neural network to realize the identification of bearing health status. Zhang et 
al. [18] carried out wavelet packet decomposition of vibration signals, selected the optimal 
frequency band, and calculated their respective Renyi entropy to form feature vectors to 
complete the performance degradation evaluation of rolling bearings. Sun et al. [19] used 
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the Hilbert–Huang transform (HHT) to extract the characteristic information of the moni-
toring signal, and obtained the mean amplitude of the inherent mode function and the max-
imum value point of the marginal spectrum as the characteristic parameters of tool wear, so 
as to identify a tool’s state. David et al. [20] simultaneously used three time–frequency anal-
ysis methods (including STFT, WT, and HHT) to obtain a time–frequency spectrum diagram 
to obtain an image representation of the original vibration signal, and used this feature to 
input a deep convolutional neural network to identify the health state of a bearing, while 
comparing the diagnostic performance of the three methods. RAI et al. [21] proposed a fault 
degradation assessment method combining empirical mode decomposition (EMD) feature 
extraction and K-means clustering, which achieved feature index extraction well. Wang et 
al. [22] used variational mode decomposition (VMD) to extract component singular values, 
combined with root mean square values and sample entropy to form feature indicators, and 
verified the effectiveness of feature extraction through performance degradation assess-
ments. Xiao et al. [23] identified the fault type by calculating the fuzzy entropy of vibration 
signal components of three-phase asynchronous motors, and their results show that the ac-
curacy of fuzzy entropy feature identification is high. Aiming to solve the problems of sen-
sitive parameters and insufficient noise suppression in traditional feature extraction, Chen 
et al. [24] extracted a multi-scale high-dimensional mapping entropy (MHDME) feature ex-
traction algorithm, which can identify different states of reciprocating compressor bearings. 
However, the process of these methods is more complicated, and some methods rely on 
analyses of the mechanisms of the equipment, and the parameter setting depends on human 
experience. Thus, when the amount of data is too large, the processing time is too long. 

With the rise of artificial intelligence, deep learning methods have deep structures 
and strong non-linear feature extraction abilities, thus can realize feature extraction from 
non-stationary vibration signals, and are increasingly applied in signal feature extraction. 
Zhao et al. [25] proposed a universal fault feature extraction and diagnosis method based 
on a deep confidence network. Cheng et al. [26] input the normalized amplitude spectrum 
of vibration signals into a deep belief network (DBN) for feature extraction, and evaluated 
the performance degradation of rolling bearings through the features. Their results show 
that this method can extract all stages of bearing degradation. Cao et al. [27] used convo-
lutional neural network (CNN) adaptive feature extraction to further explore the hidden 
micro features in the signals by deepening the network. Zhang et al. [28] used an SSAE to 
extract the fault features of spiral bevel gear with strong non-linear and non-stationary 
characteristics, and input the fault features into multiple classifiers for classification train-
ing. Through their experiments, the recognition accuracy of this method was verified. 
Through the above research, it can be seen that feature extraction methods for vibration 
signals based on deep learning have a good effect and can extract weak features reflecting 
the state of the device in the signal, and their state recognition effect is good. 

To summarize, in view of the non-stationary and non-linear characteristics of MCP vi-
bration signals, this paper built an MCP test bench to collect vibration signals under differ-
ent statuses of an MCP, divided the vibration signal dataset into a training set and a test set, 
trained the SSAE model with the training set, input the extracted features into the classifier 
training, and verified the model according to the test set. At the same time, two other meth-
ods were selected for comparative verification: One involves extracting the time domain 
characteristics [29] of MCP vibration signals for status recognition. The other involves de-
composing the MCP vibration signal via VMD, and calculating the fuzzy entropy character-
istics [30] of each modal component after decomposition to identify the state.  

Finally, the validity of the proposed method was judged according to the accuracy of 
its status recognition. 

2. SSAE Model 
An auto-encoder (AE) [31] is an unsupervised learning neural network model that 

automatically learns the features of raw data and consists of input, hidden, and output 
layers. Its network structure is shown in Figure 1. The coding network is composed of an 
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input layer and a hidden layer, and the decoding network is composed of a hidden layer 
and an output layer. The coding network extracts the features from the original data, and 
the decoding network restores the input data through the features. 
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Figure 1. AE structure. 

In Figure 1, 1 2 n[ , , , ]TX X X= X   is the input to the network, and n   is the 
number of nodes in the input layer of the network, representing the sample data dimen-
sion. The hidden feature h  of the original data X  obtained through the coded network 
is calculated as follows: 

( )f b= +h WX  (1)

where h   is the feature parameter extracted by coding; f   is the activation function 

used in the coding process, for which Sigmoid is generally selected; b,W  are the weights 
and biases used in the coding phase, respectively; and the dimension of W   is s n×  , 
where s  is the dimension of the feature parameter. 

The decoding network is used to reconstruct the original input data, and the recon-
structed data Y  can be obtained after decoding the hidden feature h  of the data, as fol-
lows: 

( ' ')U b= +Y W h  (2)

where 1 2 n[ , , , ]TY Y Y= Y   is the network’s output data; U  is the activation function 
used in the decoding process, for which Sigmoid is generally selected; 'W and 'b are the 
weights and biases used in the coding phase, respectively; and ' T=W W . 

The AE uses backpropagation and stochastic gradient descent algorithms to optimize 
the parameter set { , , ', '}b bθ = W W  in order to minimize errors between input and out-
put data. In general, the mean square error function is defined as a loss function, which is 
as follows: 

( ) ( ) 2

1

1 1( ) || ||
2

m
i i

MSE
i

J
m

θ
=

= − X Y  (3)

where m is the total number of training samples; and ( ) ( )i i、X Y  are the original data 
and output data of the i  sample, respectively. 
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The sparse auto-encoder (SAE) [32] is constructed by adding a sparse penalty term 
to the cost function of an AE. The SAE can learn more abstract and representative com-
pression features and has great potential. The sparse penalty term is defined as follows: 

1
( ) ( || )

s

spare j
j

J KLθ β ρ ρ
=

=  
 (4)

2
1( || ) log (1 ) log
1j

j j

KL ρ ρρ ρ ρ ρ
ρ ρ

−= + −
−


   (5)

( )

1

1 ( )
j

m
i

j
i
a X

m
ρ

=

= 
 (6)

In Formula (4), β  is the sparse penalty factor, which is used to control the weight 
of the sparse penalty term in the loss function; s is the dimension of the hidden layer; 

jρ  is the average activation value of the hidden unit; and ρ  is the sparse parameter. 
Formula (5) is the relative entropy calculation formula, which is used to measure the 

degree of deviation between the two distributions. 
Formula (6) calculates the average activation value of the hidden unit, where 

j
a  in-

dicates the amount of activity in the j j unit of the hidden layer. 
Formula (7) is the loss function of the SAE; the first term is the mean square error 

function, the second term is the sparse penalty term. 

( ) ( ) ( )MSE sparseJ J Jθ θ θ= +  (7)

An SSAE is a deep neural network model composed of multiple SAEs. By taking the 
hidden layer of the previous SAE as the input of the next SAE, each hidden layer is a non-
linear mapping representation of the output of the previous layer. With each additional hid-
den layer, the network can calculate a more complex non-linear mapping relationship. It can 
obtain the deeper and lower-dimensional features of the original data, and this model has a 
strong feature mining and expression ability. Its network structure is shown in Figure 2. 

In this paper, the deep characteristics of MCP vibration signals are extracted by stack-
ing multiple SAEs, wherein the hidden layer sh of the last SAE is taken as the output of the 

SSAE model, and sh  is the extracted vibration signal characteristic parameter of the MCP. 

.
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Figure 2. SSAE structure. 
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3. State Recognition Process of MCPs Based on the SSAE 
The MCP status identification process based on the SSAE is shown in Figure 3. 

Vibration 
acceleration signal 

of marine 
centrifugal pumps 

Fast Fourier 
transform

Frequency domain 
signal 

normalization

Training set Test set

SSAE model

Confusion 
matrix

 
Figure 3. MCP status identification flow chart. 

The specific steps of this process are as follows: 
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(1) Data preprocessing: First, the original time domain vibration signal of the MCP is 
transformed into the frequency domain signal via the fast Fourier transform (FFT); 
then, the frequency domain signal is normalized, and the normalized frequency do-
main amplitude signal is obtained. 

(2) Dataset partitioning: The normalized frequency domain amplitude signals of the 
MCP in different states are divided into training sets and test sets, which are conven-
ient for subsequent SSAE feature extraction. 

(3) Depth feature extraction: Taking the training set as the input of the SSAE model, un-
supervised depth feature extraction is carried out to extract the hidden features of 
the vibration signals of the MCP under different states. 

(4) Classification training: The feature parameters extracted using the SSAE are input 
into the classifier for classification training. 

(5) Model verification: After the test set is input into the trained SSAE model for feature 
extraction, the test set is input into the classifier for state recognition, and the model 
is judged according to the state recognition accuracy. 

4. Experiment and Analyses 
There are many types of faults that can occur in MCPs in actual operation, and the 

factors that cause these faults are also various. The common faults of MCPs include rotor 
unbalance, rotor misalignment, impeller cavitation, rolling bearing failure, and mechani-
cal seal failure. At present, most scholars are focusing on different faults of MCPs for fault 
identification. However, in the actual operation process, it is impossible to replace the im-
peller immediately after cavitation occurs, and in most cases, the impeller is damaged to 
a certain extent before replacement. Therefore, this paper mainly identifies the degree of 
damage caused by MCP impeller cavitation to the impeller, and determines whether to 
replace the impeller according to the degree of damage. 

In order to verify the effectiveness of the MCP status recognition method proposed 
in this paper, an MCP test bench was built. A vibration acceleration sensor was used to 
collect the vibration signals of the MCP under different degrees of cavitation damage, and 
status recognition was carried out using the method proposed in this paper. The experi-
mental bench is shown in Figure 4. 

 
Figure 4. MCP test bench diagram. 
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A unidirectional acceleration sensor was arranged in the MCP volute on the test 
bench. The sampling frequency was 20,000 Hz, and the sampling time was 0.1 s. First, the 
vibration signal under the normal state (S1) of the MCP was collected. The operating con-
dition was rated and the speed was 2900 r/min. In order to simulate the MCP impeller 
cavitation, the MCP impeller was drilled and the cavitation degree of the MCP was de-
fined according to the number of holes drilled in the impeller. These were either 1 hole in 
the impeller (S2), 2 holes in the impeller (S3), 2.5 holes in the impeller (S4), 3 holes in the 
impeller (S5), 4 holes in the impeller (S6), 5 holes in the impeller (S7), 6 holes in the impel-
ler (S8), or 6 holes in the impeller with side wear of the impeller (S9). The operating con-
ditions remained the same as S1, and the MCP vibration signals under these 8 states were 
collected successively. A total of 250 sets of vibration signal data were collected in each 
state. Figure 5 shows the impellers in S3 and S9. 

  

(a) (b) 

Figure 5. (a) S3 state; (b) S9 state. 

The time domain signals under each MCP state are shown in Figure 6, below. From 
the perspective of vibration amplitude, the vibration amplitude of an MCP under different 
states does not increase; regarding the trend of the waveform, only the S5 state is abnor-
mal, and the differentiation in other statuses is not large. 
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Figure 6. MCP nine-state time domain waveform diagram. 

The normalized amplitude spectra in the frequency domain under each MCP state 
are shown in Figure 7, below. As can be seen from this figure, each normalized amplitude 
spectrum of an MCP under different states has its own characteristics, and several states 
can be identified with the naked eye, which is also the reason why in this paper we chose 
to extract MCP features from frequency domain signals. 

 
Figure 7. MCP nine-status normalized amplitude spectra. 
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A total of 2250 sets of time domain signals were collected under the 9 states of MCP. 
Since the acquisition time was 0.1 s, the length of each set of time domain signals was 2000 
and the data matrix was 2250 × 2000. The time domain signal was transformed via fast 
Fourier transform and normalized, and the data matrix became 2250 × 1000. Then, 150 
samples in each state were randomly selected as the training set, and the remaining 100 
samples were the test set. The training set matrix was 1350 × 1000 and the test set matrix 
was 900 × 1000. The specific division results are shown in Table 1. 

Table 1. Dataset partitioning. 

MCP Status Sample Size Number of Training Sets Number of Test Sets 
S1 250 150 100 
S2 250 150 100 
S3 250 150 100 
S4 250 150 100 
S5 250 150 100 
S6 250 150 100 
S7 250 150 100 
S8 250 150 100 
S9 250 150 100 

The training set matrix was input into the SSAE model for feature extraction, and the 
parameters of the SSAE model were set as described in Table 2. 

Table 2. SSAE model parameter settings. 

Network Structure Sparse Penalty Factor Sparse Parameter Activation Function 
1000-250-60-15 1 0.5 Sigmoid 

Fifteen characteristic parameters extracted under the nine MCP states have been ran-
domly selected for display, as shown in Figure 8 below. It can be seen from this figure that 
the characteristics in the MCP vibration signals extracted with the SSAE can reflect their 
different statuses. 
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Figure 8. MCP nine-state characteristic parameter curves. 

The extracted feature parameters were input into the classifier for classification train-
ing and verified through the test set. The verification matrix is shown in Figure 9. As can 
be seen from Figure 9, after feature extraction via the SSAE, the MCP status recognition 
accuracy reaches 100%, and the effect is very good. 

 
Figure 9. SSAE feature confusion matrix. 
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In order to compare the advantages and disadvantages of the proposed method with 
other methods, two other methods have been selected for comparison. The first method is 
to extract 16 time domain characteristics of MCP vibration signals under different states, 
including the peak-to-peak value, variance, kurtosis, skewness, waveform factor, peak fac-
tor, margin factor, etc. The 16 features of the training set are input to the classifier for 
classification training and verified with the test set. The second method is to decompose 
each vibration signal of the MCP in different statuses into five modal components using 
VMD, and calculate the fuzzy entropy of the five modal components as its characteristics. 
The fuzzy entropy of modal components in each state of the training set is input to the 
classifier for classification training and verified using the test set. 

The time domain features of nine statuses have been randomly selected for display, as 
shown in Figure 10. As can be seen from Figure 10, the time domain feature differentiation 
between different MCP statuses is very poor. The 16 time domain features of the training set 
were input into the classifier for classification training. The confusion matrix verified with 
the test set is shown in Figure 10. As can be seen from Figure 11, the overall accuracy of MCP 
status recognition using this method is only 71.2%, and the effect is not good. 

 
Figure 10. Variation trend of time domain characteristic parameters of an MCP in nine states. 
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Figure 11. Time domain feature confusion matrix. 
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Figure 13. Fuzzy entropy feature confusion matrix. 
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5. Conclusions 
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