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Abstract: The goal of this paper is to inform the machine learning community of our results obtained 

during the development of a system for the assessment of the postoperative lung function of pa-

tients suffering from lung cancer. The system is based on a new multilayer regression meta-model, 

which predicts individual postoperative forced expiratory volume in 1 s (poFEV1) for each patient 

based on preoperative measurements. The proposed regression models are especially trained to 

predict this key indicator for the 1st, 4th, and 7th day after surgery. Based on our knowledge, this is 

the first attempt to obtain poFEV1 in the most critical postoperative period of the first seven days. 

The high accuracy of the proposed predictive meta-model allows surgeons a number of key insights, 

starting with whether the patient is suitable for surgical intervention, and ending with the prepara-

tion of individualized postoperative treatment. It should be noted that the existing, widely used 

predictive models, based on functional segments (FC), Juhl-Forst, and Nakahara formulas, give two 

to three times worse results compared to the proposed new regression meta-model. Based on the 

SHapley Additive explanations (SHAP) value of the trained meta-model, it is possible to obtain a 

complete picture of the partial effects of each prognostic factor for each patient preoperatively on 

the outcome of the surgical intervention. In addition, the global model interpretation by SHAP val-

ues reveals some new interdependencies that were not known in medical circles until now. For 

instance, the influence of age and biomass index on the condition of the patient on the first day after 

surgery, or the constant significant influence of muscular support for inhalation in the entire seven-

day follow-up period. 

Keywords: machine learning; stacked learning; forced expiratory volume; SHAP; personalized 

treatment 

 

1. Introduction 

Pulmonary resection is the standard procedure in the treatment of early-stage lung 

cancer [1,2]. Assessment of postoperative lung function of patients is one of the central 

problems of clinical surgical practice in this domain for several reasons: 

1. Risk Stratification: The preoperative identification of patients who may be at higher 

risk for postoperative complications allows the medical team to implement appro-

priate measures to minimize complications and optimize outcomes. 

2. Surgical Planning: Knowing the assessment of lung function helps the surgical team 

plan the surgical procedure effectively.  
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3. Informed Consent: Obtaining informed consent is crucial, as patients need to be 

aware of the possible postoperative challenges and complications they may face 

based on their individual lung function. 

4. Predicting Postoperative Outcomes: This information helps patients prepare for the 

recovery process and facilitates appropriate postoperative care planning. 

5. Risk-Benefit Evaluation: For some patients with compromised lung function, the 

risks associated with surgery may outweigh the potential benefits. Postoperative 

lung function assessment helps to make informed decisions regarding the appropri-

ateness of surgery as a treatment option for individual patients. 

6. Postoperative Care Planning: Knowing the postoperative lung function enables 

healthcare providers to plan for appropriate postoperative care. It helps determine 

the need for intensive care, ventilatory support, or physiotherapy during the recov-

ery period. 

In summary, the preoperative assessment of postoperative lung function is essential 

to identify high-risk patients, optimize surgical planning, set realistic expectations, and 

provide appropriate care before and after pulmonary resection. This approach improves 

patient safety, enhances outcomes, and helps ensure that the surgical procedure is per-

formed with the highest level of personalized care [3,4]. 

Forced Expiratory Volume in 1 s (FEV1) is a measure widely used in pulmonary func-

tion tests to assess lung function [4]. The test involves taking a deep breath in and then 

exhaling as quickly and forcefully as possible to measure the volume of air expelled within 

that initial one-second time frame. FEV1 was expressed in liters [L] or as a percentage [%] 

of the predicted value for age, gender, and height, according to the European Community 

for Steel and Coal prediction equations [5]. It is essential to note that FEV1 is just one 

component of pulmonary function testing, and additional parameters like Forced Vital 

Capacity (FVC) and the FEV1%/FVC ratio are often considered together to gain a compre-

hensive understanding of lung health. 

The predicted postoperative FEV1 (ppoFEV1) is today dominantly used in the assess-

ment of postoperative lung function after pulmonary resection of patients suffering from 

lung cancer. For this purpose, various measurements and data that can be obtained pre-

operatively are used, such as the number of resected lung segments, quantitative com-

puted tomography (CT), spirometry, or perfusion scintigraphy [4,6–8]. The common fea-

ture of all these methods is that they are tested for a prediction horizon of three to six 

months after lung resection [4]. Contrary to such predictions, ppoFEV1 for a time horizon 

of up to seven days would represent a key indicator of the surgery outcome since most 

cardio-respiratory complications are developed during that period. At the same time, that 

period coincides with the typical length of the patient’s stay in the hospital, when various 

measures can be taken to reduce the risk of an undesirable outcome. Unfortunately, in the 

available literature, there are very few results related to this immediate postoperative pe-

riod. In the paper [9], it was stated that the existing methods for calculating predicted 

poFEV1 significantly underestimate the loss of lung function in the immediate postoper-

ative period of 6 days.  

From these facts, the basic motivation and goal of our work follows: the synthesis of 

a machine learning (ML) system for predicting postoperative FEV1 within the first 7 days 

after undergoing pulmonary resection, individually for each patient. For this study, we 

collected necessary measurements and data from 79 patients who underwent pulmonary 

resection. Each patient is described with an initial 35 features, which include the patient’s 

age, type of operation, cancer location, various spirometry measurements, the number of 

lung segments to be removed, as well as a series of measurements related to the mobility 

of the left and right hemidiaphragm, etc. In order to be included in the study, the presence 

of primary cancer was also necessary, as well as a complete assessment of the functional 

status and overall cardiorespiratory risk. 

The proposed machine learning system is especially trained to predict postoperative 

FEV1 for the 1st, 4th, and 7th day after surgery. To our knowledge, this represents the first 
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published result that predicts postoperative FEV1 in the most critical postoperative period 

of the first 7 days. The high accuracy of the proposed predictive meta model, with a mean 

absolute error (MAE) ranging from 8% to 11% and mean absolute percentage error 

(MAPE) ranging from 14% to 23%, provides surgeons with a number of key insights, start-

ing with whether the patient is suitable for surgical intervention, and ending with the 

preparation of individual postoperative treatment.  

A considerable benefit for clinical practice is the doctor’s precise insight into the im-

pact of each input feature on the resulting ppoFEV1 individually for each patient before 

surgery. This insight can be obtained by calculating SHAP values based on the obtained 

regression model [10,11]. The additive nature of SHAP values and simple interpretation, 

in our opinion, provide great opportunities for significant improvement of the clinical 

practice of lung cancer treatment, especially in terms of more precise preoperative insight 

into possible risks, as well as in the personalization of the recovery procedure. It should 

be kept in mind that the validity of using SHAP values for these purposes is critically 

conditioned by the accuracy of the given predictive model. 

Preliminary results of our research intended for medical circles, were published ear-

lier [12]. The central question analyzed in [12] was the confirmation of the significant in-

fluence of inspiratory respiration muscles on postoperative prediction of the lung function 

in the first seven postoperative days. The goal of this paper is to provide the machine 

learning community with our results obtained during the development of the system [12]. 

The rest of this paper is organized as follows. In Section 2, the synthesis procedure of the 

regression prediction model for postoperative FEV1 is given. In order to achieve the high-

est possible accuracy, it was necessary to complicate the architecture of the predictor. 

Therefore, we examined entire classes of multi-layer meta-models, whose individual ele-

mentary blocks are basic machine learning regression models. The choice of architecture 

was dominantly conditioned by the fact that we had a training set of 79 instances with 35 

initial features at our disposal. Section 3 presents the results of the experimental evalua-

tion of the proposed prediction model, while Section 4 provides a detailed interpretation 

of the model based on SHAP values. In the concluding section, the conditions for the 

broader application of these results in clinical practice are commented upon.  

2. Materials and Methods 

Prediction of Postoperative FEV1 by Multilayer Regression Meta-Model 

Let us denote with 𝑋, the vector of preoperative characteristics measured for each 

patient individually, and by 𝑦, the poFEV1 on the given day after pulmonary resection. 

At our disposal is a training set (𝑋𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑁 obtained by monitoring the past 𝑁 

patients who underwent this surgical operation. Then, within the framework of the ma-

chine learning methodology, the synthesis of a predictor 

𝑦̂𝑖 = 𝐹(𝑋𝑖; 𝜃), (1) 

is performed by minimizing the selected criterion function 

𝐽(𝜃) = ∑ 𝑑(𝑦𝑖 , 𝑦̂𝑖)
𝑁
𝑖=1 , (2) 

in the parameter space 𝜃 of the model 𝐹, where 𝑑 is a suitably chosen distance measure 

between the actual and predicted values. Since FEV1 is a continuous variable, model (1) 

is of a regression type. The most commonly used distance measures 𝑑 are: 

𝑑𝐴𝐸(𝑦𝑖 , 𝑦̂𝑖) = |𝑦𝑖 − 𝑦̂𝑖|, (3) 

which gives the Mean Absolute Error (MAE) criterion 𝐽𝑀𝐴𝐸, 

𝑑𝑃𝐸(𝑦𝑖 , 𝑦̂𝑖) = |
𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| ∙ 100 [%], (4) 

giving the Mean Absolute Percentage Error (MAPE) criterion 𝐽𝑀𝐴𝑃𝐸, 
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𝑑𝑆𝑄(𝑦𝑖 , 𝑦̂𝑖) = (𝑦𝑖 − 𝑦̂𝑖)
2, (5) 

which gives the Mean Square Error (MSE) criterion  𝐽𝑀𝑆𝐸. 

In this paper, we will examine the effectiveness of model 𝐹 when it belongs to the 

stacked regressor class, [13,14]. Stacked regression, also known as stacked ensemble re-

gression, is a powerful technique that combines the predictions of multiple base regres-

sion models to produce a more accurate and robust final prediction. It offers several ad-

vantages over using just a single base regression model: 

1. Improved Predictive Performance: Stacked regression leverages the strengths of differ-

ent base regression models by blending their predictions together. As a result, it can 

capture complex patterns and relationships in the data that individual models might 

miss, yielding a performance better than any single base regression models [12]. 

2. Reduced Overfitting: Base regression models may suffer from overfitting if they are 

too complex or trained on limited data. Stacking helps reduce overfitting by blending 

the predictions from multiple models, effectively smoothing out any model-specific 

noise and generalizing better to unseen data. 

3. Model Diversity: To benefit from stacked regression, it is important to use diverse base 

regression models. Diversity can be achieved by training different models with var-

ying algorithms, hyperparameters, or feature subsets. When combined, these diverse 

models contribute complementary information, leading to a more robust and reliable 

ensemble. 

4. Handling Nonlinearity: Stacked regression is particularly effective at handling nonlin-

earity in the data. The individual base regression models might be limited in their 

ability to capture nonlinear relationships, but by combining them, the stacked ensem-

ble can approximate more complex patterns. 

5. Adaptability: Stacked regression can be applied to a wide range of regression prob-

lems, including those with high-dimensional data, outliers, and complex interactions 

among features. It can be adapted to different types of regression algorithms, such as 

linear regression, decision trees, support vector regression, or neural networks. 

6. Handling Model Biases: Different base regression models may have their biases and 

limitations. Stacked regression can mitigate these biases by considering a variety of 

perspectives, leading to a more well-rounded and reliable final prediction. 

A typical stacked regression architecture involves using multiple layers of regression 

models to make predictions. The two main components in this architecture are the base 

regressions and the meta-model, see Figure 1. The first layer comprises base regression 

models. The second layer consists of the meta-model. The input to the meta-model is the 

output of base regression models from the first layer and some selected input features. 

This architecture is directly generalized to a multi-layered architecture, in which there are 

multiple layers of individual regression models between the input training data and the 

output meta-model. 
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Figure 1. Stacked regression. The first layer comprises base regression models. The second layer 

consists of the meta-model. The input to the meta-model is the output of base regression models 

from the first layer (denoted by the blue arrows) and some selected input features (denoted by the 

red arrow). 

Algorithms 1 and 2 formally show the stacked regression training algorithm with the 

simultaneous estimation of hyperparameters of individual base and meta-models. The 

output of the procedure is the average performance of stacked regression 𝐻𝑅 over K Test-

ing sets, (Step 2 in Algorithm 1), as well as the optimal hyperparameters 𝜃𝑗
∗ (Step 1.2, Al-

gorithm 1). Algorithm 2 shows separately the algorithm for training stacked regression 

𝐻𝑅 with additional L-fold cross-validation [15,16].  

The entire Algorithm 2 actually corresponds to Step 1.1.a.3 of the algorithm from Al-

gorithm 1. The goal of additional cross-validation is to utilize the entire training dataset 

efficiently and to get a more reliable estimate of the meta-model performance. The L-fold 

cross-validation process involves the following steps (see Algorithm 1 for a more detailed 

description): 

Step 1: Divide the original Training validation set 𝑉 into L equal-size subsets. 

Step 2: For each fold 𝑙 (where 𝑙 ranges from 1 to L): 

1. Use L-1 folds for training the base regressions and make predictions on the remaining 

fold 𝑙 (so-called out-of-fold predictions). 

2. Store these predictions as meta-features for fold 𝑙. These are the inputs for the meta-

model in this specific fold. 

Step 3: Once the predictions (meta-features) for all L folds have been obtained, com-

bine them to create a new dataset, the meta-training dataset. 

Step 4: Train the meta-model on the meta-training dataset, where the target variable is 

still the actual target values from the original training dataset. 

A meta-training dataset consisting of the out-of-fold predictions formed in Step 2 pre-

vents the leakage of target information into it, thus reducing the possibility of overfitting. 

Algorithm 1: Training stacked regression with hyperparameter tuning and model per-

formance evaluation and SHAP values calculation 

Input: Training data 𝐷 = {(𝑋𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑁 }, T—number of base models 

Output: A stacked regression 𝐻𝑅 

 Randomly partition 𝐷 into 𝐾 equal size subsets 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝐾} 

1: for 𝑘 = 1,2, … , 𝐾 do 

 Training set ← 𝐷 ∖ 𝐷𝑘 

Testing set ← 𝐷𝑘 
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 1.1: for 𝑖 = 1,2, … , 𝑚 do 

  𝑚 = 𝑚1𝑚2 ⋅⋅⋅ 𝑚𝑇+1; 𝑚𝑗  − number of distinct hyperparameters 𝜃 for 𝑗-th base 

model; 𝑚𝑇+1 denotes the number of distinct hyperparameters for meta-model 

  a: Repeat 𝐾-1 times only for samples in the training set 

   a.1: Training validation set ← 𝐾-2 subsets 

   a.2: Testing validation set ← remaining subset 

   a.3: Train 𝐻𝑅 on the Training validation set using hyperparameter 𝜃𝑖 

   a.4: Test 𝐻𝑅 on the Testing validation set 

  b: Record 𝐽(𝜃𝑖), the average performance of 𝐻𝑅 over K-1 Testing validation sets 

  end for 

 1.2: Determine 𝜃𝑗
∗, where 𝑗 = argmax

𝑖
𝐽(𝜃𝑖) 

 1.3: Train the stacked regression 𝐻𝑅 on the Training set using hyperparameter 𝜃𝑗 

 1.4: Test the stacked regression 𝐻𝑅 obtained in step 1.3 on the Testing set 

 1.5: Calculate SHAP values on the Testing set 

 end for 

2: Return the average performance of stacked regression 𝐻𝑅 over 𝐾 Testing sets 

3: Return the SHAP values of all 𝐾 Testing sets (local feature importance for each ob-

servation in 𝐷) 

4: Return the SHAP values averaged over all 𝐾 Testing sets (global feature importance 

over entire 𝐷) 

Since the complete training procedure for finding the optimal hyperparameters is 

extremely complex, a common simplification consists of omitting the finding of the opti-

mal hyperparameters of the base and/or meta-models. In that case, Steps 1.1 to 1.3 in Al-

gorithm 1 are omitted, while Training validation set 𝑉 in Algorithm 2 is replaced by the 

entire Training set defined in Algorithm 1. 

The stacked regression model with two layers can be directly extended to an arbitrary 

number of layers, in which each previous layer generates new features for the next layer 

of the models. In order to obtain an out-of-fold training set for the final meta-model, multi-

layer models require an additional nested cross-validation loop for each additional layer. 

It is clear that this type of complexity of architecture and training can be practically feasi-

ble only in the case of sufficient computing resources and large training sets. Since our 

training data has only 79 instances, we decided on the simplest two-layer architecture 

from Figure 1, and the choice of default hyperparameters of all used models, both in the 

first and in the second layer of the architecture. 

Algorithm 2: Extension of Step 1.1.a.3 of algorithm from Algorithm 1. Training stacked 

regression 𝐻𝑅 with additional L fold cross validation 

Input: Training validation set; hyperparameter 𝜃𝑖, see a.3 in Algorithm 1 

Output: 𝐻𝑅 with hyperparameter 𝜃𝑖, trained on training validation set 

 Randomly partition Training validation set 𝑉 into L equal size subsets 

V= {𝑉1, 𝑉2, … , 𝑉𝐿} 

a.3.1: for 𝑙 = 1,2, … , 𝐿 do 

 Training set base model ← 𝑉 ∖ 𝑉𝑙 

Test set base model ← 𝑉𝑙 

 Training first level (base) models; T is the number of base models 

 a.3.1.1: Repeat for 𝑡 = 1,2, … , 𝑇; 

  Train model ℎ𝑙𝑡 on Training set base model 

 Construct a training set for second level meta-model 

 a.3.1.2: Get predictions 𝑋𝑚𝑒𝑡𝑎 𝑙 = {ℎ𝑙1, ℎ𝑙2, … , ℎ𝑙𝑇} on Test set base model 
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 end for 

a.3.2: Training second level meta-model 

  Train a new stacked regression 𝐻𝑅
′ on collection {𝑋𝑚𝑒𝑡𝑎 𝑙 , 𝑦𝑙}, 𝑙 = 1,2, … , 𝐿 

a.3.3: Re-train first level base models 

  for 𝑡 = 1,2, … , 𝑇 do 

  Train first level base models ℎ𝑡 on Training_validation set 𝑉 

  end for 

a.3.4: Return 𝐻𝑅(𝑥) = 𝐻𝑅
′(ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥)) 

3. Experimental Evaluation 

3.1. Collected Data and Feature Engineering 

Data collection was confined to a one-year period during which we aimed to collect 

as diverse data as possible. Consequently, data of 79 patients who underwent surgery 

were collected. In order to be included in the study, patients had to fully cooperate during 

the measurement of diaphragmatic movements. The presence of a primary cancer diag-

nosis was also necessary, as well as a complete assessment of the functional status and 

overall cardiorespiratory risk. Movements of both hemidiaphragms were measured radi-

ographically and ultrasonographically, along with muscle strength tests and respiratory 

function, preoperatively. In the initial stage of feature selection, we chose features that 

reflected the general medical state of the patient, including measurements related to dia-

phragm movement, as well as those necessary for prediction of FEV1 using traditional 

methods. Subsequently, domain experts performed additional filtration of the obtained 

feature set. This involved elimination of highly dependent features, as well as those al-

ready identified as lacking significant predictive value for FEV1. Further dimensionality 

reduction methods based on feature transformation (e.g., PCA) was not performed to 

maintain model interpretability. After data collection and feature selection, we were left 

with 25 most important variables, which were used to design the prediction model. 

Among them, 15 features were represented with absolute value, and the other 10 are rep-

resented with absolute and relative value, expressed as a percentage, see Table 1. 

For the feature vector 𝑋𝑖, we selected 25 features, omitting ten features expressed in 

absolute measures, while keeping those same features expressed in relative values. Dis-

carded features are marked in light ocher yellow in Table 1. This is a consequence of pre-

liminary experiments, from which we concluded that the accuracy of the proposed meta-

model was slightly higher when we choose features expressed in relative values. In order 

to have a complete insight into the feature engineering process, we retained the complete 

initial set of 35 features in Table 1. 

Table 1. Feature description. 

No. 
Feature 

Label 
Description 

Type  

(Value Range) 
Mean ± std 

1 B age 
Integer 

[40, 78] 
60.24 ± 7.31 

2 E1 Type of the operation on the right lung Categorical  

3 E2 Type of the operation on the left lung Categorical  

4 K BMI (
kg

m2) 
Float 

[17.06, 35.25] 
26.07 ± 1.84 

5 O Type of respiratory function Categorical  

6 P 
COPD (Chronic Obstructive Pulmonary 

Disease) index 

Float 

[0.9210, 2.2166] 
1.66 ± 0.22 

7 S 
Preoperative FEV1—Preoperative forced 

expiratory volume in the first second (L) 

Integer 

[1570, 4350] 
2656.96 ± 510.98 
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8 T 
Preoperative FEV1%—Preoperative forced 

expiratory volume in the first second in [%] 

Integer 

[45, 144] 
94.53 ± 15.63 

9 U 
Preoperative VC—Preoperative vital capac-

ity (L) 

Integer 

[2040, 6780] 
3968.99 ± 872.34 

10 V 
Preoperative VC %—Preoperative vital ca-

pacity in [%] 

Integer 

[76, 148] 
109.23 ± 15.87 

11 W 
Preoperative FVC—Preoperative forced vi-

tal capacity (L) 

Integer 

[2010, 5960] 
3754.05 ± 755.19 

12 X 
Preoperative FVC %—Preoperative forced 

vital capacity in [%] 

Integer 

[73, 143] 
107.86 ± 15.04 

13 Y 
Preoperative VCin—Preoperative vital ca-

pacity in inspiration (L) 

Integer 

[2070, 6020] 
3822.78 ± 794.46 

14 Z 
Preoperative VCin %—Preoperative vital 

capacity in inspiration in [%] 

Integer 

[76, 143] 
105.51 ± 14.20 

15 AA Preoperative FEV1%/FVC 
Float 

[47.10, 97.36] 
71.32 ± 9.41 

16 CD TLC—Total lung capacity (L) 
Integer 

[4100, 9650] 
6953.16 ± 1220.52 

17 CE TLC %—Total lung capacity in [%] 
Integer 

[90, 160] 
116.27 ± 14.41 

18 CF RV—Residual volume (L) 
Integer 

[770, 5670] 
2988.10 ± 805.40 

19 CG RV %—Residual volume in [%] 
Integer 

[45, 292] 
137.13 ± 34.03 

20 CH 
FRC (ITGV)—Functional residual capacity 

(L) 

Integer 

[2090, 6200] 
4227.72 ± 922.76 

21 CI 
FRC (ITGV) %—Functional residual capac-

ity in [%] 

Integer 

[78, 223] 
133.67 ± 27.32 

22 CJ RV/TLC (% predicted) 
Integer 

[48, 178] 
109.49 ± 20.25 

23 CK FRC (ITGV) % (% predicted) 
Integer 

[39, 151] 
107.51 ± 18.53 

24 CY 
Mobility of the right hemidiaphragm meas-

ured radiographically (cm) 

Float 

[0.9, 4.3] 
4.16 ± 1.41 

25 DB 
Mobility of the left hemidiaphragm meas-

ured radiographically (cm) 

Float 

[0.4, 4.70] 
4.08 ± 1.39 

26 EK 
Mobility of the right hemidiaphragm meas-

ured by ultrasound (mm) 

Float 

[47.9, 94.2] 
68.25 ± 10.28 

27 EL 
Mobility of the left hemidiaphragm meas-

ured by ultrasound (mm) 

Float 

[36.5, 95.0] 
62.58 ± 11.10 

28 FK 

Preoperative PImax (cmH20)—Preopera-

tive maximum inspiratory pressure 

(cmH2O) 

Integer 

[26, 154] 
83.38 ± 28.08 

29 FL 
Preoperative PImax %—Preoperative maxi-

mum inspiratory pressure in [%] 

Float 

[35.75, 201.60] 
109.63 ± 35.76 

30 FS 
Preoperative PEmax (cmH20)—Preopera-

tive maximal expiratory pressure 

Integer 

[43, 155] 
102.22 ± 25.16 

31 FT 
Preoperative PEmax %—Preoperative max-

imal expiratory pressure in [%] 

Float 

[46.16, 129.84] 
92.19 ± 18.04 
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32 GA 
Preoperative Snip (cmH20)—Preoperative 

„sniff” inspiratory pressure (cmH20) 

Integer 

[20, 139] 
86.53 ± 25.09 

33 GB 
Preoperative Snip %—Preoperative „sniff” 

inspiratory pressure in [%] 

Float 

[24.61, 143.90] 
91.83 ± 23.26 

34 LU 
The number of functional segments re-

moved by the operation 

Integer 

[1, 9] 
3.41 ± 2.02 

35 LV 
The number of total functional segments in 

the lungs 

Integer 

[14, 18] 
17.23 ± 1.07 

Features marked in ocher yellow are discarded in experiments  

Postoperative FEV1 was measured on the first, the fourth, and the seventh day after 

the surgery. These variables were selected for output variable 𝑦 in the model (1), see Ta-

ble 2 and Figure 2. From these data, we can observe the typical dynamics of lung function 

recovery. Immediately after surgery, patients experience a decrease in lung function due 

to factors such as lung volume loss, anesthesia, pain, limited mobility, and the surgical 

trauma itself. By the fourth day, lung function tends to improve. By the seventh day post-

surgery, the measured FEV1[%] should continue to improve. Pain management, early mo-

bilization, and breathing exercises have a significant impact on helping patients regain 

lung function. 

Table 2. Mean values and variances of measured postoperative FEV1 in [%] at the 1st, 4th, and 7th 

day after surgery. 

 1st Postoperative Day 4th Postoperative Day 7th Postoperative Day 

mean 44.68 50.95 58.01 

std 14.07 15.80 14.78 

 

Figure 2. Box plots of preoperative and postoperative FEV1 in [%] measured at 1th, 4th, and 7th day 

after surgery.  
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3.2. Selection of Existing Methods for Comparison 

In order to assess the accuracy of our model we compared it with existing methods 

of calculating predicted and postoperative FEV1 in [%], based on preoperative measure-

ments. We limited ourselves to three basic methods: functional segments [17], Juhl-Frost 

[18], and Nakahara [19]:  

𝑝𝑝𝑜𝐹𝐸𝑉1𝐹𝐶 = 𝐹𝐸𝑉1 (1 −
𝐿𝑈

𝐿𝑉
) [%], (6) 

where 𝐿𝑈 is the number of functional lung segments removed and 𝐿𝑉 is the total num-

ber of functional lung segments, 

𝑝𝑝𝑜𝐹𝐸𝑉1𝐽𝑢ℎ𝑙−𝐹𝑟𝑜𝑠𝑡 = 𝐹𝐸𝑉1 (1 − 𝑆 ∙
5.26

100
) [%], (7) 

where 𝑆 is the number of lung segments removed, 

𝑝𝑝𝑜𝐹𝐸𝑉1𝑁𝑎𝑘𝑎ℎ𝑎𝑟𝑎 = 𝐹𝐸𝑉1 (1 −
𝑛−𝑎

42−𝑎
) [%], (8) 

where 𝑛 is the number of resected sub-segments in the lobe, that is, 6, 4, and 12 for the 

right upper, middle, and lower lobe and 10 for the left upper and lower lobe, while 𝑎 is 

the number of sub-segments obstructed by the tumor. 

3.3. Selection of Base and Meta-Models 

Base models can be of different types and architectures, such as decision trees, ran-

dom forests, support vector machines, neural networks, etc., [14,15,20]. The criterion for 

choosing base models depends on several factors: 

Diversity: It’s essential to choose base models that have different strengths and weak-

nesses. Models that make different types of errors or have varying biases can complement 

each other in the ensemble, leading to improved overall performance. 

Performance: While diversity is important, base models should still demonstrate rea-

sonable predictive performance on their own. Models that perform well individually are 

more likely to contribute positively to the ensemble. 

Computational efficiency: Depending on the size of the data and available computing 

resources, the computational cost of training and forecasting with underlying models 

should be considered. 

The criterion for choosing the meta-model includes [15,20]: 

Performance: The meta-model should be chosen based on its ability to effectively com-

bine the predictions from the base models. Common meta-models include linear regres-

sion, logistic regression, or more complex models like random forest or gradient boosting 

machines. 

Complexity: Simpler meta-models are preferred over complex ones, as they are less 

prone to overfitting and can generalize better on new data. 

Interpretability: Depending on the application, interpretability might be important. If 

the interpretability of the final model is a requirement, a meta-model that is more trans-

parent and provides insights into how the ensemble makes predictions should be selected. 

Taking into account the amount of our training data, as well as the choice of SHAP 

as an agnostic method for interpretation, the dominant criteria was reduced to diversity 

and performance for base models and performance for meta-models. We have included 

12 basic models in the wider list: Lasso (Least absolute shrinkage and selection operator) 

[21], Extra Tree (Extremely randomized Trees) [22], Random Forest [23], LightGBM (A 

Highly efficient gradient boosting decision tree) [24], SVM (Support Vector Machine) for 

regression, [25], in two variants SVM Linear and SVM.RBF with linear and radial bases 

kernel, respectively, AdaBoost [26], KNN (K Neighbors Regressor), [27], MLP (Multi-

Layer Perceptron), [28], with two variants of architecture (MLP1-three layer architecture, 

MLP2-two layer architecture), Ridge Regression, [29], XGBoost (eXtreme Gradient Boost-

ing), [30] and LogisticReg (Logistic Regression) [31]. 
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We chose Random Forest as the output meta-model, due to its good generalization 

properties and ability to model a wide class of nonlinear mappings. In addition, Random 

Forest has an advantage over a similar class of models, such as LightGMB, AdaBoost, and 

XGBoost, primarily in terms of robustness to the selection of initial parameters and the 

built-in bootstrapping mechanism. These advantages are important in the case of very 

short training sets. Furthermore, compared to Extreme Trees, Random Forest demon-

strates superior precision in selecting subsets of features during the node-splitting process 

of growing individual trees. The final selection of Random Forest over competing models 

was the result of experimental evaluation. 

Table 3 shows the performance (MAPE and MAE) of individual candidates for the 

baseline models obtained by 5-fold cross-validation and then averaged for all three pre-

diction tasks: 1st, 4th, and 7th days after surgery. The baseline models were taken with 

default parameters, since the amount of data at our disposal did not allow hyperparame-

ter optimization. All experimental results were obtained using the Scikit learn package 

[32], LightGBM package [33], and XGBoost package [34]. In order to get a clearer picture 

of the selected basic algorithms, we list some of the most important default parameters: 

Lasso (alpha = 1, max_iter = 1000), ExtraTrees (n_estimators = 100, criterion = gini, 

max_features = sqrt), RandomForest (n_estimators = 100, criterion = gini, max_features = 

sqrt), LightGBM (boosting_type = gbdt, n_estimators = 100, num_leaves = 31), SVM (kernel 

= linear, C = 1, tol = 0.001), SVM (kernel = rbf, C = 1, tol = 0.001, gamma = scale), AdaBoost 

(n_estimators = 50, leakage_rate = 1), KNN (n_neighbors = 5, metric = minkowski, p = 2), 

MLP (hidden_layer_size = {7,3,2}, activation = relu, solver = Adam, max_iter = 200), , MLP 

(hidden_layer_size = {3,2}, activation = relu, solver = Adam, max_iter = 200), Ridge (alpha 

= 1, solver = auto), XGBoost (see [34]), LogisticRegression (penalty = l2, solver = lbfgs, 

max_iter = 100). The light ocher yellow indicates nine models that were included in the 

final architecture. The omission of the MLP models was primarily motivated by the large 

number of free parameters compared to the available length of the training sets. Addition-

ally, our results confirmed the already noted fact (see [35,36] that despite the significant 

progress in the application of deep neural networks for tabular data, they are still outper-

formed by tree-based models on many standard benchmarks. The last row of Table 3 

shows the corresponding performance of the meta-model for the selected nine base re-

gressors: Lasso, Extra Tree, Random Forest, SVM Linear, KNN, Ridge Regression, 

XGBoost, SVM RBF, and LogisticReg. As expected, the meta-model gave better results for 

both performances (MAPE and MAE) compared to any base model. 

Table 3. Performance (MAPE and MAE) of individual candidates for the baseline models obtained 

by 5-fold cross-validation and then averaged for all three prediction tasks: 1st, 4th, and 7th days 

after surgery. The last row shows the corresponding performance of the meta-model, for the selected 

ten base regressors. 

No. Model MAPE MAE 

1 Lasso 19.57 9.05 

2 Extra Tree 20.27 9.55 

3 Random Forest 20.44 9.66 

4 LightGBM 20.96 9.80 

5 SVM Linear 21.11 9.83 

6 AdaBoost 20.90 9.93 

7 KNN 22.46 10.23 

8 MLP2  22.95 10.66 

9 Ridge Regression 23.73 10.78 

10 XGBoost 22.72 11.10 

11 SVM.RBF 23.82 11.39 

12 LogisticReg 23.89 11.73 

13 MLP1  25.33 11.84 
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14 Meta-model 18.64 8.93 

The baseline models used for meta-model are highlighted 

To minimize the risk of overfitting we wish to highlight the taken measures: 

• Selection of base regressors dominantly employing ensemble methods 

• Selection of Random Forest as the final regressor 

• Nested cross-validation (see Algorithm 2), ensuring the training of stacked regressor 

𝐻𝑅, in an additional L-fold cross-validation. It is well known that nested cross-vali-

dation minimizes the amount of information leakage between the training and vali-

dation sets [37]. 

Table 4 shows the performance of the proposed meta-model, along with the perfor-

mances of three standard models (Functional segments, Juhl-Frost, Nakahara), obtained 

with 5-fold cross-validation. In order to quantitatively measure the gain of the meta-

model, we introduced the values 𝐺𝑎𝑖𝑛_𝑀𝐴𝑃𝐸, i.e., 𝐺𝑎𝑖𝑛_𝑀𝐴𝐸 defined as the ratio of the 

respective performances of the compared model M with the meta-model: 

𝐺𝑎𝑖𝑛_𝑀𝐴𝑃𝐸 =
𝐽𝑀𝐴𝑃𝐸(𝑀)

𝐽𝑀𝐴𝑃𝐸(𝑚𝑒𝑡𝑎 𝑚𝑜𝑑𝑒𝑙)
, (9) 

𝐺𝑎𝑖𝑛_𝑀𝐴𝐸 =
𝐽𝑀𝐴𝐸(𝑀)

𝐽𝑀𝐴𝑃𝐸(𝑚𝑒𝑡𝑎 𝑚𝑜𝑑𝑒𝑙)
, (10) 

Table 4. Performances of the proposed meta-model, along with performances of three standard 

models (Functional segments, Juhl-Frost, Nakahara). 

 

1st Day after  

Surgery 

4th Day after  

Surgery 

7th Day after  

Surgery 

MAPE 
Gain_

MAPE 
MAPE 

Gain_

MAPE 
MAPE 

Gain_

MAPE 

Our meta-

model 
19.36 ± 1.11  22.16 ± 2.79  14.40 ± 1.96  

Functional 

segments 
80.32 ± 6.00 4.15 58.14 ± 6.20 2.62 35.64 ± 2.81 2,47 

Juhl-Frost 66.43 ± 4.20 3.43 46.42 ± 4.72 2.09 27.47 ± 3.60 1.91 

Nakahara 76.28 ± 5.46 3.94 54.59 ± 5.33 2.46 32.58 ± 3.06 2,62 

Average 

gain 
 3.84  2.39  2.21 

 

1st Day after  

Surgery 

4th Day after  

Surgery 

7th Day after 

 Surgery 

MAE  
Gain_

MAE 
MAE 

Gain_

MAE 
MAE 

Gain_

MAE 

Our meta-

model 
8.24 ± 0.93  10.56 ± 0.87  7.98 ± 1.51  

Functional 

segments 
31.30 ± 2.44 3.80 25.40 ± 2.51 2.41 18.86 ± 1.01 2.36 

Juhl-Frost 25.87 ± 1.79 3.14 20.03 ± 2.32 1.90 14.32 ± 1.64 1.79 

Nakahara 29.57 ± 2.06 3.59 23.65 ± 2.40 2.34 17.11 ± 1.25 2.14 

Average 

gain 
 3.51  2.18  2.10 

From Table 4, we concluded that our meta-model gave significantly more accurate 

results for ppoFEV1[%] than traditional calculations. By analyzing the gains, we can con-

clude the following: 
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1. The proposed meta-model in the first postoperative day gave a gain of more than 

three times compared to any traditional method, both for MAPE and MAE criteria 

(average Gain_MAPE = 3.84, average Gain_MAE = 3.51). Among traditional predic-

tion methods, Frost’s model performed best, compared to which the meta-model has 

Gain_MAPE = 3.43, i.e., Gain_MAE = 3.14. 

2. On the fourth and seventh postoperative days, the gain was over two times, more 

precisely an average Gain_MAPE = 2.39 for the 4th day and average Gain_MAPE = 

2.21 for the 7th day, i.e., Gain_MAE = 2.18 for the 4th day and Gain_MAE = 2.10 for 

the 7th day. For these days, Frost’s method proved to be the best of the traditional 

methods, giving Gain_MAPE = 2.09 and Gain_MAPE = 1.91, for the 4th and 7th day, 

respectively. The corresponding values for Gain_MAE are 1.90 and 1.79, respectively. 

3. The superior advantage of the meta-model in the first postoperative day has the 

greatest clinical value since it can be used to project optimal recovery during the hos-

pital stay, which usually ends after 7 days. 

In evaluating the effectiveness of regression predictive models, residuals as the dif-

ference between predicted and actual values 

𝑒𝑖=𝑦𝑖 − 𝑦̂𝑖 , 𝑖 = 1,2, … , 𝑁 (11) 

are also informative. Figures 3–5 show box plots of residuals for our meta-model and the 

three traditional methods, for the 1st, 4th, and 7th day after operation. 

 

Figure 3. Residuals for the first postoperative day prediction. 
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Figure 4. Residuals for the fourth postoperative day prediction. 

 

Figure 5. Residuals for the seventh postoperative day prediction. 

These results show that, unlike traditional methods, the proposed meta-model gave 

residuals whose expected value is close to zero. This property is an important character-

istic in well-fitted regression models that capture the underlying relationship between in-

put and output variables. However, it is important to note that having zero mean residuals 

is not always a strict requirement for a good regression model. What is more important is 

that the residuals are centered around zero and do not exhibit any systematic patterns, 

such as trends or heteroscedasticity. Analyzing the box plots from Figures 3–5, we con-

cluded that our meta-model has good properties in this respect as well. 
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4. Model Interpretation 

Model interpretation is essential in the field of medicine to ensure patient safety, sup-

port clinical decision-making, identify biases, improve model performance, and foster 

trust between ML systems and healthcare professionals. It is a key component for the safe 

and effective application of the full ML potential in improving healthcare practices [38–

40].  

In order to demonstrate the effectiveness of the latest agnostic methods and tools for 

interpreting complex ML models, we opted for SHAP due to its good theoretical and prac-

tical properties. It is based on cooperative game theory by assigning an importance value 

for every sample to each feature [11]. In this context, agnostic means that SHAP can be 

applied to any black-box ML model without requiring knowledge of its internal architec-

ture or parameters. These properties allow SHAP to have both local and global levels of 

model interpretation. Global explanation aims to provide insights into the overall behav-

ior and trends of a ML model across the entire dataset. It highlights the general relation-

ships between input features and model predictions, revealing which features tend to 

have more significant impacts on predictions on average. On the other hand, local expla-

nation focuses on explaining the prediction made by the model for a specific instance or 

observation. It provides insights into why the model arrived at a particular decision for 

that individual case. 

All experimental results were obtained using the package described in [41]. The pro-

cedure for calculating SHAP values for a given meta-model is presented in Algorithm 1. 

In Step 3, the algorithm returns SHAP values for each feature and each observation in the 

training data set. In Step 4, the algorithm calculates an average of SHAP values over the 

entire training data set for each feature. 

4.1. Global Model Interpretation 

Within the global interpretation, Figure 6 shows the SHAP value plot for all training 

data corresponding to the 1st postoperative day. The input for this plot is data from Step 

3, Algorithm 1. Variables are ranked in descending order, while the horizontal location 

shows whether the effect of that value is associated with a higher or lower prediction. The 

vertical ordering of the points for each feature column should reflect the corresponding 

density of accumulation. The color shows whether that variable is high or low for that 

particular observation. 
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Figure 6. SHAP values for all training data corresponding to the 1st postoperative day. Variables 

are ranked in descending order, while horizontal location shows whether the effect of that value is 

associated with a higher or lower prediction. The vertical ordering of the points for each feature 

column should reflect the corresponding density of accumulation. Color shows whether that varia-

ble is high (in red) or low (in blue) for that observation. 

Figures 7–9 show the absolute SHAP values averaged over the entire training set cor-

responding to the 1st, 4th, and 7th postoperative day, respectively. The input for this plot 

is data from Step 4, Algorithm 1. This bar chart gives us the feature importance, regardless 

of whether it has a positive or negative effect on the output of the ML model. The numer-

ical values next to each bar indicate the percentage share of the given feature in the entire 

feature significance pool of the given ML model. The feature subset (V, T, X, K, B, P) is the 

most important for the patient’s postoperative status on the 1st day after surgery. We took 

a limit of 5% to be in it. On the 4th and 7th day after surgery, these subsets are (V, T, X, K, 

E1, P), and (T, V, LU, X, P, E1), respectively. Features V (Vital capacity), T (Preoperative 

FEV1%), X (Forced vital capacity), and P (measure of Chronic Obstructive Pulmonary Dis-

ease (COPD) index) appear in all three sets as dominant factors of preoperative lung con-

dition, which is to be expected. What is not intuitively expected is that on the first postop-

erative day, the features B (age) and K (Body Mass Index) also enter this set, which then 

lose their significance in the following days. This could be a sign for doctors to pay atten-

tion to these two features when preoperatively assessing the patient’s future condition 

immediately after surgery. On the other hand, the appearance of features LU (the number 
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of functional lung segments removed) and E1 (type of surgical procedure) in the set of 

significant features on the 7th day after surgery, indicates their importance in the follow-

ing postoperative period. The number of removed functional segments is a key parameter 

in classic prognostic systems, see Formulas (6)–(8). Its absence on the 1st and 4th day after 

surgery makes these classic methods inaccurate predictors of the patients’ condition on 

those days.  

 

Figure 7. Absolute SHAP values averaged over the entire training set corresponding to the 1st post-

operative day. 

 

Figure 8. Absolute SHAP values averaged over the entire training set corresponding to the 4th post-

operative day. 
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Figure 9. Absolute SHAP values averaged over the entire training set corresponding to the 7th post-

operative day. 

In order to illustrate the explanatory possibilities of SHAP, it was important to ad-

dress the question of whether and how much the postoperative state of patients is influ-

enced by the preoperative state of their muscular support for inhalation. The first step was 

the identification of relevant features. In the set of our measurements, these were features 

(CY, DB, EK, EL, FL, GB), see Table 1. The additivity of SHAP values allowed us to quan-

tify the collective impact of this set of features by summing their individual absolute val-

ues. We previously showed that Inspiratory respiration muscles (IRM) has a significant im-

pact in the seven-day postoperative period, with its impact being most significant on the 

first postoperative day [12]. This fact was not known and verified in modern medical prac-

tice. 

We can get further global insight into the ML model based on the so-called SHAP 

dependence plots. They show the marginal effect of one or two variables on the predicted 

outcome of an ML model [37,40]. The variable that is found to have the greatest interaction 

with the analyzed variable is automatically included in the diagram. A typical form is 

given in Figures 9 and 10. Figure 9 shows the SHAP dependence plot for variable X (pre-

operative forced vital capacity). The most influential variable on X is variable Z (preoper-

ative vital capacity in inspiration). The value of the variable Z is coded according to the 

color map given on the right side of the plot, with red corresponding to large and blue to 

small values. 
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Figure 10. SHAP dependence plot for variable X—preoperative forced vital capacity. The most in-

fluential variable on X is variable Z—preoperative vital capacity in inspiration. The size of the vari-

able Z is coded according to the color map given on the right row—red corresponds to large and 

blue to small values. One can clearly see the almost linear dependence of the size of X and the size 

of its influence on the output of the ML system. 

Figures 10 and 11 show the SHAP dependence plot for variable P (Chronic Obstruc-

tive Pulmonary Disease index). The most influential variable on P is variable V (preoper-

ative vital capacity). A rather linear dependence of P and the magnitude of its influence 

on the output of the ML system can be clearly seen, except for the interval PP ∈ [1.6, 2] in 

which we observe the effect of saturation. As for the most influential variable V, its large 

values correspond to this saturation region, while its small values are associated with 

small values of P and its negative influence on the postoperative FEV1%. Namely, for p < 

1.5 its SHAP values are negative. 
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Figure 11. SHAP dependence plot for variable P—Chronic Obstructive Pulmonary Disease index. 

The most influential variable on P is variable V—preoperative vital capacity. The value of the vari-

able V is coded according to the color map given on the right side of the plot—red corresponds to 

large and blue to small values. A rather linear dependence of P and the magnitude of its influence 

on the output of the ML system can be clearly seen, except for the interval PP∈[1.6,2] in which we 

observe the effect of saturation. As for the most influential variable V, its large values correspond to 

this region of saturation, while its small values are associated with small values of P and its negative 

influence on postoperative FEV1%. Namely, for p < 1.5 its SHAP values are negative. 

4.2. Local Interpretability 

The special value of the SHAP method is local interpretability, i.e., the possibility of 

obtaining the so-called individual SHAP value plot for each individual observation. In 

Figures 12 and 13, two such waterfall plots are given for two characteristic patients n1 and 

n2 from our training set, respectively. 
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Figure 12. Individual SHAP value plot for patient n1. The base value of FEV1% = 44.871 at the bot-

tom, is the average ML output for all observations. The model prediction for this patient is FEV1% 

= 34.467, as shown at the top. 
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Figure 13. Individual SHAP value plot for patient n2. The base value of FEV1% = 44.871 at the bot-

tom, is the average ML output for all observations. The model prediction for this patient is FEV1% 

= 62.723, as shown at the top. 

The graphic shows the reason for obtaining a specific prediction for a given patient 

and his preoperative characteristics. To analyze Figure 12, start at the bottom of the wa-

terfall chart and add (red) or subtract (blue) values to arrive at the final prediction. It starts 

with a base value of 44,871 at the bottom, which is the average ML output for all observa-

tions. This value can also be interpreted as the expected prediction of the ML model when 

there is no single preoperative measurement. The model prediction for this patient is 

34,467, as shown at the top. On the left side of the figure, the input values of the preoper-

ative variables for patient n1 are shown. Figure 12 clearly shows that patient n1 will have 
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a critically low FEV1% = 34,467 on the first day after surgery, primarily because his pre-

operative values for T, V, X, and P are quite low. For patient n2 from Figure 13, a rather 

high value of FEV1% = 62,723 is predicted on the first postoperative day. This predicted 

outcome is the result of high preoperative values for critical features T, V, CY, X, and GB. 

It is interesting to note that among these features is the feature CY (Mobility of the right 

hemidiaphragm measured radiographically), which also belongs to the composite feature 

IRM (inspiratory respiration muscles). As we have already established, IRM is the most 

responsible for the postoperative outcome on the first day after surgery.  

5. Conclusions 

The presented experimental results and the interpretation of the identified regression 

meta-model for predicting the postoperative condition of patients during the first week 

after lung cancer surgery imply the following facts: 

1. It is possible for these purposes to design a multi-layer prognostic regression meta-

model with sufficient accuracy even in the conditions of relatively small training sets 

with input features that are routinely collected in the preoperative period. 

2. The accuracy of the proposed model far exceeds the accuracy of traditional prognos-

tic models. 

3. Global interpretation of the obtained meta-model using SHAP values showed several 

interesting new insights important for clinical practice, such as the role of IRM and 

BMI on the condition of patients on the first critical day after surgery. 

4. It was demonstrated how, based on local interpretation of SHAP values, a more ac-

curate picture of postoperative risk factors personalized for each patient is obtained. 

This interpretation is performed preoperatively, which in our opinion can contribute 

to a significant improvement of the surgery procedure itself, as well as more success-

ful postoperative rehabilitation of patients. 

The introduction of such consultative systems into clinical practice is associated with 

a number of additional production challenges, such as continuous updating of training 

sets, adaptation of the system to current changes in the health status of the relevant pop-

ulation, as well as continuous education of doctors in accepting this new technology. 
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