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Abstract: Car-sharing systems require accurate demand prediction to ensure efficient resource allo-
cation and scheduling decisions. However, developing precise predictive models for vehicle de-
mand remains a challenging problem due to the complex spatio-temporal relationships. This paper 
introduces USTIN, the Unified Spatio-Temporal Inference Prediction Network, a novel neural net-
work architecture for demand prediction. The model consists of three key components: a temporal 
feature unit, a spatial feature unit, and a spatio-temporal feature unit. The temporal unit utilizes 
historical demand data and comprises four layers, each corresponding to a different time scale 
(hourly, daily, weekly, and monthly). Meanwhile, the spatial unit incorporates contextual points of 
interest data to capture geographic demand factors around parking stations. Additionally, the spa-
tio-temporal unit incorporates weather data to model the meteorological impacts across locations 
and time. We conducted extensive experiments on real-world car-sharing data. The proposed US-
TIN model demonstrated its ability to effectively learn intricate temporal, spatial, and spatiotem-
poral relationships, and outperformed existing state-of-the-art approaches. Moreover, we employed 
negative binomial regression with uncertainty to identify the most influential factors affecting car 
usage. 

Keywords: spatio-temporal inference; prediction; temporal features; spatial feature; spatio-temporal 
feature; uncertainty analysis 
 

1. Introduction 
Car-sharing companies have gained significant popularity in modern society due to 

their cost-effectiveness and convenience, providing a flexible alternative to traditional car 
ownership. These services alleviate various issues related to lease payments, mainte-
nance, and parking, making them an appealing option for users seeking a hassle-free mo-
bility solution. Beyond individual benefits, these systems contribute to reduced traffic 
congestion, lower carbon emissions, and minimized air pollution, positioning them as a 
sustainable and environmentally friendly transportation option. 

However, the spatial and temporal distribution of cars across company parking sta-
tions presents a critical challenge for car-sharing firms. Accurate demand prediction is 
essential for optimizing resource allocation, enhancing rental rates, and improving cus-
tomer satisfaction. To address these challenges, these companies leverage GPS tracking 
data to predict demand patterns and allocate resources effectively. These data contain a 
wide range of factors, such as temporal features (e.g., the average demand value in the 
last four time intervals), spatial features (e.g., longitude and latitude of the parking sta-
tion), meteorological features (e.g., weather conditions), event features (e.g., holidays), 
and categories of points of interest near every station [1]. Various techniques, including 
predictive analytics and machine learning algorithms, aid in identifying demand trends 
and patterns, enabling companies to adjust their operations accordingly. 
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To ensure a balanced distribution of cars across various parking lots throughout the 
day, we propose a comprehensive Unified Spatio-Temporal Inference Prediction Network 
(USTIN) model. The USTIN model is a unified architecture that incorporates a temporal 
feature unit, a spatial feature unit, and a spatio-temporal feature unit. Leveraging a com-
bination of Temporal Convolutional Networks (TCN), Long Short-Term Memory (LSTM), 
and Graph Convolutional Network (GCN), the model effectively processes and analyzes 
the data. Furthermore, the utilization of negative binomial regression with uncertainty 
has allowed for the analysis of the most influential factors affecting car usage in parking 
stations. 

The highlights of our work include the following: 
- Proposed USTIN, a unified neural architecture for car-sharing demand prediction, 

integrating temporal, spatial, and spatio-temporal features across multiple units. 
- Achieved state-of-the-art prediction accuracy by effectively capturing complex spa-

tial, temporal, and spatio-temporal influences on car demand. 
- Identified the most influential demand factors through negative binomial regression 

with uncertainty to further enhance predictions. 
The rest of the paper is organized as follows: Section 2 provides a literature review 

of the current studies on serial prediction models. In Section 3, we introduce an overview 
of the methods used. Section 4 details the experimental framework employed to evaluate 
our approach’s performance. Section 5 analyzes our prediction results. Finally, Section 6 
concludes the paper and outlines potential directions for future research. 

2. Literature Review 
The objective of the traffic prediction problem is to predict future traffic flow using 

historical data. The key work in this area includes the DMVST-NET proposed by [1], em-
ploying local CNN and LSTM to model spatial and temporal relationships in flow. Addi-
tionally, graph deep learning techniques have gained prominence for relationship model-
ing within traffic networks. The authors of ref. [2] proposed a multi-graph convolutional 
network and an Attention-based Spatial-Temporal Graph Neural Network (ASTGNN) to 
model the relationships within flow networks. Similarly, the authors of ref. [3] developed 
a Hybrid Spatio-Temporal Graph Convolutional Network (H-STGCN) to deduce future 
travel time from upcoming traffic volume. 

Furthermore, the challenge of predicting traffic flow is closely related to the growing 
need for accurate car-sharing system demand prediction [4]. Car-sharing services have 
exploded in popularity in recent years as an alternative mode of urban transportation. 
However, effectively managing these systems requires the reliable prediction of where 
and when vehicles will be needed. As such, many studies have begun exploring predictive 
models of car-sharing demand, and investigating different influencing factors. The au-
thors of ref. [5] looked into the effects of time horizons, environmental conditions, and 
learning algorithm types on the prediction of vehicle availability in car-share systems. The 
authors of ref. [6] estimated the distance to the closest available vehicle in a fleet, whereas 
other researchers examined multidimensional optimization problems like station-based 
vehicle relocation [7,8]. 

Recent studies have introduced innovative models to enhance efficiency from multi-
ple perspectives. The authors of ref. [9] compared spatially implicit Random Forest mod-
els with spatially aware methods for the spatially aware analysis of car-sharing demand. 
The authors of ref. [10] evaluated the use of Long Short-Term Memory (LSTM) and 
Prophet techniques for predicting the demand for car-sharing services. Furthermore, the 
authors of ref. [11] proposed a maximum entropy approach for modeling car-sharing 
parking dynamics. 

Advancements in deep learning have shown promise in extracting spatial and tem-
poral features for demand prediction [12]. However, effectively modeling spatial factors 
remains a challenge. Several studies have considered the influence of Points of Interest 
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(POIs) near parking stations [13,14]. Notably, spatial imbalances between vehicle supply 
and demand have been addressed with relocation strategies [15]. Nevertheless, these 
models often exhibit limitations in capturing detailed spatial factors. 

Despite recent strides, prior works lack multi-time scale designs to capture periodical 
seasonalities. Addressing this gap, the authors of refs. [16,17] introduced different 
timeframe durations, yet model performance diminishes in regions with varying demand 
densities. 

This study bridges existing gaps by integrating POIs and meteorological features, 
taking into consideration varied time scales and addressing travel demand density. The 
proposed model aims to enhance the accuracy and generalization capacity, offering a ho-
listic approach to travel demand prediction. 

3. Methodology 
3.1. Unified Spatio-Temporal Inference Prediction Network 

The overall architecture of the proposed Unified Spatio-Temporal Inference Predic-
tion Network (USTIN) model is described in Figure 1. The model predicts the number of 
vehicles that are going to be used at a given prediction horizon. 

 
Figure 1. Structure of Unified Spatio-Temporal Inference Prediction Network (USTIN). 

Our approach incorporates three distinct units: a temporal feature unit, a spatial fea-
ture unit, and a spatio-temporal feature unit [18]. The different units extract key frames, 
enabling an accurate prediction of travel demand. The temporal unit is designed to cap-
ture temporal dependencies and comprises four layers, each corresponding to a different 
time scale. The spatial unit focuses on capturing spatial dependencies using Points of In-
terest (POIs), while the spatio-temporal unit integrates weather data to effectively capture 
spatio-temporal correlations. Finally, the outputs obtained from each unit are combined 
in the feature module fusion and training unit to generate accurate predictions of passen-
ger demand. 

3.1.1. The Temporal Feature Unit 
The temporal feature module contains four time scale-related layers, namely 

monthly �𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑙𝑙𝑙𝑙�, weekly �𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑙𝑙𝑙𝑙�, daily �𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙�, and hourly �𝐹𝐹𝐻𝐻𝑀𝑀𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙� layers. 
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The demand data for each layer are defined as a tensor G. Each layer corresponds to 
a Temporal Fusion Network (TFN) structure that effectively captures the temporal corre-
lation, as shown in Figure 2. 

 
Figure 2. Structure of the Temporal Fusion Network (TFN). 

1. Temporal convolutional network layer (TCN) 
The tensor G is fed into a TCN layer to capture the temporal dependencies in the 

input data. The output Gt is then denoted as follows: 

Gt = ReLU (Wt ⊙  Gt−1 + bt) (1) 

Wt: the weight matrix of the convolutional filter. 
bt: the bias term. 
⊙: the convolution operation. 

2. Self-attention mechanism layer 
A self-attention mechanism is used to learn the attention weights that determine the 

importance of the features: 

αt = softmax(
�Wq. Gt�(Wk. Gt)T

�dk
) ⊙ Gt (2) 

Wq, Wk: weight matrices for the query and key projections. 
dk: dimension of the key vectors. 

3. Long short-term memory layer (LSTM) 
The output of the self-attention mechanism enhances the LSTM’s capacity to capture 

temporal dependencies. This process is represented as follows: 

it  =  σ(Wiiαt + bii + Whi ht−1 + bhi) (3) 

ft  =  σ(Wifαt + bif + Whf ht−1 + bhf) (4) 

ot  =  σ(Wioαt + bio + Who ht−1 + bho) (5) 

gt  =  tanh(Wigαt + big + Whg ht−1 + bhg) (6) 

ct  =  it ⊙  gt + ft ⊙ ct−1 (7) 

Ht  =  ot ⊙ tanh(ct) (8) 

where 
it, f𝑀𝑀 , o𝑀𝑀 , g𝑀𝑀: input, forget, output, and candidate cell state vectors, respectively. 
Wii, Wif, Wio, W𝐷𝐷𝑖𝑖: weight matrices for input gate, forget gate, output gate, and candi-

date cell state, respectively. 
Whi, Whf, Who, Whg: weight matrices for input gate, forget gate, output gate, and can-

didate cell state, respectively, associated with the previous hidden state. 
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𝑏𝑏𝐷𝐷𝐷𝐷 , 𝑏𝑏𝐷𝐷𝑖𝑖, 𝑏𝑏𝐷𝐷𝑀𝑀,𝑏𝑏𝐷𝐷𝑖𝑖: bias terms for input gate, forget gate, output gate, and candidate cell 
state, respectively. 

𝑐𝑐𝑀𝑀: the cell state at time 𝑡𝑡. 
𝑐𝑐𝑀𝑀−1: the cell state from the previous time step. 
𝐻𝐻𝑀𝑀: the hidden state at time 𝑡𝑡. 
σ: sigmoid activation function. 
⊙∶ element-wise multiplication. 

4. Temporal embedding layer 
The temporal embedding layer is used to embed the input into a lower-dimensional 

space that captures the temporal relationships: 

𝐸𝐸𝑃𝑃 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑊𝑊𝑀𝑀. H𝑀𝑀 + 𝑏𝑏𝑀𝑀) (9) 

Wt: weight matrix. 
bt: bias. 
The four time scale-related layers are then fused. ⊗ denotes the Hadamard product, 

𝑊𝑊𝑝𝑝, 𝑊𝑊𝐷𝐷, 𝑊𝑊𝑊𝑊, and 𝑊𝑊𝑀𝑀 are the weight matrices of the time scale-related layers, and 𝑏𝑏𝑠𝑠𝑝𝑝 is 
the bias. The output of the temporal feature module is defined according to Equation (10). 

𝑋𝑋𝑠𝑠𝑝𝑝 = 𝑊𝑊𝑝𝑝 ⊗ 𝐸𝐸𝑝𝑝 + 𝑊𝑊𝐷𝐷 ⊗𝐸𝐸𝐷𝐷 + 𝑊𝑊𝑊𝑊 ⊗𝐸𝐸𝑊𝑊 + 𝑊𝑊𝑀𝑀 ⊗𝐸𝐸𝑀𝑀 + 𝑏𝑏𝑠𝑠𝑝𝑝 (10) 

3.1.2. The Spatial Feature Unit 
To effectively process Point of Interest features (POIs), we have designed a model 

architecture that comprises the following: 
1. Spatial density calculation 

POI density represents the concentration of various points of interest around every 
parking station. We comprehensively consider the number of POIs and the spatial dis-
tance within a Radius R. 

𝑑𝑑�𝑆𝑆𝐷𝐷 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗� = 2. 𝑟𝑟 𝑎𝑎𝑟𝑟𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎�sin2 �
∆𝑙𝑙𝑎𝑎𝑡𝑡𝐷𝐷𝑗𝑗

2
�+ cos(𝑙𝑙𝑎𝑎𝑡𝑡𝐷𝐷) ∙ cos�𝑙𝑙𝑎𝑎𝑡𝑡𝑗𝑗� ∙ sin2 �

∆𝑙𝑙𝑙𝑙𝑎𝑎𝐷𝐷𝑗𝑗
2

� (11) 

𝑑𝑑�𝑆𝑆𝐷𝐷 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗�: the distance between station 𝑎𝑎𝐷𝐷 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗; 
r: the radius of the Earth; 
∆𝑙𝑙𝑎𝑎𝑡𝑡𝐷𝐷𝑗𝑗: the difference in latitude between station 𝑎𝑎𝐷𝐷 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗; 
∆𝑙𝑙𝑙𝑙𝑎𝑎𝐷𝐷𝑗𝑗: the difference in longitude between station 𝑎𝑎𝐷𝐷 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗; 
𝑙𝑙𝑎𝑎𝑡𝑡𝐷𝐷: latitude of station 𝑎𝑎𝐷𝐷; 
𝑙𝑙𝑎𝑎𝑡𝑡𝑗𝑗: latitude of station 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗. 
The density of each POI (𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗) is determined as follows: 

𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 =  �1  𝑎𝑎𝑖𝑖 𝑑𝑑�𝑆𝑆𝐷𝐷 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗�  ≤ 1  
0                  𝑙𝑙𝑡𝑡ℎ𝑅𝑅𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎𝑅𝑅

 (12) 

2. Regression model 
The car-sharing variance is significantly greater than its average, showing an over-

dispersion phenomenon [19]. Therefore, we use the negative binomial distribution to es-
timate the parameters. The regression model is given by the following: 

ln(𝑢𝑢𝐷𝐷) = 𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑥𝑥1 + 𝛽𝛽2 ∙ 𝑥𝑥2 + ⋯+ 𝛽𝛽𝑀𝑀 ∙ 𝑥𝑥𝑀𝑀 + 𝜀𝜀 (13) 

The model includes the order quantity for each car-sharing station (𝑢𝑢𝐷𝐷), the density 
of the POI category (𝑥𝑥1, …, 𝑥𝑥𝑀𝑀), an intercept (𝛽𝛽0), coefficients (𝛽𝛽1, …, 𝛽𝛽𝑀𝑀) for correspond-
ing variables, and an error term (𝜀𝜀). 

The coefficient ( 𝛽𝛽1 , …, 𝛽𝛽𝑀𝑀 ) values are estimated using Maximum Likelihood 
Estimation (MLE), with a 5% significance level. 
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3. Spatiotemporal embedding layer 
The tensor 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 and the vector 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃, containing weights corresponding to the coef-

ficients in Equation (13), are input into a spatiotemporal embedding layer: 

𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃 .𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃) (14) 

4. Graph convolutional network layer (GCN) 
The output of the spatiotemporal embedding layer is fed into a GCN layer. This layer 

employs the mean aggregation function to capture spatial relationships among POIs: 

𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀 = �
1

𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃
�𝐴𝐴𝐺𝐺𝐺𝐺.𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃.𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 (15) 

5. Fully connected layer 
We used a neural network architecture with fully connected layers for feature extrac-

tion. 

𝑋𝑋𝑀𝑀𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑊𝑊𝑀𝑀𝑀𝑀 .𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀 + 𝑏𝑏𝑀𝑀𝑀𝑀) (16) 

W𝑀𝑀𝑀𝑀: weight of the fully connected layer. 
b𝑀𝑀𝑀𝑀: bias of the fully connected layer. 

3.1.3. The Spatio-Temporal Feature Unit: 
We used a neural network architecture with fully connected layers for the meteoro-

logical features. 

XME = ReLU (WME. GME + bME) (17) 

GME: meteorological feature sensor. 
WME: weight of the fully connected layer. 
bME: bias of the fully connected layer. 

3.1.4. Feature Module Fusion and Training 
The model integrates the obtained outputs via a weighted summation (Equation 

(18)). 

𝑋𝑋𝑊𝑊𝑒𝑒 = 𝑊𝑊𝑆𝑆𝑝𝑝 ⊗ 𝑋𝑋𝑠𝑠𝑝𝑝 + 𝑊𝑊𝑀𝑀𝑀𝑀 ⊗ 𝑋𝑋𝑀𝑀𝑀𝑀 + 𝑊𝑊𝑀𝑀𝑀𝑀 ⊗ 𝑋𝑋𝑀𝑀𝑀𝑀 + 𝑏𝑏𝑊𝑊𝑒𝑒 (18) 

The prediction result of passenger demand 𝑋𝑋�𝑀𝑀𝑊𝑊 is obtained using Equation (19). 

𝑋𝑋�𝑀𝑀𝑊𝑊 = 𝑊𝑊𝑊𝑊𝑒𝑒 ⊗ 𝑋𝑋𝑊𝑊𝑒𝑒 + 𝑏𝑏𝑊𝑊𝑒𝑒 (19) 

We adopt back-propagation with the Adam optimiser to improve the training effi-
ciency[18]. 

3.2. Influential Factors Analysis 
To establish the correlation between car-sharing demand and influencing factors [20], 

we use uncertainty estimation with coefficients (𝛽𝛽1, …, 𝛽𝛽𝑀𝑀) from the regression model 
(Equation (13)). 

3.2.1. Standard Error 
The significance of the estimated values is assessed using the standard error. 

SE(𝛽𝛽𝐷𝐷) =  �𝑣𝑣𝑎𝑎𝑟𝑟(𝛽𝛽𝐷𝐷) (20) 

𝑆𝑆𝐸𝐸(𝛽𝛽𝑝𝑝): standard error. 
𝑣𝑣𝑎𝑎𝑟𝑟(𝛽𝛽𝑝𝑝): the coefficient of the corresponding variable. 

3.2.2. Standard Errors of Marginal Effects 
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To provide a measure of uncertainty, standard errors of marginal effects are associ-
ated with the marginal effects of the predictors on the response variable. 

          SE �
𝜕𝜕𝑢𝑢𝐷𝐷
𝜕𝜕𝑥𝑥𝐷𝐷

� =  ��
𝜕𝜕𝑢𝑢𝐷𝐷
𝜕𝜕𝑥𝑥𝐷𝐷

�
2

��
SE(𝛽𝛽𝐷𝐷)
𝛽𝛽𝐷𝐷

�
2

 (21) 

𝜕𝜕𝐻𝐻𝑖𝑖
𝜕𝜕𝑒𝑒𝑖𝑖

: Partial derivatives of the predicted values (𝑢𝑢𝐷𝐷). 
The significance of the factors’ impact is defined as follows: 

𝑍𝑍𝐷𝐷 =  

𝜕𝜕𝑢𝑢𝐷𝐷
𝜕𝜕𝑥𝑥𝐷𝐷

SE �𝜕𝜕𝑢𝑢𝐷𝐷𝜕𝜕𝑥𝑥𝐷𝐷
�

 (22) 

3.2.3. p-Values for Marginal Effects 
p-values for marginal effects provide insights into the significance of the factors. 

𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑅𝑅𝐷𝐷 =  𝑃𝑃(𝑍𝑍 ≥ |𝑍𝑍𝐷𝐷|) (23) 

𝑍𝑍: standard normal random variable. 
|𝑍𝑍𝐷𝐷|: z-score of the i-th marginal effect. 

4. Experiment 
Section 4.1 provides an illustration of the dataset’s details, while Section 4.2 describes 

the experimental setting. Section 4.3 goes over the baseline models against which our 
model was evaluated. We describe the model configurations and the evaluation metrics in 
Sections 4.4 and 4.5, respectively [21]. 

4.1. Data Description 
In our study, we used the Chongqing car-sharing company’s dataset for predicting 

car-sharing demand, along with weather data that were acquired via web crawling [21]. 
Furthermore, we obtained the point-of-interest dataset via web crawling to enhance the 
comprehensiveness of the features used in our predictive model. 

4.1.1. Car-Sharing Dataset 
The experiments were conducted using the pre-processed car-sharing operator da-

taset. The dataset contained more than 1 million records over 860 parking lots, from 1 
January 2017, 00:00:00 to 31 March 2019, 23:00:00 [21]. 

4.1.2. Weather Condition Dataset 
In our work, we considered that meteorology data affected car-sharing demand [21]. 

Meteorology data, such as weather conditions and temperature, were collected using a 
Python-based Selenium web crawler to scrape the Chongqing weather condition from 1 
January 2017, 00:00:00 to 31 March 2019, 23:00:00. 

4.1.3. Points of Interest Dataset 
The car-sharing dataset was augmented with Points of Interest (POIs) data using the 

Baidu API for web crawling. This process involved obtaining and integrating supplemen-
tary location-based information such as restaurants, cafes, museums, cultural landmarks, 
and so on. The data crawling aimed to enhance the quality and diversity of the original 
dataset. 

Table 1 presents the influencing indicator system used to determine the potential de-
mand for car-sharing. 
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Table 1. Influencing indicator system of the potential demand for car-sharing. 

First-Level Indicator  Second-Level Indicator 
Usage feature 𝑥𝑥1: Rented cars. 

Temporal features 𝑥𝑥2: workday (1 for yes and 0 for no), 𝑥𝑥3: rushhour (1 for yes 
and 0 for no). 

Weather conditions 𝑥𝑥4: temperature (°C), 𝑥𝑥5: precipitation (1 for yes and 0 for no), 
𝑥𝑥6: AQI (Air Quality Index). 

Building land attribute 

𝑥𝑥7: Hotel, 𝑥𝑥8: Shopping 𝑥𝑥9: Domestic services, 𝑥𝑥10: Beauty, 
𝑥𝑥11: Tourist attraction, 𝑥𝑥12: Leisure and entertainment, 𝑥𝑥13: 
Work out, 𝑥𝑥14: Education and training, 𝑥𝑥15: Culture media, 
𝑥𝑥16: Medical, 𝑥𝑥17: Car services, 𝑥𝑥18: Transportation facilities, 
𝑥𝑥19: Finance, 𝑥𝑥20: Real estate, 𝑥𝑥21: Corporate, 𝑥𝑥22: Govern-
ment agency, 𝑥𝑥23: Entrance and exit, 𝑥𝑥24: Natural features, 
𝑥𝑥25: Administrative landmark, 𝑥𝑥26: Door address. 

4.2. Data Pre-Processing 
Raw data may contain noise, outliers, missing values, or irrelevant features, which 

can negatively affect the performance of machine learning models [22]. Before analysis, 
we applied pre-processing methods as follows: 
(1) Imputation: Due to the numerical meaning of the missing values [21], we replaced 

them using K-nearest neighbours’ imputation. 
(2) Normalization: The dataset was normalized using min-max scaling, involving 

scaling the numerical features to a range between 0 and 1. 
(3) Clustering: The parking stations were organized into four distinct classes using 

frequency-based clustering [21]: 
• Class A: daily rented cars. 
• Class B: frequently used cars. 
• Class C: sometimes used cars. 
• Class D: unlike other parking stations, cars of this class are rarely used. 
Classes A, B, C, and D have different parking stations IDs, such as 16, 104, 6, and 25. 

(4) Splitting the Dataset: We split the data between training and test sets. The training 
set starts from 1 January 2017 to 31 December 2018, and the test set from 1 January 
2019 to 31 January 2019. 

4.3. Experimental Setting 
For the purpose of this study, we installed TensorFlow 1.14.0, Keras 2.2.4-tf, Pandas 

0.23.4, Sklearn 0.21.1, Numpy 1.18.1, Matplotlib 3.1.0, and Statsmodels 0.10.1 [21]. 
The models were implemented using a PC with an i7 Intel (R) Core™i7-7500U CPU 

running at 3.00 GHz and 8 GB RAM with the Windows 10 operating system under the 
Python 3.7 development environment [23]. 

4.4. Baseline Methods 
The following section outlines the baseline models against which we compared the 

proposed model: 
(1) Multiple layer perceptron (MLP) 

MLP is a feedforward neural network [24]. The network learns to map input data to 
the target output using backpropagation, adjusting the weights to minimize the difference 
between the predicted and actual outputs. 
(2) K-Nearest Neighbours (KNN) 
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KNN works by finding the k closest neighbours; it makes predictions based on the 
outcome of the k neighbours closest to that point [25]. 
(3) Random Forest (RF) 

A random forest is a collection of tree predictors [26], where each tree is generated 
using a random vector sampled independently from the input vector [27]. 

Table 2 represents the hyperparameter tuning results of the baseline models. We used 
the k-fold cross-validation method with k = 5 and grid search to avoid overfitting by find-
ing the optimal hyperparameters. 
(4) eXtreme Gradient Boosting (XGBoost) 

XGBoost is an efficient and scalable implementation of a gradient boosting frame-
work by (Friedman, 2001) (Friedman et al., 2000). The package includes an efficient linear 
model solver and tree learning algorithm [28]. XGBoost fits the new model to new resid-
uals of the previous prediction and then minimizes the loss while adding the latest pre-
diction [29]. 
(5) CNN-LSTM model 

CNN-LSTM is a hybrid model built by combining CNN with LSTM for improving 
the accuracy of forecasting [30]. The model comprises two main components: the first 
component consists of convolutional and pooling layers, in which complicated mathemat-
ical operations are performed to filter the input data and extract the useful information. 
The second component exploits the generated features by LSTM, which possess the ability 
to learn long-term and short-term dependencies through the utilization of feedback con-
nections and dense layers [31]. 

Table 2. Hyperparameters for baseline models. 

Model Hyperparameters 
MLP - 2 fully connected layers, 20 and 15 hidden units. 

XGBoost 
- N_estimators: 25. 
- Max_depth: 5. 

KNN 
- N_neighbours: 5. 
- Weights: “uniform”. 

RF 
- N_estimators: 100. 
- Max_depth: 5. 
- Min_samples_split: 15. 

LSTM 

- Hidden layers: 2. 
- Hidden units: 25, 15 neurons. 
- Learning rate: 0.01. 
- Drop out: 0.5. 
- Optimizer: Adam. 
- Epochs: 80. 

TCN 

- Hidden layers: 3. 
- Kernel size: 3. 
- Dilations: [1, 2, 4, 8, 16, 32, 64]. 
- Number filters: 64. 
- Learning rate: 0.01. 

GCN 
- Hidden layers: 2. 
- Hidden units: 32, 64 neurons. 
- Learning rate: 0.01. 

CNN-LSTM 
- Convolutional Layer: 1. 
- Kernel Size: 5.  
- Filters: 64.  
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- Max Pooling Layer: 1. 
- LSTM: 1 (15 neurons).  
- Dense Layer: 32Neurons. 
- Dropout 0.3. 
- Epochs: 100. 

4.5. Model Configurations 
We employed k-fold cross-validation with k = 5 and grid search for the hyperparam-

eter tuning of the LSTM, TCN, and GCN models to avoid overfitting and find the optimal 
hyperparameters [32]. 

Table 3 represents the optimized hyperparameter for our proposed USTIN model. 

Table 3. Hyperparameters for USTIN. 

Model Hyperparameters 

TCN 

- Hidden layers: 3. 
- Kernel size: 3. 
- Dilations: [1, 2, 4, 8, 16, 32, 64]. 
- Number filters: 64. 
- Learning rate: 0.01. 
- Drop out: 0.2. 
- Optimizer: Adam. 
- Epochs: 80. 

LSTM 

- Hidden layers: 2. 
- Hidden units: 25, 15 neurons. 
- Learning rate: 0.01. 
- Drop out: 0.3. 
- Optimizer: Adam. 
- Epochs: 100. 

GCN 

- Hidden layers: 2 (32, 64 neurons). 
- Hidden units: 32, 64 neurons. 
- Learning rate: 0.01. 
- Epochs: 80. 

4.6. Evaluation Metrics 
The evaluation metrics show how well the prediction fits the past data. They help in 

comparing prediction techniques using the same set of data [33]. 

4.6.1. Mean Absolute Error (MAE) 
The MAE is the mean of the absolute predicted error values. 

𝑀𝑀𝐴𝐴𝐸𝐸 =  𝑚𝑚𝑅𝑅𝑎𝑎𝑎𝑎 �𝑎𝑎𝑏𝑏𝑎𝑎𝑙𝑙𝑙𝑙𝑢𝑢𝑡𝑡𝑅𝑅 (𝑅𝑅𝑥𝑥𝑝𝑝𝑅𝑅𝑐𝑐𝑡𝑡𝑅𝑅𝑑𝑑𝑣𝑣𝐷𝐷𝑙𝑙𝐻𝐻𝑊𝑊 −  𝑝𝑝𝑟𝑟𝑅𝑅𝑑𝑑𝑎𝑎𝑐𝑐𝑡𝑡𝑅𝑅𝑑𝑑𝑣𝑣𝐷𝐷𝑙𝑙𝐻𝐻𝑊𝑊)� (24) 

4.6.2. Mean Square Error (MSE) 
The MSE is calculated as the average of the squared predicted error values. It is well-

known for putting more weight on large error values. 

𝑀𝑀𝑆𝑆𝐸𝐸 =  𝑚𝑚𝑅𝑅𝑎𝑎𝑎𝑎  ((𝑅𝑅𝑥𝑥𝑝𝑝𝑅𝑅𝑐𝑐𝑡𝑡𝑅𝑅𝑑𝑑𝑣𝑣𝐷𝐷𝑙𝑙𝐻𝐻𝑊𝑊 −  𝑝𝑝𝑟𝑟𝑅𝑅𝑑𝑑𝑎𝑎𝑐𝑐𝑡𝑡𝑅𝑅𝑑𝑑𝑣𝑣𝐷𝐷𝑙𝑙𝐻𝐻𝑊𝑊)2) (25) 

4.6.3. Root Square Mean Error (RMSE) 
RMSE penalizes large prediction errors more compared to Mean Absolute Error 

(MAE): 
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𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 =  𝑎𝑎𝑠𝑠𝑟𝑟𝑡𝑡(𝑀𝑀𝑆𝑆𝐸𝐸) (26) 

4.6.4. Mean Absolute Percentage Error (MAPE) 
The Mean Absolute Percentage Error (MAPE) is one of the most widely used 

measures of forecast accuracy. It can be defined by the following formula: 

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 =  
100
𝑎𝑎

��
𝐴𝐴𝑀𝑀 − 𝐹𝐹𝑀𝑀
𝐴𝐴𝑀𝑀

�
𝑀𝑀

𝑀𝑀=1

 (27) 

where 𝐴𝐴𝑀𝑀 is the actual value, 𝐹𝐹𝑀𝑀 is the forecast value, and 𝑎𝑎 denotes the number of fitted 
points. 

5. Discussion 
We compared our USTIN model against several baseline models, including KNN, 

LSTM, RF, and MLP. Metrics such as MAE, MSE, RMSE, and MAPE are used in respective 
order to evaluate the results and make comparisons between our model and other state-
of-the-art models. 

Note that the smallest errors are shown in bold text in Tables 4 and 5. 

5.1. Car Usage Prediction 
The main objective of this study was to build a predictive model for vehicle usage in 

parking lots. By predicting car usage, parking facility managers can optimize resource 
allocation, improve traffic flow, and enhance customer satisfaction. 

5.1.1. Full Data Experiment 
Table 4 illustrates a performance comparison between the proposed method and 

baseline methods for predicting car usage in every parking station. The results show that 
USTIN achieves the lowest MAE (0.0308), MSE (0.1541), RMSE (0.3925), and MAPE 
(0.1077) among all the methods. Notably, KNN and MLP perform poorly (i.e., KNN and 
MLP have a MAPE of 0.5709 and 0.8874, respectively). The poor performance of the base-
line models can be attributed to their failure to model the different dependencies, unlike 
our proposed model, which leverages temporal, spatial, and spatio-temporal information 
to make predictions. 

Table 4. Evaluation results—full data. 

 MAE MSE RMSE MAPE 
KNN 0.6012 0.5157 0.7181 0.5709 
LSTM 0.1350 0.3303 0.5747 0.1399 
TCN 0.1452 0.1689 0.4110 0.1097 
GCN 0.0475 0.1825 0.4272 0.1950 
CNN-LSTM 0.0325 0.1750 0.4183 0.1150 
RF 0.1779 0.3561 0.5967 0.4685 
MLP 0.6266 0.5543 0.7445 0.8874 
XGBoost 0.0769 0. 1677 0.4095 0.1648 
USTIN 0.0308 0.1541 0.3925 0.1077 

5.1.2. Clustered Data Experiment 
We applied our model to the entire dataset, demonstrating its robust performance in 

predicting car-sharing demand. To further analyze the model’s performance, we also im-
plemented our analysis in four distinct classes. For the sake of organization and not being 
redundant in our explanations, we only discuss the result analysis of class “A”, as other 
classes exhibit the same behavior and lead to the same conclusion [21]. 
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As can be seen from Table 5—Class A, USTIN yielded the best results and had smaller 
evaluation errors compared to all other models. Specifically, our model achieves signifi-
cant error reductions, namely (42.14%, 63.55%, 39.63%, and 52.97%) against LSTM; 
(44.60%, 69.52%, 44.79%, and 37.57%) against KNN; (66.18%, 69.33%, 44.62%, and 54.99%) 
against MLP; (43.08%, 64.15%, 40.13%, and 55.16%) against XGBOOST; (66.18%, 69.33%, 
44.62%, and 54.99%) against RF; (39.45%, 60.26%, 9.85%, and 31.47%) against TCN; 
(50.73%, 70.60%, 16.90%, and 49.46%) against GCN; and (66.54%, 69.10%, 40.91%, and 
48.27%) against CNN-LSTM. 

Table 5. Evaluation results—clustered data. 

 MAE MSE RMSE MAPE 
KNN 0.1900 0.3223 0.5686 0.2411 
LSTM 0.1177 0.3150 0.5612 0.2130 
TCN 0.2892 0.2642 0.5140 0.2924 
GCN 0.2348 0.2845 0.5334 0.3354 

CNN-LSTM 0.3432 0.3042 0.5515 0.5042 
RF 0.7634 0.4106 0.6407 0.2374 

MLP 0.3291 0.2591 0.5090 0.3498 
XGBoost 0.3042 0.2321 0.4818 0.2213 
USTIN 0.1154 0.1054 0.3246 0.2209 

(a) Class A 
KNN 0.1956 0.3458 0.5880 0.3592 
LSTM 0.1873 0.2892 0.5378 0.4768 
TCN 0.2242 0.2084 0.4565 0.3424 
GCN 0.2902 0.3875 0.6225 0.3835 

CNN-LSTM 0.3452 0.3702 0.6084 0.5186 
RF 0.3205 0.3437 0.5863 0.4982 

MLP 0.1957 0.3133 0.5597 0.4234 
XGBoost 0.1904 0.2941 0.5423 0.5002 
USTIN 0.1084 0.1912 0.4373 0.1798 

(b) Class B 
KNN 0.1266 0.3328 0.5769 0.2950 
LSTM 0.1370 0.2341 0.4839 0.2705 
TCN 0.2802 0.3842 0.6198 0.3414 
GCN 0.2702 0.3424 0.5851 0.3845 

CNN-LSTM 0.2441 0.3744 0.6119 0.4131 
RF 0.8391 0.9622 0.9809 0.2242 

MLP 0.3144 0.2538 0.5038 0.2291 
XGBoost 0.3050 0.2588 0.5087 0.2275 
USTIN 0.1210 0.2071 0.4551 0.2242 

(c) Class C 
KNN 0.1294 0.2530 0.5030 0.3345 
LSTM 0.1185 0.2347 0.4844 0.3802 
TCN 0.2846 0.4242 0.6513 0.4204 
GCN 0.3027 0.3904 0.6248 0.4684 

CNN-LSTM 0.2221 0.3698 0.6081 0.4548 
RF 0.6132 0.3495 0.5912 0.4863 

MLP 0.3136 0.2538 0.5038 0.2283 
XGBoost 0.3216 0.2596 0.5095 0.2468 
USTIN 0.1885 0.2321 0.4818 0.4982 

(d) Class D 
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5.2. Most Influential Points of Interest 
The negative binomial regression with uncertainty was used to determine the key 

factors that impact car usage. 

5.2.1. Full Data Experiment 
As can be seen in Table 6, numerous factors, such as the number of rented cars (β1 = 

0.7865, p-value = 0.002), workday (β2 = 0.4223, p-value = 0.005), and temperature (β4  = 
0.2156, p-value = 0.034), positively influence car-sharing demand. Conversely, rush hour 
(β3 = −0.1523, p-value = 0.023) and precipitation (β5= −0.0842, p-value = 0.046) have nega-
tive coefficients, indicating a drop in car-sharing demand during these periods. Analyzing 
the influence of POIs on car-sharing demand reveals that factors like domestic services (p-
value = 0.214), beauty (p-value = 0.467), culture media (p-value = 0.165), real estate (p-value 
= 0.134), government agency (p-value = 0.456), entrance and exit (p-value = 0.145), natural 
features (p-value = 0.214), administrative landmarks (p-value = 0.145), and door address 
(p-value = 0.130) have p-values higher than 0.05, indicating their insignificant influence on 
car-sharing demand. 

Table 6. Evaluation of negative binomial regression model—full data. 

Parameter Coef. p-Value Sig. Parameter Coef. p-Value Sig. 
𝜷𝜷𝟎𝟎 0.2845 / / 𝜷𝜷𝟏𝟏𝟏𝟏 0.1609 0.002 Yes 
𝜷𝜷𝟏𝟏 0.7865 0.002 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0623 0.165 No 
𝜷𝜷𝟐𝟐 0.4223 0.005 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.1508 0.013 Yes 
𝜷𝜷𝟑𝟑 −0.1523 0.023 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.1303 0.006 Yes 
𝜷𝜷𝟏𝟏 0.2156 0.034 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.1712 0.001 Yes 
𝜷𝜷𝟏𝟏 −0.0842 0.046 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0959 0.025 Yes 
𝜷𝜷𝟏𝟏 0.3156 0.063 No 𝜷𝜷𝟐𝟐𝟎𝟎 0.0587 0.134 No 
𝜷𝜷𝟏𝟏 0.1265 0.012 Yes 𝜷𝜷𝟐𝟐𝟏𝟏 0.1041 0.064 Yes 
𝜷𝜷𝟏𝟏 0.1889 0.005 Yes 𝜷𝜷𝟐𝟐𝟐𝟐 0.0801 0.456 No 
𝜷𝜷𝟏𝟏 0.0523 0.214 No 𝜷𝜷𝟐𝟐𝟑𝟑 0.0772 0.145 No 
𝜷𝜷𝟏𝟏𝟎𝟎 −0.0252 0.467 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0433 0.214 No 
𝜷𝜷𝟏𝟏𝟏𝟏 0.1459 0.001 Yes 𝜷𝜷𝟐𝟐𝟏𝟏 0.0613 0.145 No 
𝜷𝜷𝟏𝟏𝟐𝟐 0.1103 0.006 Yes 𝜷𝜷𝟐𝟐𝟏𝟏 0.0303 0.130 No 
𝜷𝜷𝟏𝟏𝟑𝟑 0.0823 0.012 Yes     

5.2.2. Clustered Data Experiment 
(1) Class A analysis. 

Several important POIs play a crucial role in influencing the strong car-sharing de-
mand in Table 7—Class A. Tourist attractions (β11 = 0.0659, p-value = 0.002), education 
and training centres (β14 = 0.0687, p-value = 0.007), medical facilities (β16 = 0.0721, p-value 
= 0.001), finance hubs (β19  = 0.0614, p-value = 0.001), and government agencies (β22  = 
0.0510, p-value = 0.032) exhibit a positive impact on car-sharing usage within this class. 
This suggests that areas with these amenities typically have greater rates of car-sharing 
use. 
(2) Class B analysis. 

Hotel and shopping amenities significantly impact demand prediction in Table 7—
Class B. Their respective positive coefficients (β) (0.825, 0.0837) and respective significant 
p-values (0.011, 0.019) suggest that these main factors play a key role in car-sharing de-
mand. In contrast, domestic services (β9 = 0.0482, p-value = 0.315), beauty centres (β10 = 
−0.284, p-value = 0.244), and tourist attractions (β11 = 0.0605, p-value = 0.076) show no im-
pact on the car usage rate. 
(3) Class C analysis. 
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Hotels (β7  = 0.0427, p-value = 0.026) and shopping centres (β8  = 0.0412, p-value = 
0.044) remain important factors, reinforcing their role as key factors in car-sharing de-
mand in Table 7—Class C. Leisure and entertainment (β12 = 0.0465, p-value = 0.021) also 
play an important role in increasing car sharing. 
(4) Class D analysis. 

The influential POIs in Table 7—Class D are different from those in other classes. 
Medical facilities (β16 = 0.0285, p-value = 0.045) are an important factor in driving car-
sharing demand, while the other factors show less impact. 

Table 7. Evaluation of negative binomial regression model—clustered data. 

Parameter Coef. p-Value Sig. Parameter Coef. p-Value Sig. 
𝜷𝜷𝟎𝟎 0.2349 / / 𝜷𝜷𝟏𝟏𝟏𝟏 0.0687 0.007 Yes 
𝜷𝜷𝟏𝟏 0.0897 0.011 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0415 0.475 No 
𝜷𝜷𝟐𝟐 0.0224 0.027 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0721 0.001 Yes 
𝜷𝜷𝟑𝟑 0.0512 0.042 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0486 0.214 No 
𝜷𝜷𝟏𝟏 0.0458 0.036 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0719 0.049 Yes 
𝜷𝜷𝟏𝟏 −0.0246 0.118 No 𝜷𝜷𝟏𝟏𝟏𝟏 0.0614 0.001 Yes 
𝜷𝜷𝟏𝟏 0.0815 0.159 No 𝜷𝜷𝟐𝟐𝟎𝟎 0.0342 0.083 No 
𝜷𝜷𝟏𝟏 0.0543 0.006 Yes 𝜷𝜷𝟐𝟐𝟏𝟏 0.0516 0.024 yes 
𝜷𝜷𝟏𝟏 0.0618 0.026 Yes 𝜷𝜷𝟐𝟐𝟐𝟐 0.0510 0.032 Yes 
𝜷𝜷𝟏𝟏 0.0187 0.270 No 𝜷𝜷𝟐𝟐𝟑𝟑 0.0373 0.017 Yes 
𝜷𝜷𝟏𝟏𝟎𝟎 −0.0124 0.548 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0226 0.081 No 
𝜷𝜷𝟏𝟏𝟏𝟏 0.0659 0.002 Yes 𝜷𝜷𝟐𝟐𝟏𝟏 0.0355 0.124 No 
𝜷𝜷𝟏𝟏𝟐𝟐 0.0625 0.221 No 𝜷𝜷𝟐𝟐𝟏𝟏 −0.0239 0.165 No 
𝜷𝜷𝟏𝟏𝟑𝟑 −0.0301 0.074 No     

(a) Class A 
𝜷𝜷𝟎𝟎 0.1233 / / 𝜷𝜷𝟏𝟏𝟏𝟏 0.0618 0.077 No 
𝜷𝜷𝟏𝟏 0.0621 0.031 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0437 0.152 No 
 𝜷𝜷𝟐𝟐 −0.0458 0.021 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0679 0.005 Yes 
𝜷𝜷𝟑𝟑 0.0503 0.045 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0665 0.391 No 
𝜷𝜷𝟏𝟏 0.0492 0.047 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0723 0.020 Yes 
𝜷𝜷𝟏𝟏 −0.0168 0.011 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0621 0.018 Yes 
𝜷𝜷𝟏𝟏 0.0616 0.004 Yes 𝜷𝜷𝟐𝟐𝟎𝟎 0.0336 0.047 Yes 
𝜷𝜷𝟏𝟏 0.0825 0.011 Yes 𝜷𝜷𝟐𝟐𝟏𝟏 0.0534 0.042 Yes 
𝜷𝜷𝟏𝟏 0.0837 0.019 Yes 𝜷𝜷𝟐𝟐𝟐𝟐 0.0589 0.095 No 
𝜷𝜷𝟏𝟏 0.0482 0.315 No 𝜷𝜷𝟐𝟐𝟑𝟑 0.0465 0.076 No 
𝜷𝜷𝟏𝟏𝟎𝟎 −0.0284 0.244 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0271 0.268 No 
𝜷𝜷𝟏𝟏𝟏𝟏 0.0605 0.076 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0429 0.155 No 
𝜷𝜷𝟏𝟏𝟐𝟐 0.0844 0.113 No 𝜷𝜷𝟐𝟐𝟏𝟏 −0.0165 0.409 No 
𝜷𝜷𝟏𝟏𝟑𝟑 −0.0436 0.213 No     

(b) Class B 
𝜷𝜷𝟎𝟎 0.3067 / / 𝜷𝜷𝟏𝟏𝟏𝟏 0.0359 0.017 Yes 
𝜷𝜷𝟏𝟏 0.0342 0.023 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0401 0.295 No 
𝜷𝜷𝟐𝟐 −0.0287 0.042 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0453 0.076 No 
𝜷𝜷𝟑𝟑 0.0473 0.049 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0432 0.547 No 
𝜷𝜷𝟏𝟏 0.0459 0.035 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0416 0.487 No 
𝜷𝜷𝟏𝟏 −0.0172 0.029 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0390 0.176 No 
𝜷𝜷𝟏𝟏 0.0361 0.189 No 𝜷𝜷𝟐𝟐𝟎𝟎 0.0314 0.192 No 
𝜷𝜷𝟏𝟏 0.0427 0.026 Yes 𝜷𝜷𝟐𝟐𝟏𝟏 0.0423 0.077 No 
𝜷𝜷𝟏𝟏 0.0412 0.044 Yes 𝜷𝜷𝟐𝟐𝟐𝟐 0.0439 0.172 No 
𝜷𝜷𝟏𝟏 −0.0224 0.223 No 𝜷𝜷𝟐𝟐𝟑𝟑 0.0387 0.121 No 
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𝜷𝜷𝟏𝟏𝟎𝟎 0.0310 0.709 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0273 0.921 No 
𝜷𝜷𝟏𝟏𝟏𝟏 0.0418 0.412 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0362 0.522 No 
𝜷𝜷𝟏𝟏𝟐𝟐 0.0465 0.021 Yes 𝜷𝜷𝟐𝟐𝟏𝟏 −0.0178 0.123 No 
𝜷𝜷𝟏𝟏𝟑𝟑 −0.0351 0.498 No     

(c) Class C 
𝜷𝜷𝟎𝟎 0.4387 / / 𝜷𝜷𝟏𝟏𝟏𝟏 0.0202 0.065 No 
𝜷𝜷𝟏𝟏 0.0228 0.021 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0243 0.530 No 
𝜷𝜷𝟐𝟐 −0.0237 0.016 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0285 0.045 Yes 
𝜷𝜷𝟑𝟑 0.0320 0.040 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0237 0.081 No 
𝜷𝜷𝟏𝟏 0.0242 0.026 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0219 0.048 No 
𝜷𝜷𝟏𝟏 −0.0187 0.013 Yes 𝜷𝜷𝟏𝟏𝟏𝟏 0.0193 0.464 No 
𝜷𝜷𝟏𝟏 0.0305 0.726 No 𝜷𝜷𝟐𝟐𝟎𝟎 0.0278 0.369 No 
𝜷𝜷𝟏𝟏 0.0214 0.089 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0278 0.387 No 
𝜷𝜷𝟏𝟏 0.0227 0.020 Yes 𝜷𝜷𝟐𝟐𝟐𝟐 0.0240 0.180 No 
𝜷𝜷𝟏𝟏 −0.0191 0.414 No 𝜷𝜷𝟐𝟐𝟑𝟑 0.0225 0.059 No 
𝜷𝜷𝟏𝟏𝟎𝟎 0.0189 0.150 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0190 0.837 No 
𝜷𝜷𝟏𝟏𝟏𝟏 0.0238 0.132 No 𝜷𝜷𝟐𝟐𝟏𝟏 0.0201 0.058 No 
𝜷𝜷𝟏𝟏𝟐𝟐 0.0223 0.373 No 𝜷𝜷𝟐𝟐𝟏𝟏 −0.0218 0.247 No 
𝜷𝜷𝟏𝟏𝟑𝟑 −0.0287 0.423 No     

(d) Class D 

5.3. Results Analysis 
5.3.1. Prediction Results 

Figures 3 and 4 present a comparison between the predicted values and the actual 
values obtained using the USTIN model. The results show the efficacy of the proposed 
neural network architecture. The integration of temporal features, spatial features, and 
spatio-temporal features has significantly enhanced the model’s predictive accuracy. In-
troducing spatial features allows the model to consider factors that are not inherently pre-
sent in the spatial-temporal data but have a substantial influence on it. Furthermore, the 
spatio-temporal unit captures the influence of meteorological conditions across locations 
and time. 

Overall, this study highlights the effectiveness of the proposed architecture in en-
hancing car-sharing demand prediction in urban environments. 

 
Figure 3. Comparison of the predicted value and the real value using USTIN—full data. 
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Figure 4. Comparison of the predicted value and the real value using USTIN—clustered data. 

5.3.2. The Contribution of Influencing Factors in Car-Sharing 
Figures 5 and 6 show the results of the negative binomial regression and provide 

insightful information on factors influencing car-sharing demand, including the number 
of rented cars, workday, temperature, and air quality. These factors play an important role 
in determining car-sharing usage. Furthermore, the evaluation results highlight the most 
influential Points of Interest alongside those with relatively minor impacts on car-sharing 
demand. Notably, tourist attractions, educational institutions, medical facilities, hotels, 
and shopping centers emerge as the most influential, while beauty centers, cultural land-
marks, and government agencies exhibit less influence. 

 
Figure 5. Influence of indicators on the car-sharing demand—full data. 
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Figure 6. Influence of indicators on the car-sharing demand—clustered data. 

6. Conclusions 
This research study has introduced the Unified Spatio-Temporal Inference Prediction 

Network (USTIN), an advanced architecture for predicting car usage across different 
parking lots. The proposed model integrates temporal, spatial, and spatio-temporal units 
and has demonstrated strong predictive effectiveness, outperforming other state-of-the-
art models on real-world data. Notably, the temporal module adeptly captured both 
short- and long-term temporal demands, while the spatial module incorporates points-of-
interest, enriching the contextual understanding of car usage. Additionally, the spatio-
temporal module integrates meteorological data to effectively capture their influence 
across locations and time. Beyond car demand prediction, we used negative binomial re-
gression with uncertainty to identify the key factors influencing car usage. The obtained 
results identified key drivers such as tourist destinations, hotels, and shopping centers. 

While our approach offers promising results not only for online car-sharing demand 
prediction but also for other domains where temporal, spatial, and spatio-temporal fea-
tures play a crucial role in prediction, it may exhibit some limitations in areas with very 
low car usage. In such regions, the model may lead to less accurate predictions. Our future 
research will focus on developing more advanced models that can capture the real-world 
complexity of spatio-temporal data. This would further enhance the efficiency of urban 
transportation systems and the field of spatio-temporal data analysis. 
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