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Abstract: Synchronous monitoring electroencephalogram (EEG) and functional near-infrared spec-

troscopy (fNIRS) have received significant attention in brain science research for their provision of 

more information on neuro-loop interactions. There is a need for an integrated hybrid EEG-fNIRS 

patch to synchronously monitor surface EEG and deep brain fNIRS signals. Here, we developed a 

hybrid EEG-fNIRS patch capable of acquiring high-quality, co-located EEG and fNIRS signals. This 

patch is wearable and provides easy cognition and emotion detection, while reducing the spatial 

interference and signal crosstalk by integration, which leads to high spatial–temporal correspond-

ence and signal quality. The modular design of the EEG-fNIRS acquisition unit and optimized me-

chanical design enables the patch to obtain EEG and fNIRS signals at the same location and elimi-

nates spatial interference. The EEG pre-amplifier on the electrode side effectively improves the ac-

quisition of weak EEG signals and significantly reduces input noise to 0.9 μVrms, amplitude distor-

tion to less than 2%, and frequency distortion to less than 1%. Detrending, motion correction algo-

rithms, and band-pass filtering were used to remove physiological noise, baseline drift, and motion 

artifacts from the fNIRS signal. A high fNIRS source switching frequency configuration above 100 

Hz improves crosstalk suppression between fNIRS and EEG signals. The Stroop task was carried 

out to verify its performance; the patch can acquire event-related potentials and hemodynamic in-

formation associated with cognition in the prefrontal area. 

Keywords: co-located; EEG-fNIRS; noise suppression; crosstalk suppression; acquisition module 

design; acquisition module mechanical design 

 

1. Introduction 

Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) 

dual-modal synchronous brain signal monitoring systems can accurately and continu-

ously measure the neuronal electrical signal of the surface area and hemodynamic activity 

of the brain deep area. It combines the advantages of the high spatial resolution of fNIRS 

and high temporal resolution of EEG to provide a comprehensive picture of brain function 

[1]. EEG-fNIRS systems have been applied across various fields of brain science. Clini-

cally, EEG-fNIRS systems have been proven to provide important diagnostic information 

for the evaluation or treatment of stroke [2], seizure [3], and Alzheimer’s disease [4], 

among other diseases [5,6]. In the field of brain–computer interfaces (BCIs) [7,8], the EEG-

fNIRS system has been utilized to fabricate a hybrid BCI (hBCI) to improve classification 

accuracy [9,10]. To better study the spatiotemporal associations between the hemody-

namic–electrical patterns of brain functions and further improve the classification and de-

coding accuracy of BCIs, co-located EEG-fNIRS signals attract attention because of their 

high spatial and temporal coupling and adaptation to tight time synchronization require-

ments [11]. 
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In order to obtain functional imaging of EEG and fNIRS simultaneously, many dis-

crete or integrated EEG-fNIRS systems or ICs have been developed, such as discrete com-

mercial EEG systems and fNIRS systems and combined EEG-fNIRS system [12], 

NIRS/EEG monitoring of ASIC [13], and modular hybrid systems [14]. However, acquir-

ing co-located EEG-fNIRS signals still remains a challenge due to the spatial interference 

between the EEG and fNIRS acquisition modules, signal crosstalk between EEG-fNIRS 

signals, and signal synchronization problems. Especially, as shown Figure 1, the prefron-

tal cortex region, which is related to cognition and emotions, needs to be monitored via 

simultaneous EEG and fNIRS signals in a limited area.  

 

Figure 1. (a) Overall system architecture. (b) Layout of EEG and fNIRS sensors. (c) Positioning struc-

ture of EEG electrodes, LEDs, and PDs. 

In this article, we report an integrated EEG-fNIRS patch with a novel circuit architec-

ture and optimized acquisition module design, which can achieve two-channel EEG and 

ten-channel fNIRS measurements simultaneously. The patch achieves synchronized, low-

noise, and low-crosstalk EEG-fNIRS acquisition by integrating the following features and 

structures. 

• EEG-fNIRS acquisition module design and optimized mechanical design enables the 

acquisition module to obtain EEG and fNIRS signals at the same location and elimi-

nates spatial interference, while increasing the scalability of the patch. 
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• EEG pre-amplifier design is utilized on the electrode side for EEG preprocessing, 

which can effectively improve weak EEG signal acquisition and noise suppression. 

• ADS1299- and AFE4404-based analog front-end (AFE) architecture is designed, 

which achieves synchronous, high-resolution EEG and fNIRS signal measurements. 

• Crosstalk between fNIRS signals and EEG signals is minimized through above 100 

Hz high LED switching frequency configuration. 

Several evaluation tests were performed to verify the co-located EEG-fNIRS hybrid 

data acquisition performance. We demonstrate that the patch performs with low input 

noise (0.9 Vrms), low frequency distortion (<1%), and low amplitude distortion (<2%). 

Based on these ideal properties, we show that the developed patch can acquire event-re-

lated potentials and hemodynamic information at prefrontal areas in the event-related 

Stroop task. Our approach provides a step towards highly coupled spatial and temporal 

EEG-fNIRS signal acquisition, laying the foundation for the comprehensive exploration of 

brain functional activity. 

2. Materials and Methods 

2.1. Overall System Architecture 

The overall system architecture is shown in Figure 1a. This patch was used to support 

the co-located EEG-fNIRS signal acquisition in the forehead, and provides synchronous, 

low-noise, and low-crosstalk dual-mode signal acquisition while realizing integration and 

wireless data transmission. As shown in Figure 1b, according to the international 10–20 

system, two EEG electrodes were placed at Fp1 and Fp2. Four optical sources and four 

optical detectors were located over the prefrontal area around Fp1, Fpz, and Fp2. 

As shown in Figure 1c, in order to acquire neuronal activity from the same location, 

the EEG electrode was placed in the middle between the source (LED) and the detector 

(PD), so as to achieve the same channel configuration [15]. An LED was used as the light 

source because it can be directly attached to the scalp without fiber cables, which greatly 

increases the flexibility of the acquisition module layout. Each LED can provide 1 fNIRS 

channel, which has the same acquisition location as the EEG channel. And, 4 fNIRS chan-

nels were placed at the same acquisition location as the EEG channel. This patch can pro-

vide a total of 10 fNIRS channels and 2 EEG channels, in which 4 fNIRS channels are at 

the same acquisition location as the EEG channel. The patch can measure the EEG and 

fNIRS signals at Fp1 and Fp2 simultaneously while covering the active frontal brain re-

gions as much as possible [16], which can support the monitoring needs of cerebral hemo-

dynamic response and EEG response in depressive disorder, cognitive event classification, 

and other cognitive or emotional tasks [17,18]. 

2.2. System Design 

EEG and fNIRS signals are highly sensitive to noise and prone to crosstalk. Therefore, 

the hardware architecture illustrated in Figure 2a has been designed to improve small-

amplitude EEG signals acquisition, noise, and crosstalk suppression, which is in concord-

ance with the system concept of “co-located EEG and fNIRS acquisition”. As is shown in 

Figure 2a, EEG electrodes, LEDs, and detectors were integrated into separate EEG-fNIRS 

acquisition modules. This allows the monitoring range to be extended to the whole brain 

by simply adding EEG-fNIRS acquisition modules. The patch implements in this paper 

contains 4 EEG-fNIRS acquisition modules and 1 main board. 

The acquired EEG signal was firstly processed by the EEG pre-circuit on the EEG-

fNIRS acquisition module illustrated in Figure 2a. The EEG pre-circuit included a two-

stage filter and amplifier circuit. High-frequency noise was filtered out using an OPA333-

based active low-pass filter with a cutoff frequency of 50 Hz.  
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Figure 2. (a) The system circuit block diagram. (b) The proposed acquisition board. (c) The barrel, 

cap, and optical filter to fix the LED and PD. (d) The EEG-fNIRS acquisition module of the proposed 

patch. (e) Front and back view of the entire patch. 

An INA333-based signal amplifier was employed to provide a voltage gain of 1000 

V/V (60 dB), which was capable of improving the acquisition performance of small ampli-

tude EEG signals and providing high input impedance (100 GΩ). EEG signals from mul-

tiple acquisition modules were fed into ADS1299 in parallel, and the multiplexer in 

ADS1299 allows low-crosstalk, multi-channel synchronous input without sampling and 

holding circuits, which improved the integration of the patch. Digitized by a 24-bit reso-

lution ADC, the EEG signals were transmitted to MCU via an SPI bus. The module can 

acquire EEG signals at a sampling rate up to 16 kSPS. 

The acquired bio-optical signal was input into AFE4404 on the acquisition module, 

converted into a voltage signal by an integrated transimpedance amplifier (TIA), and then 

digitized by an integrated 24-bit analog-to-digital converter (ADC). The high dynamic 

range (100 dB) enables an excellent signal to noise ratio (SNR), even for small amplitude 
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bio-optical signals in the presence of large signal artifacts. The ADC data were subse-

quently transmitted to the micro controller unit (MCU) via an IIC bus. The module can 

acquire fNIRS signals at a sampling rate up to 100 Hz. The switching time between the 

two measured wavelengths was controlled by the “Data Ready” pin (DRDY) of ADS1299 

to ensure that synchronization between EEG and bio-optical signals can be obtained even 

if there are errors in the reference clocks of the two AFEs. 

As shown in Figure 2d, the LEDs and PDs were are connected to the acquisition board 

by wire, and a copper-plated disk was used to connect the EEG electrodes and the acqui-

sition board to form an EEG-fNIRS acquisition module. 

The whole system was embedded in a framework made up of an ATSAMS70N20A 

(Microchip) MCU on the main board. A detailed diagram of the signal processing work-

flow can be found in Figures S1 and S2. The MCU will send the packetized EEG and fNIRS 

data to the PC via the external ESP8285 module for further processing. Please see Note S1 

for details of the data processing flow in the PC.  

LEDs of 760 nm and 850 nm dual-wavelengths (Ushio epitex L760_850−04A) were 

used for fNIRS light sources. Each LED adopted wavelength time division multiplexing. 

Silicon photodiodes (Hamamatsu S5972) were used for fNIRS detectors. The PD exhibited 

high photoelectric sensitivity (>0.5 A/W) at both 760 nm and 850 nm while having the 

features of small size, low power dissipation, and a high level of noise suppression. As 

shown in Figure 2c, the fNIRS light sources and detectors were fixed using a probe. Each 

probe is consisted of a circular filter (LP900), a 3D-printed cap, and a 3D-printed barrel. 

The circular filter uses long-wave pass filter, which meets the high transmittance of emit-

ted light at 760 nm and 850 nm while filtering out ambient light interference signals. 

A claw-shaped dry electrode (CGX) was used for EEG acquisition [19]. The electrode 

was small in size, easy to install, and the surface was plated with a Ag/AgCl layer, which 

helped to realize miniaturization and high integration, overcoming the problem of signal 

quality degradation and the discomfort of the participants in continuous EEG acquisition 

based on traditional wet electrodes. The dry electrode can support continuous high-qual-

ity acquisition for a long time (>30 min) and provides high user comfort and reusability. 

Considering the wearing comfortability and convenience of the participant, 3D print-

ing was used to make the fixing belt shown in Figure 2e. The fixing belt was made of 

thermoplastic polyurethane (TPU), which has good flexibility and flexibility, and ensured 

that the EEG dry electrodes, LEDs, and PDs closely fit the skin on the forehead. 

2.3. System Crosstalk Analysis and Suppression 

The co-located dual-modal signal acquisition patch will introduce crosstalk between 

the dual-modal signals. In fact, for example, the instantaneously high current in fNIRS 

light source driving circuit can easily distort small-amplitude EEG and bio-optical signals 

[20]. A previous study also showed that switching of NIRS channels may cause high-am-

plitude noise in the same frequency of EEG, which would cause misjudgment of real neu-

ral activity [21]. Therefore, when designing an integrated EEG-fNIRS system, crosstalk 

between EEG signals and fNIRS signals must be taken into account. In our proposed 

patch, hardware architecture and software configuration were carefully designed to min-

imize crosstalk between the dual-modal signals. 

To minimize crosstalk between fNIRS signals and EEG signals, first, the LED current 

switching frequency of the dual-wavelength LED current was configured to be >100 Hz, 

which far exceeds the EEG frequency band of interest (0–50 Hz), so the crosstalk related 

to the EEG signal could be clearly separated using a low-pass filter with a cutoff frequency 

of 50 Hz. Second, integrated EEG AFE circuits on the main board also provided higher 

crosstalk suppression performance for EEG signals by current path optimization and 

shielding optimization. 

The crosstalk between the EEG signal and fNIRS signal was also minimized by a sep-

arate ground design on the acquisition board, ensuring electrical isolation of the EEG and 

fNIRS signals. 
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3. Evaluation and Experimental Procedure 

3.1. Evaluation of EEG Acquisition Performance 

We first evaluated the input-referred noise of the EEG acquisition circuit in the LED 

flashing condition and in the no-LED flashing condition. As shown in Figure 3a, it can be 

found that in the absence of LED flashing, the input-referred noise was 0.81 μVrms. Even 

with the LED flashing condition, an input-referred noise of 0.89 μVrms was measured and 

no fNIRS crosstalk component was observed in the spectrum in Figure 3b. These results 

show that the proposed patch has an excellent noise suppression performance of less than 

0.9 μVrms. In addition, we evaluated the amplitude distortion and frequency distortion of 

the acquired EEG signals. As shown in Figure 3c,d, the amplitude distortion and the fre-

quency distortion were less than 2% and less than 1%, respectively. The results verify that 

the measured EEG signals have low frequency distortion and amplitude distortion. The 

EEG acquisition module is capable of obtaining high-quality EEG signals. More details 

about the evaluation experiment can be found in Note S2. 

 

Figure 3. (a) EEG input-referred noise in no-LED flashing condition and LED flashing condition; (b) 

EEG input-referred noise spectrum in LED flashing condition; (c) EEG amplitude distortion meas-

urement; (d) EEG frequency distortion measurement; and (e) ΔHbO2, ΔHbR trend in forearm block 

experiment. 
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3.2. Evaluation of fNIRS Acquisition Performance 

Referring to the experiment in [20,22], a forearm block experiment was performed to 

verify the performance of fNIRS acquisition. The experiment was carried out in a quiet 

laboratory with no strong light interference. The participants put their arm flat on the table 

with palm facing up and the wristband was tied to the participant’s forearm. fNIRS light 

sources and detectors were attached to the participant’s forearm. 

We obtained the ΔHbO2 and ΔHbR values by analyzing the fNIRS data and the re-

sults are plotted in Figure 3d. When the wristband sphygmomanometer was inflated, 

ΔHbO2 dropped slowly and ΔHbR rose slowly due to blood blockage in the forearm. 

When the wristband sphygmomanometer was deflated and the forearm blood flow was 

released again, ΔHbO2 and ΔHbR dramatically changed toward the baseline, overshoot-

ing occurred, and then they gradually converged to the baseline. The experimental results 

can be mutually verified with the results of the previous forearm blocking experiment 

[20], indicating that the patch can effectively collect changes in human hemodynamics. 

3.3. Event-Related Stroop Task 

To further validate the ability to acquire the co-located EEG-fNIRS signals, referring 

to the experiment in [22], an event-related Chinese character Stroop task was designed. 

The experimental paradigm was used to induce conflicts in cognitive psychology and the 

activation in participant’s prefrontal cortex can be assessed by EEG and fNIRS signals. 

As shown in Figure 4a, the stimuli consisted of a Chinese character with the same or 

different color and meaning. Under the interference of the meaning of the character, the 

participants were instructed to judge the color of the Chinese character and press the cor-

responding key on the keyboard with the right index finger within the time limit. Each 

task comprised 30 trials, with on-third of trials being congruent (the color and meaning 

coincided, e.g., the character means “Red” printed in the color red) and two-thirds of trials 

being incongruent (the word and color did not coincide, e.g., the character means “Red” 

printed in the color green). The congruent trial and incongruent trial were administered 

randomly. Each trial was displayed for 500 ms, with a randomly selected interval of 350–

750 ms between trials. A detailed experimental design for the event-related Stroop task 

can be found in Note S3. 

 

Figure 4. (a) Schematic diagram of incongruent and congruent trial. (b) Experimental paradigm for 

Stroop task. 
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The experimental paradigm flow used in this study is shown in Figure 4b. The ex-

perimental paradigm was divided into a waiting period, task period, and rest period. Dur-

ing the task period, participants were asked to perform the Stroop task. During the wait-

ing period and rest period, the participants were asked to remain in a relaxed state. 

Thirteen healthy volunteers (right-handed, native Chinese speakers, aged 20–29 

years; four women and nine men) participated in this experiment. All participants had 

normal or corrected-to-normal vision, normal color vision, and normal cognitive function. 

Each participant was seated on an adjustable chair in a sound- and light-attenuated room. 

The PC monitor was placed 65 cm in front of the participant’s eyes. As shown in Figure 

1a, the acquisition module of the EEG-fNIRS patch was worn on the forehead of the par-

ticipant to acquire EEG signals and fNIRS signals at Fp1 and Fp2. Prior to the formal ex-

periment, participants were asked to run eight trials to make sure they were familiar with 

the experimental process and could respond correctly. During the experiment, the patch 

collected EEG signals and fNIRS signals at a sampling rate of 1 kHz and 100 Hz, respec-

tively. 

The original EEG signal was analyzed using MATLAB 2023a. Epochs were extracted 

ranging from −250 ms before to 750 ms after stimulus onset, and baseline signal from −250 

ms to 0 ms were corrected. After that, the averaged event-related potentials (ERPs) were 

band-pass filtered with a cut-off frequency of 0.8 Hz to 17 Hz. On the basis of ERP data, 

three feature-based components, P450 (positive component from 400 to 450 ms), N500 

(negative component from 450 to 550 ms), and P600 (positive component from 600 to 700 

ms), were measured at Fp1 and Fp2. 

Figure 5a shows the raw EEG data of Fp1 and Fp2. And, the ERP results from a trial 

are shown in Figure 5b. Figure 5c shows the average amplitude of three ERP components 

in Fp1 and Fp2 across all trials. The amplitude of P450 was −2.70 ± 0.14 and −2.63± 0.16 

μV (Mean ± SD) in Fp1 and Fp2, respectively, while the amplitude of N500 component 

was −4.05 ± 0.20 and −4.37 ± 0.25 μV (Mean ± SD) in Fp1 and Fp2, respectively. And, 

the amplitude of P600 was −2.06 ± 0.27 and −1.67 ± 0.19 μV (Mean ± SD) in Fp1 and Fp2, 

respectively. Repeated measure analysis of variance (ANOVA) indicated statistically sig-

nificant differences between the N500 component at the right prefrontal cortex and left 

prefrontal cortex (p = 0.03 < 0.05) and the P600 component at the right prefrontal cortex 

and left prefrontal cortex (p = 0.042 < 0.05). N500 had a stronger response at Fp2, and com-

pared to right prefrontal cortex, P600 had a stronger response at Fp1. The P450 component 

at the right prefrontal cortex and left prefrontal cortex were not significantly different from 

each other (p = 0.31 > 0.05). The results shows that three ERP components activated in the 

forehead, which is consistent with the experimental phenomena in the previous literature 

obtained by the proposed patch [23]. 
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Figure 5. (a) Raw EEG data of Fp1 and Fp2; (b) ERP results in a trial; (c) average amplitude of three 

ERP components in Fp1 and Fp2; (d) comparison of original fNIRS signal and preprocessed fNIRS 

signal; and (e) the ΔHbO2, ΔHbR, and ΔHbT values of the brain Fp1 point in the Stroop task. 

Event-related fNIRS signals are highly susceptible to interference from physiological 

noise (e.g., 0.2–0.3 Hz respiration component, ~1 Hz heartbeat component, and ~0.1 Hz 

Mayer waves component) and motion artifacts [24]. Therefore, detrending, motion correc-

tion and band-pass filtering are used to remove physiological noise, baseline drift, and 

motion artifacts from the original fNIRS signal. As shown in Figure 5d, firstly, the modi-

fied Beer–Lambert law was utilized to calculate the concentration changes of oxygenated 

hemoglobin (HbO2), deoxygenated hemoglobin (HbR), and total hemoglobin (HbT) ac-

cording to the calculation method in previous studies [25]. Then, a first-order polynomial 

regression model was used to remove linear detrends and a temporal derivative distribu-

tion repair (TDDR)-based motion correction function was used to remove both spike arti-

facts and baseline shifts. Considering the hemodynamic response after neural activation 
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embedded in 0.03–0.1 Hz [26], a third-order band-pass IIR filter with a cut-off frequency 

of 0.01 Hz to 0.08 Hz was applied to remove physiological noise components.  

The ΔHbO2, ΔHbR, and ΔHbT values of the brain Fp1 point and Fp2 point collected 

in fNIRS channels D1-S2 and D4-S3 (shown in Figure 1c), respectively, are shown in Fig-

ure 5e. During the waiting period, the concentrations of both HbO2 and HbR remained 

stable. When the first Stoop task began, the HbO2 concentration increased rapidly. At the 

cessation of the task and entry into the rest period, the HbO2 concentration gradually re-

turned to the baseline level. During this process, the concentration of HbR showed a 

roughly opposite trend to the change in the concentration of HbO2, which is consistent 

with the analysis of the mechanism of neural–vascular coupling. It can also be found that 

the change in the concentration of HbR is smaller than the change in the concentration of 

HbO2. From the perspective of brain activity, when the Stroop task starts, there is an in-

crease in the oxygen demand of the prefrontal cortex involved in cognitive activity, which 

primarily leads to an increase in cerebral arterial blood flow and dominates the changes 

in local blood oxygen concentration, and this leads to an increase in HbT. In arterial blood, 

the proportion of HbO2 is higher, which leads to a higher increase in the concentration of 

HbO2 than in the proportion of HbR. Additionally, Pearson correlation analysis showed 

that the peak amplitude of P600 at Fp1 had a strong correlation with the second peak value 

of ΔHbR (r = 0.752, p = 0.009 < 0.01). The peak amplitude of N500 at Fp1 also had a signif-

icant correlation with the first peak value of ΔHbR (r = 0.724, p = 0.012). However, peak 

amplitudes of P450 were not found to correlate with any peak of ΔHbR or ΔHbO2. There-

fore, a linear regression model can be established using the peak amplitude of P600 and 

N500 and peak values of ΔHbR to represent the hemodynamic–electrical patterns of brain 

functions. These conclusions are in good agreement with the findings in [23]. 

The co-located EEG and fNIRS signals in the Stroop task were effectively detected by 

our proposed patch, providing brain activation information such as the ERP response and 

trend in the ΔHbO2, ΔHbR response. A conclusion can be drawn that the proposed EEG-

fNIRS patch was capable of acquiring neuroelectric and hemodynamic responses at the 

same location. 

4. Conclusions 

In this study, a two-channel EEG and ten-channel fNIRS hybrid EEG-fNIRS brain 

monitoring patch has been proposed that can measure EEG and brain cerebral hemody-

namic information at the same location. As shown in Table 1, compared with previous 

research, the proposed EEG-fNIRS acquisition module design and optimized acquisition 

module layout can acquire co-located EEG-fNIRS signals while eliminating spatial loca-

tion interference, which can also easily extend the acquisition range to the whole brain. 

The EEG pre-amplifier on the electrode side effectively provided a high EEG signal noise 

suppression capability of less than 0.9 μVrms, low-amplitude distortion to less than 2%, 

and low-frequency distortion to less than 1%. Moreover, high LED switching frequency 

configuration greatly reduces the high crosstalk between bio-optical signals and EEG sig-

nals. In addition, detrending, motion correction, and band-pass filter design effectively 

removed physiological noise, baseline drift, and motion artifacts, effectively improving 

the SNR. The forearm block experiment and Stroop task showed that the system is suffi-

ciently capable for acquiring neuronal electrical signal and hemodynamic activity at the 

same location. The small size (about 78.54 mm2) and lightweight (about 21.8 g) EEG-fNIRS 

acquisition module, EEG dry electrodes, and TPU flexible fixing belt can ensure long-term 

monitoring and wearing comfort to meet the co-located EEG-fNIRS acquisition needs of 

emotional or cognitive tasks or patients with mild cognitive impairment and major de-

pressive disorder in the home or clinic. It is expected to provide new information and 

phenomena that cannot be detected when EEG and fNIRS are measured at separate loca-

tions, offering richer data for the comprehensive exploration of brain functional activities 

and introducing new signal acquisition methods for EEG-fNIRS research. 
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Table 1. Comparison of features between the proposed and previous EEG-fNIRS systems. 

System [13] [14] [20] [27] [28] Our Work 

EEG input-referred 

noise 

1.21 

μVrms 
1.39 μVpp 

0.14 

μVrms 

29.9 

μVrms 
0.44 μVrms 0.89 μVrms 

EEG sampling rate - 16 kSPS 250 Hz 250 SPS 2 kSPS 16 kSPS 

fNIRS sampling rate 512 SPS 500 SPS 5 Hz 8 SPS 10 Hz 100 Hz 

EEG resolution 15 24 24 24 12 24 

fNIRS resolution - 24 16 24 12 24 

Dry EEG electrode No No Yes No Yes Yes 

Co-located EEG/fNIRS 

acquisition 
Yes No No No No Yes 

Crosstalk suppression No Yes Yes Yes No Yes 

fNIRS physiological 

noise removal 

16 Hz 

Low-pass 

filter 

- 
RC Low-

pass filter 

Low-pass 

filter 
- 

0.01–0.08 

Hz 

Band-pass 

filter 

fNIRS detrending - - 

Baseline 

correc-

tion 

- - 

First-order 

polyno-

mial re-

gression 

fNIRS motion artifacts 

removal 
- - - - - TDDR 

- This parameter is not provided in the reference. 

A limitation of our proposed system is that our EEG and fNIRS channels were limited 

and only covered the forehead, compared to discrete commercial EEG systems, fNIRS sys-

tems, and combined EEG-fNIRS system. Although our highly scalable acquisition module 

design can quickly extend the acquisition range to the whole brain, the low SNR caused 

by hair absorption and occlusion still limits its application in motor imagery, visual stim-

ulation, and other clinical applications where hemodynamic measurements are required 

in parietal, occipital, or temporal lobe regions. In addition, a newly designed fixing belt is 

also needed to ensure that EEG measurements conform to the international 10–20 system. 

However, the current system has met our design goal of using a wearable, portable patch 

that allows high-quality acquisition of co-located EEG-fNIRS signals to support cognitive 

and emotional measurements at the prefrontal lobe. Therefore, our next steps should fo-

cus on how to reconstruct fNIRS signals impaired by extra-cranial confounds using both 

algorithms and hardware approaches to improve the usability of the system for brain–

computer interfaces and brain research.  

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/s24154847/s1, Figure S1: EEG signal processing workflow. 

Figure S2: fNIRS signal processing workflow. Note S1: EEG and fNIRS data processing process in 

PC. Note S2: EEG acquisition performance evaluation method. Note S3: Experimental design for the 

event-related Stroop task. 
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