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Abstract

In microstructured solids, the non-dissipative double dispersive equation is a fourth-order non-linear partial
differential equation that arises in the study of non-dissipative strain wave propagation. Seeking the exact
solution of a nonlinear partial differential equations with a physical background is helpful to understand the
motion law of matter and to explain the corresponding physical phenomena scientifically. This equation has
been studied widely, and there have been a lot of research methods to find exact solutions to this equation.
In this manuscript, we try to study the non-dissipative double dispersive equation by the improved
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tan
(

Φ(ξ)
2

)
-expansion method. As far as our known, no one has used this method to study the non-dissipative

double dispersive equation, partly because of the complicated calculation. We obtain a lot of exact traveling
wave solutions, including hyperbolic function solutions, trigonometric function solutions, exponential function
solutions, and rational function solutions. Compared with the other methods, some solutions obtained in this

manuscript are consistent with existing solutions, which shows the effectiveness of the improved tan
(

Φ(ξ)
2

)
-expansion method. Through this method, Our manuscript obtains more general and new exact solutions.
These solutions may play an important role in engineering and physics. What’s more, we plot the 3D graphs
of some of the solutions obtained in this manuscript, which helps us understand the physical phenomenon
of the non-dissipative double dispersive equation. In the future, we will continue to explore its physical
significance from the new analytical solution we have obtained.

Keywords: The non-dissipative double dispersive equation; the improved tan
(

Φ(ξ)
2

)
-expansion method; exact

solutions; microstructured solids.

1 Introduction

In this manuscript, we study the non-dissipative double dispersive equation in the microstructured solid as[1]

utt − uxx − εα1(u2)xx + εα3uxxxx − εα4uxxtt = 0, (1.1)

where u = u(x, t) is a function of two variables x, t, and ε represent the elastic strains and αj are constants.
Microstructure materials such as alloys, ceramics, grains, and functionally gradient materials have been used
widely. The strain wave equation is a fourth-order non-linear partial differential equation that arises in the
study of non-dissipative strain wave propagation in microstructured solids. The nonlinear strain wave equation
in microstructured solids which is governed as[1]

utt − uxx − εα1(u2)xx − γα2uxxt + δα3uxxxx − (δα4 − γ2α7)uxxtt + γδ(α5uxxxxt + α6uxxttt) = 0. (1.2)

where ε represent the elastic strains, δ gives the ratio between microstructure size and the wavelength, γ is
the coefficient of dissipation, and αj for j = 1, 2, · · · 7 are constants. The balance between non-linearity and
dispersion occurs when δ = O(ε). If the condition γ = 0 is added, we have the non-dissipative case governed by
the double dispersive equation (1.1).

Since the non-dissipative double dispersive equation has been used widely, it is meaningful to study its exact
solutions. Over the past few years, there were many effective methods to obtain various types of the exact
solutions of Eq. (1.1), see[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 14, 16, 17, 18, 19, 20]. Hafez et al. [4]
obtained the solitary wave solutions of topological kink, singular kink, nontopological bell type solutions, solitons,
compacton, periodic solutions, and solitary wave solutions of rational functions by the exponential expansion
method. In[14], Seadawy et al. applied the improved form of the simple equation and modified F -expansion
techniques for obtaining exact solutions of the non-dissipative double dispersive equation. Hameedullah et al. [20]
applied the Sardar sub-equation technique to derive solutions of singular solitons, bright solitons, multi-M-shaped
solitons, and the interaction of singular solitons with periodic solitons and bright periodic solitons. Solutions of
nonlinear partial differential equations play an important role in modeling scientific and engineering problems.
In the past decades, various techniques for solving nonlinear differential equations have been proposed, such as
the homogeneous balance method[21], the sine-cosine method[22], the Jacobi elliptic function method[23], the
(G′/G)-expansion method [24]. In [25], Manafian et al. proposed a new expansion method named the improved

tan
(

Φ(ξ)
2

)
-expansion method for solving the nonlinear partial differential equation. At present, the improved

tan
(

Φ(ξ)
2

)
-expansion method has been used to seek exact solutions of well-known nonlinear partial differential

equations[26, 27, 28, 29, 30, 31, 32, 33].
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As far as our known, no scholars have studied the non-dissipative double dispersive equation in microstructured

solids by the improved tan
(

Φ(ξ)
2

)
-expansion method. The objective of this manuscript is to apply the improved

tan
(

Φ(ξ)
2

)
-expansion method to obtain the exact solutions to the non-dissipative double dispersive equation.

Through this method, we got a lot of traveling wave solutions, some of which are new solutions. By supposing
that an ordinary differential equation obtained by transformation has a formal solution

u(ξ) = S(Φ) =

N∑
k=0

Ak

[
p+ tan

(
Φ(ξ)

2

)]k
+

N∑
k=1

Bk

[
p+ tan

(
Φ(ξ)

2

)]−k
, (1.3)

where Ak (0 6 k 6 N) and Bk (1 6 k 6 N) are arbitrary constants to be determined, and Φ = Φ(ξ) satisfies the
following ordinary differential equation

Φ′(ξ) = a sin Φ(ξ) + b cos Φ(ξ) + c, (1.4)

The problem of solving nonlinear partial differential equations is transformed into the problem of solving
nonlinear algebraic equations. A lot of calculations are involved in solving nonlinear algebraic equations.
Depending on whether A2 or B2 are equal to 0, we divided it into three cases. By discussing and solving

each equation, we got three solutions to the algebraic equations. It is shown that the improved tan
(

Φ(ξ)
2

)
-

expansion method can obtain a lot of exact solutions of the non-dissipative double dispersive equation, including
hyperbolic function solutions, trigonometric function solutions, exponential function solutions, and rational
function solutions. From the exact solutions obtained in this manuscript, we select four different types of
solutions and draw 3D graphs of these solutions.

For convenience, we make a comparison and a summary. We compare the solutions in this manuscript with those
in the existing literature, as shown in Table 1. We obtain some new exact solutions of the non-dissipative double
dispersive equation, see (3.16),(3.18),(3.19),(3.20),(3.21),(3.28), (3.29),(3.30),(3.35),(3.36),(3.37),(3.38). These
new solutions may play an important role in engineering and physics. Moreover, some of the solutions obtained
in this manuscript are consistent with those in the existing literature, and some of the solutions obtained in this
manuscript are more and more extensive. For example, the solution (3.25) consistent with the solution (17) in
[4] when the parameter satisfies a = λ, b2 − c2 = −4µ, a2 + b2 − c2 = Θ.

The outline of the manuscript is as follows: In Section 2, we give a brief description of the improved tan
(

Φ(ξ)
2

)
-

expansion method. In Section 3, we apply the improved tan
(

Φ(ξ)
2

)
-expansion method for finding exact solutions

to the non-dissipative double dispersive equation in microstructured solids. In Section 4, we plot the 3D graphs
of some solutions in this manuscript with maple and compare the solutions in this manuscript with the existing
solution. And finally, conclusions are given in Section 5.

2 Description of the Improved tan
(

Φ(ξ)
2

)
-expansion Method

Consider a nonlinear partial differential equation of the form

H (u, ut, ux, uxx, uxt, utt, · · ·) = 0. (2.1)

The improved tan
(

Φ(ξ)
2

)
-expansion method consists of the following main steps:

Step1. Using the transformation u = u(ξ), ξ = x − ωt, we reduce the Eq. (2.1) to an ordinary differential
equation.

Q
(
u, u′,−ωu′, u′′, ω2u′′, · · ·

)
= 0. (2.2)

Step2. Suppose that Eq. (2.2) has a formal solution

u(ξ) = S(Φ) =

N∑
k=0

Ak

[
p+ tan

(
Φ(ξ)

2

)]k
+

N∑
k=1

Bk

[
p+ tan

(
Φ(ξ)

2

)]−k
, (2.3)
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where Ak (0 6 k 6 N) and Bk (1 6 k 6 N) are arbitrary constants to be determined, and Φ = Φ(ξ) satisfies the
following ordinary differential equation

Φ′(ξ) = a sin Φ(ξ) + b cos Φ(ξ) + c, (2.4)

where some special solutions of Eq. (2.4) can be seen in [25].

Step3. Substituting Eq. (2.3) and Eq. (2.4) into Eq. (2.2). Collecting the tank
(

Φ(ξ)
2

)
, (−N 6 k 6 N), then

setting each coefficient to zero, we can get a set of over-determined equations for Ak (0 6 k 6 N), Bk (1 6 k 6 N),
a, b, c and p.

Step4. Solving the algebraic equations in step 3, then substituting A0, A1, B1, · · · , AN , BN , a, b, c, p in Eq. (2.3)

3 Application of Improved tan
(

Φ(ξ)
2

)
-expansion method

In order to find exact solutions of Eq. (1.1), we first make the following transformations:

u = u(ξ), ξ = x− ωt. (3.1)

Substituting Eq. (3.1) into Eq. (1.1) yields

ε(α3 − ω2α4)u(4) − 2εα1(uu′)′ + (ω2 − 1)u′′ = 0. (3.2)

Integrating Eq. (3.2) twice, we get

ε(α3 − ω2α4)u′′ − εα1u
2 + (ω2 − 1)u = 0. (3.3)

Taking the homogeneous balance between u′′ and u2 in Eq. (3.3), we obtain N = 2.

Therefore, the solution of Eq. (3.3) takes the form

u(ξ) = A0 +A1 tan

(
Φ(ξ)

2

)
+A2tan2

(
Φ(ξ)

2

)
+B1tan−1

(
Φ(ξ)

2

)
+A1tan−2

(
Φ(ξ)

2

)
, (3.4)

where
Φ′(ξ) = a sin Φ(ξ) + b cos Φ(ξ) + c.

Substituting Eq. (3.4) and Eq. (3) into Eq. (3.3), the left hand side is converted into polynomials

in tan
(

Φ(ξ)
2

)
. Setting each coefficient of each polynomial to zero, we get a set of over-determined

equations for A0, A1, A2, B1, B2, a, b, c, ω. all the coefficients of
(

tan
(

Φ(ξ)
2

))n
are compared, where

n = −4,−3,−2,−1, 0, 1, 2, 3, 4 with zero providing the following set of algebraic equations:

3

2
ε(α3 − ω2α4)(c− b)2A2 − εα1A2

2 = 0, (3.5)

ε(α3 − ω2α4)

[
5(c− b)A2 +

1

2
(c− b)2A1

]
− 2εα1A1A2 = 0, (3.6)

ε(α3 − ω2α4)

[
4(a2 +

1

2
c2 − 1

2
b2)A2 +

3

2
a(c− b)A1

]
− εα1A1

2 − 2εα1A0A2 + (ω2 − 1)A2 = 0, (3.7)

ε(α3 − ω2α4)

[
3a(b+ c)A2 + (a2 +

1

2
c2 − 1

2
b2)A1

]
− 2εα1A0A1 − 2εα1A2B1 + (ω2 − 1)A1 = 0, (3.8)

ε(α3 − ω2α4)

[
1

2
(b+ c)2A2 +

1

2
(c− b)2B2 +

1

2
a(b+ c)A1 +

1

2
a(c− b)B1

]
−εα1A0

2 − 2εα1A1B1 − 2εα1A2B2 + (ω2 − 1)A0 = 0,

(3.9)
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ε(α3 − ω2α4)

[
3a(c− b)B2 + (a2 +

1

2
c2 − 1

2
b2)B1

]
− 2εα1A0B1 − 2εα1A1B2 + (ω2 − 1)B1 = 0. (3.10)

ε(α3 − ω2α4)

[
4(a2 +

1

2
c2 − 1

2
b2)B2 +

3

2
a(b+ c)B1

]
− εα1B1

2 − 2εα1A0B2 + (ω2 − 1)B2 = 0, (3.11)

ε(α3 − ω2α4)

[
5a(b+ c)B2 +

1

2
(b+ c)2B1

]
− 2εα1B1B2 = 0, (3.12)

3

2
(b+ c)2ε(α3 − ω2α4)B2 − εα1B2

2 = 0, (3.13)

By solving the set of over-determined equations Eq. (3.5)–Eq. (3.13), we obtained the following sets of non-trivial
solutions.

Case1.

a = a, b = b, c = c,∆ = a2 + b2 − c2, l = ±1, ξ̄ = ξ + ξ0, ω = ±
√

1 + lεα3∆

1 + lεα4∆
,

A0 =
(α3 − α4)(a2 − 2b2 + 2c2 + l∆)

2α1(1 + lεα4∆)
, A1 =

3(α3 − α4)a(c− b)
α1(1 + lεα4∆)

, A2 =
3(α3 − α4)(c− b)2

2α1(1 + lεα4∆)
,

B1 = 0, B2 = 0, u(ξ) = A0 + α1 tan

(
Φ(ξ)

2

)
+A2tan2

(
Φ(ξ)

2

)
.

where ξ0 is arbitrary constant. With 19 kinds of results of reference [25], we obtain solutions of equation Eq.
(1.1):

When ∆ < 0 and b− c 6= 0, then the following trigonometric functional solutions are obtained:

u1(ξ) =
(α3 − α4)(a2 − 2b2 + 2c2 + l∆)

2α1(1 + lεα4∆)
− 3(α3 − α4)a

α1(1 + lεα4∆)

(
a−
√
−∆ tan

(√
−∆

2
ξ̄

))
+

3(α3 − α4)

2α1(1 + lεα4∆)

(
a−
√
−∆ tan

(√
−∆

2
ξ̄

))2

.

(3.14)

When ∆ > 0 and b− c 6= 0, then the following hyperbolic functional solutions are obtained:

u2(ξ) =
(α3 − α4)(a2 − 2b2 + 2c2 + l∆)

2α1(1 + lεα4∆)
− 3(α3 − α4)a

α1(1 + lεα4∆)

(
a+
√

∆ tanh

(√
∆

2
ξ̄

))
+

3(α3 − α4)

2α1(1 + lεα4∆)

(
a+
√

∆ tanh

(√
∆

2
ξ̄

))2

.

(3.15)

When a = 0, c = 0, then the following trigonometric functional solutions are obtained:

u3(ξ) =
(α3 − α4)(−2b2 + lb2)

2α1(1 + lεα4b2)
+

3(α3 − α4)b2

2α1(1 + lεα4b2)
tan2

(
1

2
arctan

[
e2bξ̄ − 1

e2bξ̄ + 1
,

2ebξ̄ − 1

e2bξ̄ + 1

])
. (3.16)

When ∆ = 0, then the following rational functional solutions are obtained:

u4(ξ) =
3(α3 − α4)a2

2α1
− 3(α3 − α4)a

α1

(
aξ̄ + 2

ξ̄

)
+

3(α3 − α4)

2α1

(
aξ̄ + 2

ξ̄

)2

. (3.17)

When a = c = ka, b = −ka, then the following exponential functional solutions are obtained:

u5(ξ) =
(α3 − α4)(k2a2 + lk2a2)

2α1(1 + lεα4k2a2)
+

6(α3 − α4)k2a2

α1(1 + lεα4k2a2)

(
ekaξ̄

1− ekaξ̄
+

(
ekaξ̄

1− ekaξ̄

)2)
. (3.18)
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When c = a, then the following exponential functional solutions are obtained:

u6(ξ) =
(α3 − α4)(3a2 − 2b2 + lb2)

2α1(1 + lεα4b2)
− 3(α3 − α4)a(a− b)

α1(1 + lεα4b2)

(
(a+ b)ebξ̄ − 1

(a− b)ebξ̄ − 1

)

+
3(α3 − α4)(a− b)2

2α1(1 + lεα4b2)

(
(a+ b)ebξ̄ − 1

(a− b)ebξ̄ − 1

)2

.

(3.19)

When a = c, then the following exponential functional solutions are obtained:

u7(ξ) =
(α3 − α4)(3c2 − 2b2 + lb2)

2α1(1 + lεα4b2)
+

3(α3 − α4)c(c− b)
α1(1 + lεα4b2)

(
(b+ c)ebξ̄ + 1

(b− c)ebξ̄ − 1

)

+
3(α3 − α4)(c− b)2

2α1(1 + lεα4b2)

(
(b+ c)ebξ̄ + 1

(b− c)ebξ̄ − 1

)2

.

(3.20)

When c = −a, then the following exponential functional solutions are obtained:

u8(ξ) =
(α3 − α4)(3a2 − 2b2 + lb2)

2α1(1 + lεα4b2)
− 3(α3 − α4)a(a+ b)

α1(1 + lεα4b2)

(
ebξ̄ + b− a
ebξ̄ − b− a

)

+
3(α3 − α4)(a+ b)2

2α1(1 + lεα4b2)

(
ebξ̄ + b− a
ebξ̄ − b− a

)2

.

(3.21)

When b = −c, then the following exponential functional solutions are obtained:

u9(ξ) =
(α3 − α4)(a2 + la2)

2α1(1 + lεα4a2)
− 6(α3 − α4)ac

α1(1 + lεα4a2)

(
aeaξ̄

ceaξ̄ − 1

)
+

6(α3 − α4)c2

α1(1 + lεα4a2)

(
aeaξ̄

ceaξ̄ − 1

)2

. (3.22)

When a = b = 0, then the following trigonometric functional solutions are obtained:

u10(ξ) =
(α3 − α4)(2c2 − lc2)

2α1(1− lεα4c2)
+

3(α3 − α4)c2

2α1(1− lεα4c2)
tan2

(
cξ̄

2

)
. (3.23)

Case2.

a = a, b = b, c = c,∆ = a2 + b2 − c2, l = ±1, ξ̄ = ξ + ξ0, ω = ω = ±
√

1 + lεα3∆

1 + lεα4∆
,

A0 =
(α3 − α4)(a2 − 2b2 + 2c2 + l∆)

2α1(1 + lεα4∆)
, A1 = 0, A2 = 0, B1 =

3(α3 − α4)

α1(1 + lεα4∆)
a(b+ c),

B2 =
3(α3 − α4)

2α1(1 + lεα4∆)
(b+ c)2, u(ξ) = A0 +B1tan−1

(
Φ(ξ)

2

)
+B2tan−2

(
Φ(ξ)

2

)
.

where ξ0 is arbitrary constant. With 19 kinds of results of reference [25], we obtain solutions of equation Eq.
(1.1):

When ∆ < 0 and b− c 6= 0, then the following trigonometric functional solutions are obtained:

u11(ξ) =
(α3 − α4)(a2 − 2b2 + 2c2 + l∆)

2α1(1 + lεα4∆)
+

3(α3 − α4)a(b2 − c2)

α1(1 + lεα4∆)

(
a−
√
−∆ tan

(√
−∆

2
ξ̄

))−1

+
3(α3 − α4)(b2 − c2)

2

2α1(1 + lεα4∆)

(
a−
√
−∆ tan

(√
−∆

2
ξ̄

))−2

.

(3.24)

When ∆ > 0 and b− c 6= 0, then the following hyperbolic functional solutions are obtained:

u12(ξ) =
(α3 − α4)(a2 − 2b2 + 2c2 + l∆)

2α1(1 + lεα4∆)
+

3(α3 − α4)a(b2 − c2)

α1(1 + lεα4∆)

(
a+
√

∆ tanh

(√
∆

2
ξ̄

))−1

+
3(α3 − α4)(b2 − c2)

2

2α1(1 + lεα4∆)

(
a+
√

∆ tanh

(√
∆

2
ξ̄

))−2

.

(3.25)
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When ∆ = 0, then the following rational functional solutions are obtained:

u13(ξ) =
3(α3 − α4)a2

2α1
− 3(α3 − α4)a3

α1

(
aξ̄ + 2

ξ̄

)−1

+
3(α3 − α4)a4

2α1

(
aξ̄ + 2

ξ̄

)−2

. (3.26)

When a = b = c = ka, then the following exponential functional solutions are obtained:

u14(ξ) =
(α3 − α4)(k2a2 + lk2a2)

2α1(1 + lεα4k2a2)
+

6(α3 − α4)k2a2

α1(1 + lεα4k2a2)

((
ekaξ̄ − 1

)−1

+ (ekaξ̄ − 1)
−2
)
. (3.27)

When c = a, then the following exponential functional solutions are obtained:

u15(ξ) =
(α3 − α4)(3a2 − 2b2 + lb2)

2α1(1 + lεα4b2)
− 3(α3 − α4)a(a+ b)

α1(1 + lεα4b2)

(
(a+ b)ebξ̄ − 1

(a− b)ebξ̄ − 1

)−1

+
3(α3 − α4)(a+ b)2

2α1(1 + lεα4b2)

(
(a+ b)ebξ̄ − 1

(a− b)ebξ̄ − 1

)−2

.

(3.28)

When a = c, then the following exponential functional solutions are obtained:

u16(ξ) =
(α3 − α4)(3c2 − 2b2 + lb2)

2α1(1 + lεα4b2)
+

3(α3 − α4)c(b+ c)

α1(1 + lεα4b2)

(
(b+ c)ebξ̄ + 1

(b− c)ebξ̄ − 1

)−1

+
3(α3 − α4)(b+ c)2

2α1(1 + lεα4b2)

(
(b+ c)ebξ̄ + 1

(b− c)ebξ̄ − 1

)−2

.

(3.29)

When c = −a, then the following exponential functional solutions are obtained:

u17(ξ) =
(α3 − α4)(3a2 − 2b2 + lb2)

2α1(1 + lεα4b2)
+

3(α3 − α4)a(b− a)

α1(1 + lεα4b2)

(
ebξ̄ + b− a
ebξ̄ − b− a

)−1

+
3(α3 − α4)(b− a)2

2α1(1 + lεα4b2)

(
ebξ̄ + b− a
ebξ̄ − b− a

)−2

.

(3.30)

When a = b = 0, then the following trigonometric functional solutions are obtained:

u18(ξ) =
(α3 − α4)(2c2 − lc2)

2α1(1− lεα4c2)
+

3(α3 − α4)c2

2α1(1− lεα4c2)
tan−2

(
cξ̄

2

)
. (3.31)

When b = c, then the following rational functional solutions are obtained:

u19(ξ) =
(α3 − α4)(a2 + la2)

2α1(1 + lεα4a2)
+

6(α3 − α4)a2c

α1(1 + lεα4a2)

(
eaξ̄ − c

)−1

+
6(α3 − α4)a2c2

α1(1 + lεα4a2)

(
eaξ̄ − c

)−2

. (3.32)

Case3.

a = 0, b = b, c = c, l = ±1, ξ̄ = ξ + ξ0, ω = ±

√
1 + 4lεα3(c2 − b2)

1 + 4lεα4(c2 − b2)
, A1 = 0, B1 = 0,

A0 =
(1 + 2l)(α3 − α4)(c2 − b2)

α1(1 + 4lεα4(c2 − b2))
, A2 =

3(α3 − α4)(c− b)2

2α1(1 + 4lεα4(c2 − b2))
, B2 =

3(α3 − α4)(b+ c)2

2α1(1 + 4lεα4(c2 − b2))
,

u(ξ) = A0 +A2tan2

(
Φ(ξ)

2

)
+B2tan−2

(
Φ(ξ)

2

)
.

where ξ0 is arbitrary constant. With 19 kinds of results of reference [25], we obtain solutions of equation Eq.
(1.1):
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When ∆ < 0 and b− c 6= 0, then the following trigonometric functional solutions are obtained:

u20(ξ) =
(1 + 2l)(α3 − α4)(c2 − b2)

α1(1 + 4lεα4(c2 − b2))
+

3(α3 − α4)(c2 − b2)

2α1(1 + 4lεα4(c2 − b2))
tan2

(√
c2 − b2

2
ξ̄

)
+

3(α3 − α4)(c2 − b2)

2α1(1 + 4lεα4(c2 − b2))
tan−2

(√
c2 − b2

2
ξ̄

)
.

(3.33)

When ∆ > 0 and b− c 6= 0, then the following hyperbolic functional solutions are obtained:

u21(ξ) =
(1 + 2l)(α3 − α4)(c2 − b2)

α1(1 + 4lεα4(c2 − b2))
+

3(α3 − α4)(b2 − c2)

2α1(1 + 4lεα4(c2 − b2))
tanh2

(√
b2 − c2

2
ξ̄

)
+

3(α3 − α4)(b2 − c2)

2α1(1 + 4lεα4(c2 − b2))
tanh−2

(√
b2 − c2

2
ξ̄

)
.

(3.34)

When a = 0, c = 0, then the following trigonometric functional solutions are obtained:

u22(ξ) =
(−1− 2l)(α3 − α4)b2

α1(1− 4lεα4b2)
+

3(α3 − α4)b2

2α1(1− 4lεα4b2)
tan2

(
1

2
arctan

[
e2bξ̄ − 1

e2bξ̄ + 1
,

2ebξ̄ − 1

e2bξ̄ + 1

])

+
3(α3 − α4)b2

2α1(1− 4lεα4b2)
tan−2

(
1

2
arctan

[
e2bξ̄ − 1

e2bξ̄ + 1
,

2ebξ̄ − 1

e2bξ̄ + 1

])
.

(3.35)

When c = a, then the following exponential functional solutions are obtained:

u23(ξ) =
(−1− 2l)(α3 − α4)b2

α1(1− 4lεα4b2)
+

3(α3 − α4)b2

2α1(1− 4lεα4b2)

[(
bebξ̄ − 1

−bebξ̄ − 1

)2

+

(
bebξ̄ − 1

−bebξ̄ − 1

)−2]
. (3.36)

When a = c, then the following exponential functional solutions are obtained:

u24(ξ) =
(−1− 2l)(α3 − α4)b2

α1(1− 4lεα4b2)
+

3(α3 − α4)b2

2α1(1− 4lεα4b2)

[(
bebξ̄ + 1

bebξ̄ − 1

)2

+

(
bebξ̄ + 1

bebξ̄ − 1

)−2]
. (3.37)

When c = −a, then the following exponential functional solutions are obtained:

u25(ξ) =
(−1− 2l)(α3 − α4)b2

α1(1− 4lεα4b2)
+

3(α3 − α4)b2

2α1(1− 4lεα4b2)

[(
ebξ̄ + b

ebξ̄ − b

)2

+

(
ebξ̄ + b

ebξ̄ − b

)−2]
. (3.38)

When a = b = 0, then the following trigonometric functional solutions are obtained:

u26(ξ) =
(1 + 2l)(α3 − α4)c2

α1(1 + 4lεα4c2)
+

3(α3 − α4)c2

2α1(1 + 4lεα4c2)

[
tan2

(
cξ̄

2

)
+ tan−2

(
cξ̄

2

)]
. (3.39)

4 Analysis and Discussion

In this section, we draw some images of the solutions and compare the solutions obtained in this manuscript
with some known solutions.

Firstly, we select four different types of solutions from the obtained solutions and draw 3D graphs of these
solutions. Some exact solutions are shown numerically in Fig. 1a - 1d.

Fig 1a. Hyperbolic functional solution u2(ξ) for the values of parameters a = b = 1, c = 0, l = 1, α1 = 3, α3 =
7, α4 = 1, ε = 1

2
, ξ0 = 0.
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Fig 1b. Trigonometric functional solution u1(ξ) for the values of parameters a = 1, b = 0, c = 3, l = 1, α1 =
3, α3 = 7, α4 = 1, ε = 1

2
, ξ0 = 0.

Fig 1c. Rational functional solution u13(ξ) for the values of parameters a = c = 1, b = 0, l = 1, α1 = 3, α3 =
7, α4 = 1, ε = 1

2
, ξ0 = 0.

Fig 1d. Exponential functional solution u25(ξ) for the values of parameters b = 1, l = 1, α1 = 3, α3 = 7, α4 =
1, ε = 1

2
, ξ0 = 0.

Fig. 1. Exact solutions of the generalized Pochhammer-Chree equation when n = 1

We compared the solutions obtained in this manuscript with the existing solution, as shown in Table 1. In Table
1, the first column shows the different values of parameters such as a, b, c and l, the second column shows the
equation number of this manuscript, and the third column shows the equation number in the existing literature.
It can be found that some of the solutions obtained in this manuscript consistent with existing solutions,

which shows the effectiveness of the improved tan
(

Φ(ξ)
2

)
-expansion method. For example, the solution (3.25)
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consistent with the solution (17) in [4] when the parameter satisfies a = λ, b2 − c2 = −4µ, a2 + b2 − c2 = Θ.

What’s more, the improved tan
(

Φ(ξ)
2

)
-expansion method provides a lot of new solutions with additional free

parameters, see (3.16),(3.18),(3.19),(3.20),(3.21), (3.28),(3.29),(3.30),(3.35),(3.36),(3.37),(3.38). The limitation
of this method is that the traveling wave solution of this equation is obtained. And we have assumed the form
of the solution of this equation in advance. We will continue to study other types of solutions to this equation
in the future.

Table 1. Comparison of solutions obtained in this manuscript with already existing solutions

Parametric values Solutions obtained in this manuscript already existing solutions

a = λ, b2 − c2 = −4µ, a2 + b2 − c2 = Θ (3.25),(3.24),(3.27) , (3.26) (17),(18),(19),(20)[4]

a = 0, b = c (3.17) (21)[4]

a = 1, c = −1
d

(3.32) (12),(13)[6]

A = 0, k = 1, λ = 1, δ2 = 3
4
(c2 − b2), a = 0 (3.25) (10)[10]

A = 0, k = 1, λ = 1, c = 2
√

δ2
3

(3.31) (11)[10]

a = c1, c = ±c2, l = −1 (3.22) (18),(19)[14]
a = 0, b = c0 − c2, c = c0 + c2, l = 1 (3.24),(3.25) (21),(22)[14]

a = 0, b = c0 − c2, c = c0 + c2, l = −1 (3.14),(3.15) (24),(25)[14]

b = c2 − c0, c = −c0 − c2, l = −1 (3.33),(3.34) (27),(28)[14]

c = 2, l = −1 (3.39) (43)[14]

b2 − c2 = 4, l = 1 (3.34) (22)[15]

c = 2 (3.23) (43) [16]

... (3.16),(3.18),(3.19),(3.20),(3.21),(3.28) ,(3.29),(3.30),(3.35) ,(3.36),(3.37),(3.38) No solution found corresponding to this solutions

5 Conclusion

In this manuscript, the improved tan
(

Φ(ξ)
2

)
-expansion method is applied to derive traveling wave solutions

to the non-dissipative double dispersive equation in microstructured solids. Abundant exact traveling wave
solutions are obtained, including hyperbolic function solutions, trigonometric function solutions, exponential
solutions, and rational solutions. It is worth noting that we got some new solutions, and some solutions are
consistent with already published results. Seeking the exact solution of a nonlinear partial differential equation
with a physical background is helpful to understand the motion law of matter and to explain the corresponding
physical phenomena scientifically. In the future, we will continue to explore its physical significance from the
new analytical solution we have obtained. Moreover, we will try to solve more partial differential equations
that arise in engineering, mathematical physics, and other scientific real-time application fields by the improved

tan
(

Φ(ξ)
2

)
-expansion method.
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