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ABSTRACT 
 

Aging is the cause of the loss of vitality on a day-to-day basis, a risk factor for developing chronic 
diseases and ultimately leading to death. This inevitable biological process is yet to be completely 
understood. A hypothesis states that manipulation of aging process can enable maintain 
physiological function and perhaps prevents age related diseases. Currently, model organisms are 
being used in the investigation of the genetic and molecular mechanism of the aging process. In 
this study, the adequacy of the major model system, the fruit fly (Drosophila melanogaster) and the 
rodent mouse (Mus musculus), was analyzed using Jepetto software through comparison of all the 
genomes of the model organisms with all the genomes of human genome by network statistics of 
string interactions. The software mapped the gene set of humans and the two model organisms on 
an interaction network and computed the gene properties by network density, centrality nodes and 
clustering coefficient. Of all three genomes, the human gene network is the largest and dense with 
the highest number of neighbors. On the other hand, the mouse and drosophila network are 
relatively smaller and in terms of density, the former is less dense, and the latter is sparse. The 
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average number of neighbors of both model organisms are similar and approximately 25% of the 
human network. In the distance/shortest path length between the nodes, there was a decreasing 
order of connectivity in drosophila to mouse to human. The node with the path length 2 exhibited 
the highest frequency in all the organisms. In between centrality distribution, the nodes of the 
human network were observed to be closer. On comparison, mouse network is closer while the 
drosophila network is widely spread. The information spread between the nodes is measured by 
the closeness centrality distribution plot and the human network found to have highest closeness 
centrality than the other two species. Neighborhood connectivity distribution. The network 
clustering coefficient of genes of drosophila was much more widespread than the other two 
species. 
 

 

Keywords: Aging Jepetto software; network statistics; drosophila; mouse; human; closeness. 
 

1. INTRODUCTION  
 

Globally the average age a human being can live 
up to was estimated as 73.2 years, with both 
sexes combined. This is a drastic increase, 
nearly doubled, from the 1950s expectancy rate 
of 47 years (United Nations Population Division 
estimate) Worldometers. (n.d.). The increase in 
the average living age of the humans can only be 
owed to the great breakthroughs in the medicinal 
field in the past 70 years such as the 
development of life saving vaccines for robust 
diseases, polio vaccine by Jonas Salk (Spice 
2008), measles vaccine by Maurice Ralph 
Hilleman (CDC 2012); organ transplant 
procedure, first human kidney transplant by 
Joseph Murray (Tullius 2013), in 1963 first liver 
transplant in human was performed by Thomas 
Starzl (Cronin 2010) and lung transplant by 
James Hardy (1996); development of therapeutic 
agents for treatments, first human recombinant 
insulin by Eli Lilly and Company (Walsh 2005), 
first human embryonic stem cell developed in 
1988 by James Alexander Thomson (Embryonic 
stem cell lines derived from human blastocysts); 
development in disease diagnosis and surgical 
techniques, Thomas Fogarty’s invention of 
balloon catheter (Riordan 2000), capsule 
endoscopy procedure by Tarun Mullick in 1985, 
intravascular stent procedure in 1988 by Julio 
Palmaz (2004). So far in the 21st century, the 
scientific research had achieved human genome 
sequencing, stem cell technology for organs 
growing in vitro, 3D printing technique for 
developing human parts and vaccines for novel 
viral diseases. Even with the enormous 
innovations, the scientific community is still being 
unable to fully understand and control the one 
major cause for the inevitable death, i.e., age. 
 

Aging is an irreversible biological process of life 
that results in the progressive decline in the 
function and performance of the organ systems 
over the life span United Nations. (2015). Several 

theories have been proposed for the mechanism 
of the aging process, but none have been 
proven. According to Kirkwood, aging is triggered 
by the accumulation of damaging molecules 
inside the cells influenced by genetic control. 
This hypothesis proposed as the disposable 
soma theory. The cells have a system to repair 
the damage caused for cell status maintenance. 
This theory suggests that shortage of nutrients 
will lead the organisms to balance energy 
maintenance between germ cell lines and 
somatic cell lines (Kuningas et al., 2008). Both 
exogenous and endogenous biochemical and 
biological stress can lead to the accumulation of 
those molecules. Damage can be caused by 
extrinsic sources such as UV irradiation and 
toxins or intrinsic sources such as reactive 
oxygen species and reactive nitrogen species. 
Throughout the course of life, the body will be in 
constant vulnerability and thus with increasing 
age, it is more prone to diseases and declining 
health (Christensen et al., 2009). An alternative 
to that of Kirkwood’s theory was Programmed 
longevity theory and according to that, life has 
been programmed to maintain fitness during the 
healthy state of life (Longo and Finch 2003). The 
antagonistic pleiotropy theory proposed by 
George Williams suggests that aging may be a 
result of the natural selection that has led to the 
fixation of late-acting deleterious alleles in a 
population for it is advantageous in early part of 
life (Kirkwood 2005).  

 
Although the medicinal innovations have been 
achieved to expand our life span, a major 
concern is the quality of that extended life. Old 
age is associated with diseases and chronic 
conditions such as arthritis, cardiovascular 
diseases, obesity, hypertension, diminution of 
cognitive function and also limitations of mobility 
and functions (Longo et al., 2005). Maintaining 
the quality of life becomes very difficult in the 
aged community. But there are also instances 
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where the individual over 80 years old may 
present with the physical and mental ability as 
same as in a much younger individual of about 
20 years of age and vice versa United Nations. 
(2015). This suggests that aging is a complex 
process and widely variable among individuals. 
Aging is influenced by factors such as genetic, 
lifestyle, socio-economic status and sex of each 
individual. A complete understanding of the aging 
mechanism can be gained only by intervening 
experiments and models systems.    
 

Human aging takes place over decades hence 
cannot be studied in vivo using human subjects. 
Through observation, researchers are trying to 
understand human aging process along with their 
associated pathologies throughout their life span, 
while also comparing young and old individuals 
by cross sectional studies. Genetic studies of 
longevity can reveal information only at the 
molecular level. These types of studies cannot 
reveal a thorough understanding of human aging. 
Hence model organisms are necessary in 
gerontology.  
 

Traditional biomedical model organisms include 
yeast, mice, rats, fruit flies, and roundworms. 
They have well established widespread 
resources, reagents and protocols that allow 
studies to be conducted in a faster and cheaper 
way.  
 

The first and the foremost of the major model 
systems in the gerontology study of human aging 
process is the human cells. In vitro systems of 
human cells will be the most relevant model for 
the purpose of characterization of intrinsic cell 
factors of aging but the key aspects of aging like 
diseases and immune response, interactions 
among organs and tissues cannot be 
recapitulated (Brunet 2020). Another argument 
against cellular models is that most cellular 
models of aging, such as replicative senescence, 
are based on measurements of cell proliferation 
which are not necessarily a measurement of 
vitality. Cancer, for instance, is derived from 
rapid, uncontrolled cellular proliferation. Other 
methods exist to measure aging in cells, such as 
stress resistance, but the relevance of these 
methods to organismal aging remains to be 
demonstrated. The second most used model is 
the unicellular organisms such as the yeast 
Saccharomyces cerevisiae. Yeast and 
mammalian genome have high similarities. The 
maintenance of these simple eukaryote models 
are relatively cheap and easy and also facilitate 
high throughput methodologies to be performed 
(Oliveira et al., 2017). Two pathways exist in 

yeast for aging, the replicative life span and 
logical life span. The mediators in those cellular 
pathways have found to have orthologues in 
higher eukaryotes implying the conservation of 
mechanism from yeast to human.  This makes 
Yeast an effective model in understanding 
human diseases (Taormina et al., 2019). The 
roundworm Caenorhabditis elegans is 
established as one of the model organisms of 
human aging in 1965. The nematode is relatively 
small in size (adults only reach up to 1.5 mm in 
length) has a generation time of 3-5 days and a 
life span of 2-3 weeks. The worm constitutes less 
than 1000 cells and 19000 genes, of which half 
of the percentage is found to be conserved in the 
human genome. This makes this organism ideal 
for understanding simple phenotypes and 
longevity (Boulin and Hobert 2012). For more 
than a century, the fruit fly Drosophila 
melanogaster had been the key model organism 
for ageing research. Apart from low-cost 
maintenance, the factor that makes it an ideal 
candidate for ageing research is their genome. 
The genome of the fly has a higher proportion of 
human equivalent ageing related disease genes. 
Genetic manipulation studies can be conducted 
in a larger population. Research in this model 
organism can shed light on ageing progression 
and the effects of environmental and genetic 
factors (Kennedy et al., 2017). The commonly 
used mammalian model for understanding the 
aging process is mice. They had already been 
well established to test therapeutics. As the 
model organism, it is small and has short life 
cycles, no more than 4 years. It makes them 
inexpensive subjects for aging studies, and the 
ability to genetically manipulate them gives 
researchers ample opportunities to test their 
theories and unravel molecular and genetic 
mechanisms of aging. Research with lower 
organisms and non-vertebrates can be 
advantageous to some extent but a mammalian 
model is unavoidable. Humans and mice have 
similar physiological functions and biological 
systems such as cardiovascular system and 
nervous system (Taormina et al., 2019). 

 
Model organisms had been widely used to 
understand the aging process for it is simpler 
than a human, easily maintained and affordable. 
Another advantage of those organisms is that 
series of rigorous research can be performed to 
understand and control aging process without 
ethical problems. The knowledge on the aging 
process that we have learned so far had been 
gained using those organisms. Their small size 
and easy maintenance enable employing large-
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scale genetic screens and functional genomics, 
that are not possible in humans or in other non-
traditional model organisms. To give an example, 
thousands of genes and drugs can be screened 
for effects on worm lifespan, so lower model 
organisms are adequate for initial surveys. 
 
The downside of model organisms, of course, is 
that it is nearly impossible to tell whether an 
organism is representative of human aging or 
not. It has been argued that similar mechanisms 
operate across many species while others have 
proposed that some aging mechanisms (called 
“public”) are common to all species while others 
are unique (“private”) of each species. Since the 
basic blocks of life are common to most known 
species, common pathways might be involved in 
aging across phylogeny. Could it be that the 
weakest pathway succumbing to senescence is 
the same in all organisms? Such hypothesis is 
hard to believe based on the huge diversity of 
aging phenotypes found in Nature, and certain 
animals appear to age for different causes than 
us. For example, the male Australian mouse 
(Antechinus stuartii) has a bizarre aging 
phenotype. The rapid death following 
reproduction observed in Antechinus and in other 
species is much different from the gradual 
waning of humans and so Antechinus is not a 
good model of human aging as different 
mechanisms are likely involved. The traditional 
biomedical model organisms all exhibit a                  
gradual decline, but the question remains of 
whether they are accurate paradigms of human 
aging. 
 

This review analyzed the adequacy of the major 
model organisms of human ageing, the fruit fly 
(Drosophila melanogaster) and the rodent mouse 
(Mus musculus), using JEPETTO software 
through comparison of all the genomes of the 
model organisms with all the genomes of human 
genome by network statistics of string 
interactions.  
 

JEPETTO (Java Enrichment of Pathways 
Extended To Topology) is an open source 
software which uses topological analysis and 
protein interaction networks for integrative 
analysis of human gene set such as finding 
connection between known cellular pathways 
and genes useful for specific functions. It is a 
plugin that enables a user to integrate their 
experiment derived genomic data for analysis 
such as network enrichment, expansion of 
pathways and topological matching by 
communication with previously published three 
web servers (Winterhalter et al., 2014). 

2. MATERIALS AND METHODS  
 

A Cytoscape plugin analyzer was used for the 
analysis of the three gene sets of human, mice 
and fruit fly. The software used TopoGSA server 
to identify the topological relationship between 
the three gene sets. Two sets of parameters 
were analyzed by the software namely simple or 
local parameters and global parameters. Simple 
parameters include clustering coefficient, 
connected components, neighborhood 
connectivity, network density and diameter, 
number of nodes and average number of 
neighbors. The standard software tool and 
parameters used for the analysis. 
 

Global parameters are pathways related, that 
included betweenness centrality, closeness 
centrality, neighborhood connectivity distribution, 
average clustering coefficient, node degree 
distribution, shared neighborhood distribution, 
stress centrality and topological coefficient).  
 

3. RESULTS AND DISCUSSION 
 

A node in a biological network corresponds to the 
genes, in some cases it is often proteins or 
metabolites while the physical relationship 
between those entities or their expression of 
gene regulation are represented as edges 
(Merico 2009). A cystoscope provides models of 
biological systems and enables the user to better 
understand visualization, analysis and 
interpretation. Here, using Cystoscope software 
undirected network statistics were performed for 
the three genomes, human mouse and fruit fly. 
Undirected type statistics is more specific than 
the directed one for this type of analysis (Shimbel 
1953). The basic assumption of this statistics is 
that reciprocity exists between two nodes 
connected by edges. The statistics helps to 
identify whether relationships exist between the 
human network and the two commonly used 
most relevant model organisms of human aging 
mechanism, so that we can rely on the results 
obtained from them to take measures in the 
human systems for aging control and related 
pathologies. 
 

3.1 Simple or Local Parameters 
 

In the Cytoscape software, for every node in the 
network, a variety of local parameters were 
computed which are summarized in Table 1 and 
represented in Figs. 1a, 1b and 1c. 
 

The parameters computed are connected 
components, clustering coefficient, number of 
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Table 1. Summary of the simple parameters of human, mouse and fruit fly network 
 

 
 
nodes, network density, diameter, centralization 
values, average number of neighbors, the 
shortest path and the analysis time. 
 
Two nodes in an undirected network are 
connected if edges are present between them. If 
all the nodes within a network are pairwise 
connected, they form a connected component. 
The number of connected components is the 
representation of the strength of the network. 
The lower the value the stronger the connectivity. 
The connected component value of human and 
mouse is 1 while that of the fruit fly is 2. This 
represents that there is a stronger connectivity 
within the human and mouse network, but the 
connectivity is slightly lesser in that of the fruit fly 
network. 
 
Clustering coefficient is a measure of the existing 
links connecting a node to every other node in 
the neighborhood. It is the ratio of the number of 
edges between the neighbors of a node to that of 
the maximum number of edges possible between 
the neighbors of a gene node. The value of this 
parameter will be between 0 and 1. The 
clustering co-efficient of the human network was 
integrated as 0.529 for a total of 302 nodes while 
for that of the mouse and fruit fly were 0.498 for a 
total of 119 nodes and 0.421 for a total of 140 
nodes respectively. The value 0 means that no 
nodes are connected in the neighborhood and 
the value 1 means every node in the 
neighborhood is connected to every other node 
indicating that the neighborhood is complete. In 
other words, the clustering coefficient value 
closer to zero indicates lesser connections 
between the nodes in the neighborhood and 

value closer to 1 indicates higher number of 
connections between the nodes. Both mouse 
and fruit fly network exhibited better clustering 
coefficient for their total number of nodes. This 
signifies that in both the gene networks the 
communication between genes is well 
established.  
 
In human networks each node has an average of 
45.689 neighbors with a network diameter value 
of 4. In mouse network, each node has an 
average of 11.731 neighbors and the diameter 
value of 6 while each node in the fruit fly network 
has about 11.257 average neighbors and the 
network diameter is 6. The diameter of a network 
is the measure of the shortest path of two of the 
most distantly situated nodes, in fact, it is the 
longest path of a network from all the shortest 
paths that can be calculated. On the other hand, 
density of a network is the ratio between the 
number of edges in a network to the number of 
possible edges with respect to the number of 
nodes. Our genome analysis revealed the 
density of all the three networks as 0.152, 0.099 
and 0.081 respectively for human, mouse and 
fruit fly network. On the basis of network 
diameter and density of network, when all three 
networks were compared, it is observed that the 
human network is the most dense followed by 
the mouse network which is not as dense as that 
of human while the fruit fly network was more 
sparse compared to the other two networks.  
 
From the charts we see that the human genes 
form considerably a large network with higher 
density and huge no. of neighbors. This signifies 
the greater life extending capacity.  

 

Parameter Human Mouse Fruit fly 

Clustering coefficient 0.529 0.498 0.421 

Connected components 1 1 2 

Network diameter 4 6 6 

Network radius 2 3 1 

Network centralization 0.550 0.511 0.283 

Shortest paths 90902 (100%) 14042 (100%) 18908 (97%) 

Characteristic path length 2.022 2.358 2.674 

Avg. no. of neighbour 45.689 11.731 11.257 

Number nodes 302 119 140 

Network density 0.152 0.099 0.081 

Network heterogeneity 0.797 0.991 0.976 

Isolated nodes 0 0 0 

Number of self loops 0 0 0 

Multiedge node pairs 0 0 0 

Analysis time (s) 0.529 0.223 0.083 
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Fig. 1a.  All parameters for Human network 
Fig. 1b.  All parameters for Mouse network 

Fig. 1c. All parameters for the Drosophila network 
 

 
    

Fig. 2a. Shortest Path length Distribution for Human  
Fig. 2b. Shortest Path length Distribution for Mouse  

Fig. 2c. Shortest Path length Distribution for Drosophila 

 

   

Figure 1a:  All parameters 

for Human network 

Figure 1b:  All parameters for 

Mouse network 

Figure 1c: All parameters for 

the Drosophila network 

 
  

Figure 2a: Shortest Path 

length Distribution for 

Human 

Figure 2b: Shortest Path 

length Distribution for Mouse 

Figure 2c: Shortest Path 

length Distribution for 

Drosophila 
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Fig. 3a. Betweenness centrality distribution for the analysis of the Human network 
Fig. 3b. Betweenness centrality distribution for the analysis of the Mouse network 

Fig. 3c. Betweenness centrality distribution for the analysis of the Drosophila network 
 

 
 

Fig. 4a. Closeness centrality distribution for the analysis of the Human network 
Fig. 4b. Closeness centrality distribution for the analysis of the Mouse network 

Fig. 4c.  Closeness centrality distribution for the analysis of the Drosophila network 

 

 

 
 

Figure 3a: Betweenness 

centrality distribution for the 

analysis of the Human 

network 

Figure 3b: Betweenness centrality 

distribution for the analysis of the 

Mouse network 

Figure 3c: Betweenness 

centrality distribution for the 

analysis of the Drosophila 

network 

  

 

Figure 4a: Closeness 

centrality distribution for 

the analysis of the Human 

network 

Figure 4b: Closeness 

centrality distribution for 

the analysis of the Mouse 

network 

Figure 4c:  Closeness centrality 

distribution for the analysis of 

the Drosophila network 
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Fig. 5a. Average neighborhood connectivity distribution for the analysis of the Human network 
Fig. 5b. Average neighborhood connectivity distribution for the analysis of the Mouse network 

Fig. 5c. Average neighborhood connectivity distribution for the analysis of the Drosophila network 
 

 
 

Fig. 6a. Average Clustering Coefficient for the analysis of the Human network 
Fig. 6b. Average Clustering Coefficient for the analysis of the Mouse network 

Fig. 6c. Average Clustering Coefficient for the analysis of the Drosophila network 
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Fig. 7a. Node Degree Distribution for the analysis of the Human network 
Fig 7b. Node Degree Distribution for the analysis of the Mouse network 

Fig. 7c. Node Degree Distribution for the analysis of the Drosophila network 
 

 
 

Fig. 8a. Shared Neighborhood Distribution for the analysis of the Human network 
Fig. 8b. Shared Neighborhood Distribution for the analysis of the Mouse network 

Fig. 8c. Shared Neighborhood Distribution for the analysis of the Drosophila network 
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Fig. 9a. Stress Centrality for the analysis of the Human network 
Fig. 9b. Stress Centrality for the analysis of the Mouse network 

Fig. 9c. Stress Centrality for the analysis of the Drosophila network 
 

 
     

Fig. 10a. Topological Coefficient for the analysis of the Human network; 
Fig. 10b. Topological Coefficient for the analysis of the Mouse network 

Fig. 10c. Topological Coefficient for the analysis of the Drosophila network 
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3.2 Global Parameters: Shortest Path 
Length Distribution 

 

The path length is the length of an edge 
connecting two nodes. The path in which two 
nodes can be connected using the least number 
of edges is known as the shortest path length. It 
is one way to conceptualize the rate of type 1 
error in null hypothesis when conducting multiple 
comparisons. 
 

It shows that the nodes with path length 2 have 
the highest frequency than the remaining.  
 

The shortest path length is the average length of 
the shortest path between n and any other node. 
If n is an isolated node, the value of this attribute 
is interpreted as zero. The length of a path is the 
number of edges forming it. There may be 
multiple paths connecting two given nodes. The 
shortest path length, also called distance, 
between two nodes n and m is denoted by 
L(n,m). The characteristic path length, also 
known as the average shortest path length, 
represents the expected distance between two 
nodes that are paired. The analysis revealed an 
average of 2.022, the shortest path length for 
human network while for mouse and fruit fly 
network the values are 2.353 and 2.674 
respectively. The parameter establishes a 
decreasing order of connectivity in drosophila to 
mouse to human ascertaining the fact that even if 
the genome is simple but still the complexity may 
be more. 
 

3.3 Betweenness Centrality 
 

Betweenness centrality reflects the importance of 
the node based on the number of shortest paths 
that pass through each node 
 

It represents the distribution graph of human 
mice and drosophila respectively; it can be 
observed that the nodes co-relate with the fitted 
line. 
 

In general, betweenness centrality are not 
computed for all networks but for the networks 
that do not contain multiple edges. The 
normalized value, n, for a node is obtained by the 
division of number of node pairs 
 

(N-1)(N-2)/2 
 

Here N corresponds to the total number of nodes 
in the connected component that n belongs to. 
This gives the betweenness centrality of each 
node, a value in the range of 0 and 1. The 

betweenness centrality of a node reflects the 
amount of control that this node exerts over the 
interactions of other nodes in the network. This 
measure favors nodes that join communities 
(dense subnetworks), rather than nodes that lie 
inside a community. 
 

The nodes of the drosophila species are more 
widespread than the other two species.  
 

3.4 Closeness Centrality 
 

Closeness centrality is a measure of how fast 
information spreads from a given node to other 
reachable nodes in the network. It computes the 
closeness centrality of all nodes and plots it 
against the number of neighbors. The closeness 
centrality of isolated nodes is equal to 0. 
 

Network Analyzer computes the closeness 
centrality of all nodes and plots it against the 
number of neighbors. The closeness centrality of 
isolated nodes is equal to 0. 
 

Closeness centrality of a node tells fast 
information can spread from that node to other 
nodes within the reach. The CC of humans is 
highest and much clustered when compared to 
the more widespread two other species. Both 
mouse and drosophila network have similar 
closeness centrality. 
 

3.5 Neighborhood Connectivity 
Distribution 

 

The average neighborhood connectivity is the 
connectivity of a node to the number of its 
neighbors. The neighborhood connectivity of a 
node is defined as the average connectivity of all 
neighbors of that node. If the neighborhood 
connectivity distribution is a decreasing function, 
edges between low connected and highly 
connected nodes prevail in the network. 
 

The drosophila network has more widespread 
neighborhood connectivity than the other two 
networks. 
 

3.6 Average Clustering Co-Efficient 
 

The network clustering coefficient is the average 
of the clustering coefficients for all nodes in the 
network, a measure of the number of 
connections among nodes in relation to the 
maximum number of connections in the 
neighborhood. Nodes with less than two 
neighbors are assumed to have a clustering 
coefficient of 0. A value of 1 means that the 
nodes are fully connected in a network. The 
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human network in the Fig. 6, is denser compared 
to other two networks with the maximum ratio of 
0.8. The clustering coefficient of genes is much 
more widespread in drosophila when compared 
to the other two species. 
 

3.7 Node Degree Distribution 
 

In undirected networks, the node degree of a 
node n is the representation of the number of 
connections or number of edges linked to that n. 
A self-loop of a node is counted like two edges 
for the node degree. The node degree 
distribution gives the number of nodes with 
degree k for k = 0,1, In directed networks, the in-
degree of a node n is the number of incoming 
edges, and the out-degree is the number of 
outgoing edges. Like undirected networks, there 
are an in-degree distribution and an out-degree 
distribution. The node degree distribution is to 
distinguish between random and scale-free 
network topologies.  
 

In a network analysis, the degree distribution is 
the probability of the degrees of all the individual 
nodes over the network. The degree of the 
human network nodes are more (represented by 
the long tail), in other terms it can be depicted as 
the nodes are highly connected. There are more 
highly connected nodes in the graph of human 
network which are called hubs. In mouse 
network, the hubs are few and the degree of the 
nodes are less. The degree of the node 
distribution of the drosophila network is much 
less than the mouse network. 
 

4. SHARED NEIGHBORHOOD 
DISTRIBUTION 

 

The shared neighborhood connectivity, P(n,m) is 
the number of partners shared between the 
nodes n and m, that is, nodes that are neighbors 
of both n and m. The shared neighbors 
distribution gives the number of node pairs (n,m) 
with P(n,m) = k for k = 1,If a motif is over-
represented in a network, this can be inferred 
from the shared neighbor’s distribution. The 
graph represented in Fig. 8 demonstrates that   
more motif overrepresented in the human aging 
genes. Even though both the drosophila and 
mouse network have a smaller number of shares 
neighbours and the frequency compared                
to the human network, they are similar to each 
other. 
 

5. STRESS CENTRALITY 
 

The stress of a node n is the number of               
shortest paths passing through n. A node                   

has a high stress if it is traversed by a                     
high number of shortest paths. This              
parameter is defined only for networks without 
multiple edges. 
 
The stress centrality plot of all the three networks 
is plotted in Fig. 9. The stress distribution gives 
the number of nodes with stress s for different 
values of s. The values for the stress are 
grouped into bins whose size grows 
exponentially by a factor of 10. This is based on 
the count of the shortest paths that pass through 
the node and the potential of that node to control 
the flow (Shimbel, 1953). The centrality 
measurement revealed human gene                      
network have the highest stress score               
followed by drosophila network and the mouse 
network. 
  

6. TOPOLOGICAL COEFFICIENT 
 
Topological coefficient is one of the global 
parameters computed by the Network Analyzer. 
A node sharing more than one neighbor with the 
other nodes is measured by the system and the 
topological coefficient is the relative measure for 
all nodes in the network i.e. the extent a node 
sharing neighbors with all other nodes in the 
network. The topological coefficient is a number 
between 0 and 1. A topological coefficient of zero 
is assigned to the node if that node only have 
one neighbor or none at all.  
 
The topological coefficient and the average 
number of neighbors of individual nodes of the 
three networks are plotted in the Fig. 10. The red 
line indicates the average topological coefficient 
of all the nodes.  
 
In the human network, the topological coefficient 
is a decreasing line with an increase in the 
number of neighbors. The maximum topological 
coefficient of a node was 0.75 and the minimum 
value was approximately 0.20. Some nodes with 
low number of neighbor’s (less than 10 number 
of neighbors) have high topological coefficient. 
The nodes in the human network have up to 300 
neighbors. Compared to human networks, the 
mouse and fruit fly are relatively small with the 
maximum numbers of neighbors nearby as 80 
and 50 respectively. The topological coefficient of 
the two model species’ gene networks was 
higher even though they had neighbours that 
were less than 30% of those of the human 
network. This means that the genes in those 
model organisms have relatively close 
communication. 
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7. CONCLUSION 
 
The scientific community is evolving each day to 
fulfill the requirements of the growing needs of 
society. Researchers of different disciplines are 
working in collaboration to support that process. 
One such field is network science that utilizes 
resources from mathematics, computer science, 
physics, statistics and sociology to study 
connections among different elements in a 
complex network. The field has applications in 
computer networks, social networks, 
telecommunication networks, cognitive and 
semantic networks and most importantly in 
biological networks. 
 
In this study, the biological network method was 
used to understand the relations of the human 
network with the mouse and the fruit fly network. 
The mouse and the fruit fly are the major model 
systems for the human in gerontology research. 
Hence it is important to identify whether these 
organisms share similarities with humans so the 
reliability of the results obtained from them can 
be ensured. Thus, the adequacy of those model 
organisms is elucidated through the network 
interaction statistics analysis and the results 
revealed that the mouse network had the most 
similarities with the human network than the fruit 
fly model. The difference could be because 
humans and fruit fly belong to different classes of 
the animal kingdom and while humans and mice 
belong to the same Mammalia class. Even 
though the fruit fly network showed less 
similarities than the mouse network, it still has a 
complex genome so can still be utilized to study 
simple parameters of the human aging process 
while for most robust research mouse model 
should be utilized. 
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