

International Journal of Environment and Climate Change

12(11): 601-615, 2022; Article no.IJECC.89733 ISSN: 2581-8627 (Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)

Oxygen Production and Carbon Capturing Capacity of Various Tree Species in Coimbatore City, India

S. Gowtham ^a, M. Prasanthrajan ^{a*}, M. Maheswari ^a, N. Sritharan ^b, S. K. Rajkishore ^a and S. Keerthana ^a

^a Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. ^b Department of Rice, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJECC/2022/v12i1131012

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/89733

Original Research Article

Received 09 May 2022 Accepted 18 July 2022 Published 21 July 2022

ABSTRACT

Climate change, environment pollution, rapid urbanization and industrialization have been recognized as major environmental threats of the present-day scenario. These environmental issues cause severe socio-economic implications across the globe. The living space and human settlements are increasing rapidly in urban areas of India. Simultaneously the existing green cover and tree population are declining in the name of developments. Trees are considered to be one of the important assets in cities, they provide myriad benefits. Considering the importance of trees the cities and their role in reducing the pollution besides adding fresh oxygen to the atmosphere, the present investigation focused with the aim of documenting various tree species in Coimbatore city and to assess their carbon capturing and oxygen release potential. There are about 58 tree species comprising of 27 families, that have been documented and classified into four age classes. Further these tree species were subjected to total biomass, carbon stock, CO₂ (eq.), net carbon sequestration and net oxygen release assessment using standard non-destructive method. Among the 58 tree species studied, *Albizia lebbeck* (2.745 ton tree⁻¹year⁻¹), *Tamarindus indica* (2.156 ton tree⁻¹year⁻¹), *Parkia biglandulosa* (1.921 ton tree⁻¹year⁻¹), *Delonix regia* (1.027 ton tree⁻¹year⁻¹), *Kigelia Africana* (1.009 ton tree⁻¹year⁻¹), *Peltophorum pterocarpum* (1.006 ton tree⁻¹year⁻¹), *Ficus* religiosa (0.906 ton tree⁻¹year⁻¹), Leucaena leucocephala (0.804 ton tree-1year -1) of net oxygen were found to release, Pterospermum acerifolium (0.827 ton tree⁻¹year⁻¹) and Azadirachta indica (0.804 ton tree⁻¹year⁻¹) were found to release high oxygen with more carbon capturing capacity.

Keywords: Urban trees; air pollution; carbon stock; net carbon sequestration and net oxygen release.

1. INTRODUCTION

Good air quality is an essential to welfare of human beings and other living things. The guality of air is deteriorating at faster rate through transportation, urbanisation, industrial and natural activities. Air pollution has adverse consequences on living things, human health, and environmental resources, either directly or indirectly [1]. Major air pollutants in the urban area are carbon dioxide (CO₂), carbon monoxide (CO), particulate matter ($PM_{2.5}$ and PM_{10}), hydrocarbons (HC), oxides of nitrogen (NO_x) and other fuel exhaust [2]. Carbon dioxide, the most significant of all greenhouse gases (GHGs) has gradually increased since the commencement of the industrialization, from 280 ppm to 415 ppm [3] and it is expected to rise above the level of 480 ppm by 2050 [4]. World Bank estimates, China and India have CO₂ emissions of 7.5 Mg and 1.6 Mg per person in a year respectively, whereas the United States has 17.5 Mg [5]. Trees are known to be more effective to combat air pollution, capture carbon and reduce ultraviolet radiation in addition to release of oxygen. [6] reported that trees control microclimate by regulating carbon dioxide (CO₂), oxygen (O₂) sulphur dioxide (SO₂), particulate matter ($PM_{2.5}$ and PM_{10}), and ozone (O_3) [7,8]. According to [9] a hectare Eucalyptus tereticornis plantation release 431 ton of oxygen per year and sequestrated 161.8 ton of carbon in Dharwad, which plays a major role in improving air quality.

Coimbatore covers 4,732 km², of which 34.4% is under rapid urbanisation with more than 25,000 industries comprising textile mills, electroplating and manufacturing of industrial equipment, spares, motor pump sets [10]. Owing to the rapid urbanisation, the vegetation cover declined about 25.28% (9.60 km²) which was 65.22 km² in 2003 and urban area coverage changed from 18.07% in 2003 to 54.32% [11]. In this regard, the government has initiated Smart City project emphasizing the increase of green cover. To successfully implement this project, an action plan with list of trees which has high carbon sequestrating, large canopy and high oxygen releasing capacity is vital. Hence, this study aims to screen the trees in a local region based on their carbon capture and oxygen release potential, and help the policy makers along with urban planners to understand the role of trees in global carbon cycle and climate change mitigation and for healthy living of people.

2. MATERIALS AND METHODS

2.1 Study Area

The study area, Coimbatore city (11° 01' 2" N, 76° 57' 31" E), is the second-largest city located in Tamil Nadu. It is an upcoming smart city with a projected 2 million residents and is also known as the textile capital and the Manchester of South India, one of the most industrialized cities in Tamil Nadu. The annual rainfall is about 618 mm, and the average monthly temperature varies between 20.6 and 38.4°C. The carbon sequestration and oxygen production of the selected 58 tree species were carried out from three strategic locations Bharathi park (11°01'12" N, 76°56'50" E), Gandhi Park (11°00'03" N, 76°57'03" E) and VOC park (11°00'24" N, 76°58'12" E) (Fig. 1.) of Coimbatore city, India.

2.2 Site Survey

The primary biophysical measurements (Height and DBH) of identified 58 species were done by using laser rangefinder (Bosch Glm 500 Laser Distance Measurement Device) (Fig. 2a) and measuring tape (Fig. 2b). The location of the study area was recorded by Geographical Positioning System (GPS) Model (Garmin- eTrex Legend HCx) (Fig. 2c).

2.3 Tree DBH and Its Measurements

Tree DBH is a standard and the most common method of measuring the diameter of a tree trunk measured at breast level by using measuring tape (Fig. 2b.) as a convenient way of measurement during which one does not need to bend the waist or climb up a ladder to take the measurement. DBH or circumference of the tree was measured by tightly wrapping tape around the tree's main trunk at a height of 1.37 m from the ground [12]. During measurement, the tape was loosened and re-tighten a couple of times or slide around the trunk to ensure the tape lies flat and was not obstructed by any swollen parts of the trunk.

Fig. 1. Location of the study area

Fig. 2. (a) Laser rangefinder (Bosch Glm 500 Laser Distance Measurement Device), (b) Measuring tape (c) Geographical Positioning System (GPS)

2.4 Tree Height and Its Measurements

Tree height is a basic geometrical variable for trees as it has some vertical distance between the base of the tree and the foremost point on the tree [13]. The tree height was measured by using a laser rangefinder (Bosch Glm 500 Laser Distance Measurement Device) (Fig. 2a.). Laser rangefinder device works on the principle of using a laser beam, to determine the distance to an object (tree) and the device kept on a tripod stand for more accuracy. The device transmits a narrow laser beam towards the target (tree) and measures the time it takes for the pulse to be reflected off the target (tree) and returned to the sender. In order to make correct calculations of the vertical distance between any two points automatically as it works with one point at the top of the tree and another point at the base of the tree and thereby generates the tree height. After arriving tree DBH and height, net O_2 release and net C sequestration were calculated by the following procedure.

The basic parameters required for estimating net O_2 release (kg yr⁻¹) and net C sequestration (kg yr⁻¹), includes tree DBH, tree height, Total biomass, Carbon stock and CO_2 (eq.).

2.5.1 Measuring the tree volume

By using tree DBH and height, the volume of the tree was estimated [14].:

 $V = \pi r^2 h$

Where,

V = Volume of the tree in m^3 r = Radius of the trunk in m h = Height of the tree in m

2.5.2 Above ground biomass and below ground biomass

The Above Ground Biomass (AGB) was calculated by multiplying the volume of biomass and wood density, [15].

 $AGB = V \times D$

Where,

AGB = Above Ground Biomass V = Volume of tree in m^3 D = Wood density of the tree species*

*Wood density was obtained from the global wood density database [16]. The standard average density of 0.6 g/cm³ is applied wherever the density value is not available for tree species. The Below Ground Biomass (BGB) was calculated by multiplying above-ground biomass with 0.26 as the root shoot ratio [14].

 $BGB = AGB \times 0.26$

Total Biomass (TB) was calculated by summing the ABG and BGB [17].

Total Biomass (TB) = AGB + BGB

Where,

AGB = Above Ground Biomass. BGB = Below Ground Biomass

2.5.3 Carbon sequestration potential of selected tree species

According to various scientific research reports, For any tree species, 50% of its biomass is considered as its carbon stock [18]. By using the following formula, the carbon stock of the tree species was calculated: Carbon stock = Total Biomass x 0.5

After arriving the Carbon stock of each tree, the carbon sequestrated potential in terms of CO_2 (eq.) was calculated by using the following formula:

 CO_2 (eq.) = (Carbon stock x 44) / 12

 CO_2 is composed of 2 molecules of Oxygen(O_2) and 1 molecule of Carbon(C). The atomic weight of carbon is 12. The atomic weight of Oxygen is 16. Therefore, the weight of CO_2 is Carbon + (2 x Oxygen) = 44. The ratio of CO_2 to C is 44/12 = 3.666. So, to evaluate the carbon dioxide equivalent in the tree, multiply the carbon stock in the tree by 3.666.

The quantity of total CO_2 sequestered in terms of CO_2 (eq.) of the tree during its entire lifespan is represented by the above equation. To obtain a yearly C sequestration rate, the overall CO_2 equivalent by the tree was divided by its age [19].

Net C sequestration = CO_2 (eq.) / age of the tree

2.5.4 Oxygen release by trees

The amount of oxygen produced during photosynthesis is subtracted from the amount of oxygen absorbed during plant respiration to calculate net oxygen production by trees [20].

Photosynthesis: $n(CO_2) + n(H_2O) + \text{ light}$ $\rightarrow (CH_2O)n + nO_2$

Respiration: $(CH_2O)n + nO_2 \rightarrow n(CO_2) + n(H_2O) + energy$

The tree will acquire carbon if carbon dioxide intake during photosynthesis exceeds carbon dioxide released during respiration over the course of the year (carbon sequestration). As a result, a tree that accumulates a net amount of carbon over the course of a year (tree growth) also produces a net amount of oxygen. Carbon sequestration produces an estimated quantity of oxygen based on atomic weights. Molecular weight of oxygen is 32 and molecular weight of carbon is 12. So, to evaluate the net O₂ release in the tree, multiply the net C sequestration in the tree by 32/12 [21].

Net oxygen production by trees is estimated by the following formula [21]:

Net O_2 release (kg yr⁻¹) = Net C sequestration (kg yr⁻¹) x 32 / 12

3. RESULTS AND DISCUSSION

The National Forest Policy (1988) stipulates that in order to maintain and increase the amount of forest cover, trees should cover one-third of each state's land area [22]. The government of Coimbatore has made huge initiatives to raise the number of trees in both forested and nonforested (urban) regions. The current study estimates carbon sequestration and oxygen production potential in Coimbatore city. To determine the ability of selected tree specie's carbon sequestration and oxygen production potential, a study involving field surveys, and allometric equations were employed.

About 58 tree species namely Spathodea campanulata (African tulip), Terminalia arjuna (Arjuna tree), Clusia rosea (Balsom apple), Parkia biglandulosa (Ball badminton), Terminalia bellirica (Bedda nut tree), Paubrasilia echinata (Brazilwood), Madhuca longifolia (Butter tree), Couroupita guianensis (Cannon ball), Casuarina equisetifolia (Casuarina), Phoenix pusilla (Ceylon Date Palm), Ficus racemosa (Cluster fig), Cocos nucifera (Coconut), Lagunaria patersonia (Cow Tabebuia heterophylla (Cuban pink), itch). Bergera koenigii (Curry leaf). Acacia auriculiformis (Earleaf acacia), Polvalthia longifolia (False Ashoka), Caryota mitis (Fishtail palm), Cordia sebestena (Geranium), Cassia fistula (Golden shower), Phyllanthus emblica (Gooseberry). Psidium guajava (Guava). Terminalia catappa (Indian almond), Malpighia emarginata (Indian cherry), Millingtonia hortensis (Indian cork), Albizia lebbeck (Indian siris), Thespesia populnea (Indian tulip), Syzygium cumini (Jamun), Pterospermum acerifolium (Kanak Champa), Mangifera indica (Mango), Delonix regia (May flower), Hippocratea volubilis (Medicine vine), Morinda tinctorial (Indian mulberry), Morus spp. (Mulberry), Azadirachta indica (Neem), Araucaria heterophylla (Norfolk Island pine), Simarouba glauca (Paradise), Nyctanthes arbor-tristis (Parijat), Paulownia tomentosa (Princess), Millettia pinnata (Pungam), Bauhinia purpurea (Purple bauhinia), Gliricidia sepium (Quick stick), Leucaena leucocephala (River tamarind), Roystonea regia (Royal palm), Ficus religiosa (Sacred fig), Santalum album (Sandal), Manilkara zapota (Sapota), Kigelia Africana (Sausage), Mimusops elengi (Spanish Cherry), Tamarindus indica (Tamarind), Tectona grandis (Teak), Tipuana tipu

(Tipu), Ficus benjamina (Weeping fig), Sterculia foetida (Wild almond). Limonia acidissima (Wood Tecoma stans (Yellow bells). apple). Peltophorum pterocarpum (Yellow flame) and Bambusa vulgaris (Bamboo) were documented and categorized into four age classes. As these tree species were abundant in wasteland, sides of roads and canals, lake areas and next to railroad tracks. Further investigation were carried out to assess their Carbon sequestration and O₂ release potential. Previous studies show longterm air purification and soot filtration are accomplished by these trees, which also serve as "green highways" for the migration of birds, insects, and other natural animals [23].

These fifty-eight-tree species of different age classes were classified into four categories based on their age class (A = 5 to 10 years, B = 11 to 20 years, C = 21 to 30 years, D = >30 years) (Table 1.). In order to avoid error while estimating the total biomass, carbon sequestration and oxygen release potential, the age of the trees was ascertained from the information available in the tree register of the different parks (Bharathi park, Gandhi park, VOC park) of Coimbatore city taken for the study.

The trees were listed in an alphabetic order with respect to their common name. The scientific name and family name were confirmed in consultation with scientists from Forest College and Research Institute (FC&RI) – Mettupalayam, Institute of Forest Genetics and Tree Breeding (IFGTB) – Coimbatore and Botanical Survey of India – Coimbatore. Then the tree species were listed and separated according to their age class – A, B, C, and D for easy comparison and interpretation of data.

3.1 Volume and Total Biomass of Selected Tree Species

In this study, Among these 58 species Albizia lebbeck (32296.70 kg tree⁻¹), Tamarindus indica (24268.03 kg tree⁻¹), Parkia biglandulosa (14154.94 kg tree⁻¹), Delonix regia (11559.99 kg tree⁻¹), Peltophorum pterocarpum (11316.93 kg tree⁻¹), Kigelia Africana (8774.07 kg tree⁻¹), Azadirachta indica (7405.90 kg tree⁻¹), Ficus religiosa (6488.67 kg tree⁻¹), Couroupita guianensis (5231.09 kg tree⁻¹) and Acacia auriculiformis (4795.94 kg tree⁻¹) were the top ten s tree species in terms of highest total biomass (Table 2). [24,25] stated that the biomass of tree species varied with their tree volume. Albizia lebbeck (32296.70 kg tree⁻¹) recorded the Gowtham et al.; IJECC, 12(11): 601-615, 2022; Article no.IJECC.89733

Fig. 3. Top ten tree species of Coimbatore city with the highest biomass

highest total biomass in the study area followed by, *Tamarindus indica* (24268.03 kg tree⁻¹), *Parkia biglandulosa* (14154.94 kg tree⁻¹) and *Delonix regia* (11559.99 kg tree⁻¹) (Fig. 3). *Malpighia emarginata* (19.57 kg tree⁻¹) had the lowest biomass in the study area followed by *Nyctanthes arbour tristis* (20.75 kg tree⁻¹), *Manilkara zapota* (21.02 kg tree⁻¹), *Caryota mitis* (24.62 kg tree⁻¹) and *Clusia rosea* (25.32 kg tree⁻¹) (Table 2). [26] stated that individual trees of the same species may develop differently and produce different amounts of biomass at various locations. Trees with huge canopies, enhance photosynthesis rates and its biomass [27].

3.2 Carbon Stock and CO₂ (eq.) of Selected tree Species

The carbon stock of selected 58 tree species were ranges from 16148.35 kg tree⁻¹ to 9.78 kg tree¹ (Table 3). Among these selected 58 tree species, the highest Carbon stock was recorded kg in Albizia lebbeck (16148.35 tree⁻¹), Tamarindus indica (12134.02 kg tree⁻¹), Parkia biglandulosa (7077.47 kg tree⁻¹), Delonix regia (5780.00 kg tree⁻¹), Peltophorum pterocarpum (5658.46 kg tree⁻¹), *Kigelia Africana* (4387.04 kg tree⁻¹), Azadirachta indica (3702.95 kg tree⁻¹), Ficus religiosa (3244.33 kg tree⁻¹), Couroupita kg tree⁻¹), (2615.55 guianensis Acacia auriculiformis (2397.97 kg tree⁻¹) (Table 3). (9.78 tree⁻¹), Malpighia emarginata ka tree⁻¹), Nyctanthes arbor tristis (10.37kg Manilkara zapota (10.512 kg tree⁻¹), Caryota mitis (12.30 kg tree⁻¹) and Clusia rosea (12.662 kg tree⁻¹) were among the species with lowest carbon stock (Table 3). The total CO₂ (eq.) of these 58 tree species were ranged from

59199.85 kg tree⁻¹ to 35.87 kg tree⁻¹. Albizia *lebbeck* (59199.85 kg tree⁻¹) sequestered the highest CO₂ (eq.), followed by Tamarindus indica (44483.30 kg tree⁻¹), *Parkia biglandulosa* (25946.01 kg tree⁻¹), *Delonix regia* (21189.46 kg tree⁻¹), Peltophorum pterocarpum (20743.92 kg tree¹), *Kigelia Africana* (16082.87 kg tree¹), *Azadirachta indica* (13575.02 kg tree¹), *Ficus religiosa* (11893.73 kg tree¹), *Couroupita* religiosa (11893.73 kg tree⁻¹), Couroupita guianensis (9588.60 kg tree⁻¹) and Acacia auriculiformis (8790.96 kg tree⁻¹) (Table 3). emarginata Malpighia (35.87 ka tree '), Nyctanthes arbor tristis (38.03 kg tree⁻¹), Manilkara zapota (38.54 kg tree⁻¹), Caryota mitis (45.12 kg tree⁻¹) and *Clusia rosea* (46.42 kg tree⁻¹) were the species with lowest CO₂ (eq.) (Table 3). The carbon stock is influenced by the tree species volume growth [12,28,29].

3.3 Net Carbon Sequestration and Net Oxygen Release of Selected Tree Species

Net carbon sequestration of selected tree species ranged from 1.03 ton tree⁻¹year⁻¹ to 0.004 ton tree⁻¹year⁻¹ (Table 3). The tree species with the highest potential for net carbon sequestration were Albizia lebbeck (1.03 ton tree vear⁻¹) followed by *Tamarindus indica* (0.809 ton tree¹year¹), Parkia biglandulosa (0.721 ton tree⁻¹ year⁻¹), *Delonix regia* (0.385 ton tree⁻¹year⁻¹), $(0.378 \text{ ton } \text{tree}^{-1}\text{year}^{-1}),$ Kiaelia Africana Peltophorum pterocarpum (0.377 ton tree⁻¹year⁻ ¹), *Ficus religiosa* (0.340 ton tree⁻¹year⁻¹), Leucaena leucocephala (0.314 ton tree⁻¹year⁻¹), Pterospermum acerifolium (0.310 ton tree⁻¹year⁻¹ ¹) and *Azadirachta indica* (0.302 ton tree⁻¹year⁻¹).

Gowtham et al.; IJECC, 12(11): 601-615, 2022; Article no.IJECC.89733

Fig. 4. Top ten tree species of Coimbatore city with the highest Net carbon sequestration and Net oxygen release

Family	Common Name	Scientific Name	App. age (In years)	Avg. age (In years)	Age class. (In years)
Anacardiaceae	Mango tree	Mangifera indica	15-20	18	В
Annonaceae	False Ashoka	Polyalthia longifolia	50-55	53	D
Araucariaceae	Norfolk Island	Araucaria heterophylla	8-10	9	А
Arecaceae	Ceylon Date Palm	Phoenix pusilla	8-12	10	В
	Coconut	Cocos nucifera	18-20	19	В
	Fishtail palm	Caryota mitis	10-12	11	В
	Royal palm	Roystonea regia	20-25	23	С
Bignoniaceae	African tulip tree	Spathodea campanulata	8-10	9	A
	Cuban pink	Tabebuia heterophylla	15-20	18	В
	Indian cork tree	Millingtonia hortensis	10-15	13	В
	Sausage tree	Kigelia Africana	40-45	43	D
	Yellow bells	Tecoma stans	5-8	7	А
Boraginaceae	Geranium tree	Cordia sebestena	5-8	7	А
Casuarinaceae	Casuarina	Casuarina equisetifolia	8-12	10	В
Celastraceae	Medicine vine tree	Hippocratea volubilis	12-15	14	В
Clusiaceae	Balsom apple	Clusia rosea	5-8	7	А
Combretaceae	Arjuna tree	Terminalia arjuna	5-10	8	А
	Bibhitaki tree	Terminalia bellirica	10-12	11	В
	Indian almond	Terminalia catappa	8-10	9	А
Euphorbiaceae	Gooseberry	Phyllanthus emblica	10-12	11	В
Fabaceae	Brazilwood tree	Paubrasilia echinata	10-15	13	В
	Earleaf acacia	Acacia auriculiformis	40-45	43	D

Table 1. List of tree species selected for the study

Gowtham et al.; IJECC	, 12(11): 601-615,	2022; Article	no.IJECC.89733
-----------------------	--------------------	---------------	----------------

Family	Common Name	Scientific Name	App. age (In years)	Avg. age (In years)	Age class. (In years)
	Golden shower	Cassia fistula	6-8	7	A
	Indian siris tree	Albizia lebbeck	55-60	58	D
	May flower tree	Delonix regia	50-60	55	D
	Pungam tree	Millettia pinnata	20-25	23	С
	Purple bauhinia	Bauhinia	10-15	13	B
		purpurea	10 10	10	D
	Quick stick	Gliricidia sepium	30-35	33	D
	River tamarind	Leucaena ['] leucocenhala	10-18	14	В
	Tamarind	Tamarindus indica	50-60	55	D
	Tipu tree	Tipuana tipu	12-15	14	В
	Yellow flame tree	Peltophorum pterocarpum	50-60	55	D
Lamiaceae	Teak	Tectona arandis	20-25	23	С
Lecvthidaceae	Cannon ball tree	Couroupita	40-50	45	D
		quianensis			-
Malpighiaceae	Indian cherry	Malpighia	5-8	7	А
Malvaceae	Cow itch tree	l agunaria	10-15	13	B
Marvaocae		patersonia	10 10	10	D
	Indian tulip tree	Thespesia	5-8	7	А
		populnea			
	Wild almond tree	Sterculia foetida	15-18	17	В
Meliaceae	Neem	Azadirachta indica	40-50	45	D
Mimosoideae	Ball badminton	Parkia	35-37	36	D
	tree	biglandulosa			
Moracea	Cluster fig	Ficus racemosa	10-15	13	В
	Mulberry tree	Morus spp.	10-12	11	В
	Sacred fig	Ficus religiosa	30-40	35	D
	Weeping fig	Ficus beniamina	15-18	17	В
Mvrtaceae	Guava tree	Psidium quaiava	5-8	7	А
	Jamun tree	Svzvaium cumini	20-25	23	C
Oleaceae	Parijat	Nvctanthes	5-8	7	Ă
	,	arbor-tristis			
Paulowniaceae	Princess tree	Paulownia	5-8	7	А
Poaceae	Bamboo	Bambusa	5-15	10	в
		vulgaris			
Rubiaceae	Indian mulberry	Morinda tinctoria	8-10	9	A
Rutaceae	Curry leaf	Bergera koenigii	8-12	10	В
	Wood apple	Limonia acidissima	15-18	17	В
Santalaceae	Sandal tree	Santalum album	15-20	18	В
Sapotaceae	Butter tree	Madhuca Iongifolia	8-12	10	В
	Sapota	Manilkara zapota	5-8	7	А
	Spanish Cherrv	Mimusops elenai	25-30	28	С
Simaroubacea	Paradise tree	Simarouba	10-12	11	В
Sterculiaceae	Kanak Champa	Pterospermum acerifolium	25-30	28	С

* A = 5 to 10 years, B = 11 to 20 years, C = 21 to 30 years, D = > 30 years

Scientific Name	Height (m)	DBH (m)	Volume (kg m ⁻³)	Wood density (kg m ⁻³)	Above Ground Biomass (kg tree ⁻¹)	Below Ground Biomass (kg tree ⁻¹)	Total biomass (kg tree ⁻¹)
Spathodea campanulata	8.16	0.93	0.56	330	185.43	48.21	233.64
Terminalia arjuna	5.66	0.35	0.06	800	44.16	11.48	55.64
Clusia rosea	5.10	0.27	0.03	679	20.10	5.23	25.32
Parkia biglandulosa	18.31	3.47	17.55	640	11234.08	2920.86	14154.94
Terminalia bellirica	10.02	0.81	0.52	697	364.82	94.85	459.68
Paubrasilia echinate	12.23	1.13	1.24	600	746.01	193.96	939.97
Madhuca longifolia	9.22	0.72	0.38	790	300.63	78.16	378.79
Couroupita guianensis	16.36	2.71	9.57	434	4151.66	1079.43	5231.09
Casuarina equisetifolia	12.02	0.63	0.38	918	348.69	90.66	439.35
Phoenix pusilla	9.83	0.94	0.69	600	414.93	107.88	522.81
Ficus racemosa	23.40	1.23	2.82	375	1056.98	274.82	1331.80
Cocos nucifera	17.28	0.88	1.07	616	656.30	170.64	826.93
Lagunaria patersonia	5.23	1.29	0.69	600	415.76	108.10	523.86
Tabebuia heterophylla	12.71	1.920	3.73	589	2197.22	571.28	2768.50
Bergera koenigii	7.45	0.57	0.19	600	115.63	30.06	145.69
Acacia auriculiformis	15.60	2.26	6.34	600	3806.30	989.64	4795.94
Polyalthia longifolia	17.01	0.93	1.17	563	659.46	171.46	830.92
Caryota mitis	8.45	0.220	0.03	600	19.54	5.08	24.62
Cordia sebestena	7.32	0.63	0.23	700	161.92	42.10	204.02
Cassia fistula	9.20	0.97	0.69	829	571.34	148.55	719.89
Phyllanthus emblica	10.50	1.270	1.35	728	981.61	255.22	1236.83
Psidium guajava	5.94	0.87	0.36	671	240.19	62.45	302.64
Terminalia catappa	11.08	0.56	0.28	540	149.39	38.84	188.23
Malpighia emarginata	3.70	0.294	0.03	610	15.53	4.04	19.57
Millingtonia hortensis	11.23	1.460	1.91	600	1143.53	297.32	1440.85
Albizia lebbeck	19.23	5.30	43.01	596	25632.30	6664.40	32296.70
Thespesia populnea	7.20	1.31	0.98	639	628.62	163.44	792.06
Syzygium cumini	10.50	1.78	2.65	701	1856.77	482.76	2339.53
Pterospermum acerifolium	13.50	2.35	5.94	622	3692.07	959.94	4652.01

Table 2. Volume and total biomass of the selected tree species in Coimbatore city, India

Gowtham et al.; IJECC, 12(11): 601-615, 2022; Article no.IJECC.89733

Scientific Name	Height (m)	DBH (m)	Volume (kg m ⁻³)	Wood density (kg m ⁻³)	Above Ground Biomass (kg tree ⁻¹)	Below Ground Biomass (kg tree ⁻¹)	Total biomass (kg tree ⁻¹)
Mangifera indica	12.45	0.77	0.59	597	350.86	91.22	442.09
Delonix regia	16.42	3.42	15.29	600	9174.60	2385.40	11559.99
Hippocratea volubilis	9.23	0.67	0.33	875	288.65	75.05	363.70
Morinda tinctorial	12.03	0.72	0.50	540	268.12	69.71	337.84
Morus spp.	16.10	0.77	0.76	590	448.40	116.59	564.99
Azadirachta indica	19.03	2.310	8.08	727	5877.70	1528.20	7405.90
Araucaria heterophylla	3.30	0.520	0.07	548	38.93	10.12	49.05
Simarouba glauca	10.63	1.335	1.51	378	570.16	148.24	718.40
Nyctanthes arbor-tristis	3.76	0.250	0.02	880	16.46	4.28	20.75
Paulownia tomentosa	7.20	1.45	1.21	330	397.73	103.41	501.14
Millettia pinnata	16.70	1.29	2.21	619	1369.61	356.10	1725.71
Bauhinia purpurea	7.99	0.910	0.53	720	379.29	98.62	477.91
Gliricidia sepium	7.23	0.87	0.44	684	298.02	77.48	375.50
Leucaena leucocephala	14.20	1.62	2.97	641	1901.90	494.49	2396.39
Roystonea regia	15.69	1.34	2.24	600	1345.84	349.92	1695.76
Ficus religiosa	18.36	2.82	11.62	443	5149.74	1338.93	6488.67
Santalum album	9.97	0.38	0.11	936	107.29	27.89	135.18
Manilkara zapota	4.10	0.237	0.02	910	16.69	4.34	21.02
Kigelia Africana	14.90	2.98	10.53	661	6963.55	1810.52	8774.07
Mimusops elengi	10.40	1.43	1.69	882	1493.43	388.29	1881.72
Tamarindus indica	16.40	3.86	19.45	990	19260.34	5007.69	24268.03
Tectona grandis	19.12	1.250	2.38	612	1455.69	378.48	1834.17
Tipuana tipu	11.30	1.23	1.36	587	798.98	207.74	1006.72
Ficus benjamina	12.20	1.620	2.55	499	1272.04	330.73	1602.77
Sterculia foetida	12.35	1.240	1.51	552	834.56	216.99	1051.55
Limonia acidissima	15.26	1.36	2.25	771	1732.60	450.47	2183.07
Tecoma stans	6.10	0.79	0.30	466	141.25	36.72	177.97
Peltophorum pterocarpum	18.30	3.20	14.92	602	8981.69	2335.24	11316.93
Bambusa vulgaris	11.92	0.21	0.04	600	25.11	6.53	31.64

Scientific Name	Total biomass (kg tree ⁻¹)	Carbon stock (kg tree ⁻¹)	CO ₂ (eq.) (kg tree ⁻¹)	Net carbon sequestration (kg tree ⁻¹ year ⁻¹)	Net carbon sequestration (ton tree ⁻¹ year ⁻¹)	Net O₂ release (kg tree ⁻¹ year ⁻¹)	Net O ₂ release (ton tree ⁻¹ year ⁻¹)
Spathodea campanulata	233.642	116.821	428.266	47.59	0.048	126.862	0.127
Terminalia arjuna	55.645	27.822	101.997	12.75	0.013	33.990	0.034
Clusia rosea	25.325	12.662	46.421	6.63	0.007	17.680	0.018
Parkia biglandulosa	14154.945	7077.472	25946.013	720.72	0.721	1921.446	1.921
Terminalia bellirica	459.676	229.838	842.585	76.60	0.077	204.212	0.204
Paubrasilia echinate	939.973	469.987	1722.971	132.54	0.133	353.342	0.353
Madhuca longifolia	378.795	189.397	694.331	69.43	0.069	185.109	0.185
Couroupita guianensis	5231.094	2615.547	9588.595	213.08	0.213	568.071	0.568
Casuarina equisetifolia	439.349	219.674	805.326	80.53	0.081	214.700	0.215
Phoenix pusilla	522.807	261.403	958.305	95.83	0.096	255.484	0.255
Ficus racemosa	1331.798	665.899	2441.185	195.29	0.195	520.656	0.521
Cocos nucifera	826.934	413.467	1515.770	79.78	0.080	212.686	0.213
Lagunaria patersonia	523.858	261.929	960.231	76.82	0.077	204.798	0.205
Tabebuia heterophylla	2768.498	1384.249	5074.657	289.98	0.290	773.088	0.773
Bergera koenigii	145.693	72.846	267.055	26.71	0.027	71.197	0.071
Acacia auriculiformis	4795.939	2397.969	8790.956	204.44	0.204	545.039	0.545
Polyalthia longifolia	830.921	415.460	1523.077	29.01	0.029	77.343	0.077
Caryota mitis	24.617	12.308	45.123	4.10	0.004	10.936	0.011
Cordia sebestena	204.019	102.010	373.967	57.53	0.058	153.384	0.153
Cassia fistula	719.891	359.945	1319.560	188.51	0.189	502.564	0.503
Phyllanthus emblica	1236.827	618.414	2267.104	206.10	0.206	549.464	0.549
Psidium guajava	302.641	151.321	554.742	85.34	0.085	227.529	0.228
Terminalia catappa	188.231	94.115	345.027	38.34	0.038	102.205	0.102
Malpighia emarginata	19.571	9.785	35.873	5.52	0.006	14.714	0.015
Millingtonia hortensis	1440.846	720.423	2641.071	211.29	0.211	563.288	0.563
Albizia lebbeck	32296.703	16148.351	59199.856	1029.56	1.030	2744.814	2.745
Thespesia populnea	792.058	396.029	1451.842	223.36	0.223	595.479	0.595
Syzygium cumini	2339.528	1169.764	4288.355	190.59	0.191	508.122	0.508
Pterospermum acerifolium	4652.012	2326.006	8527.137	310.08	0.310	826.667	0.827

Table 3. Total carbon stock, CO₂ eq. and Net O₂ release of the selected tree species in Coimbatore city, India

Scientific Name	Total biomass (kg tree ⁻¹)	Carbon stock (kg tree ⁻¹)	CO ₂ (eq.) (kg tree ⁻¹)	Net carbon sequestration (kg tree ⁻¹ year ⁻¹)	Net carbon sequestration (ton tree ⁻¹ year ⁻¹)	Net O ₂ release (kg tree ⁻¹ year ⁻¹)	Net O₂ release (ton tree ⁻¹ year ⁻¹)
Mangifera indica	442.085	221.043	810.342	46.31	0.046	123.450	0.123
Delonix regia	11559.992	5779.996	21189.465	385.26	0.385	1027.111	1.027
Hippocratea volubilis	363.697	181.849	666.657	49.38	0.049	131.652	0.132
Morinda tinctoria	337.836	168.918	619.252	68.81	0.069	183.436	0.183
Morus spp.	564.989	282.495	1035.625	94.15	0.094	250.998	0.251
Azadirachta indica	7405.904	3702.952	13575.022	301.67	0.302	804.245	0.804
Araucaria heterophylla	49.055	24.527	89.918	9.99	0.010	26.636	0.027
Simarouba glauca	718.404	359.202	1316.834	119.71	0.120	319.153	0.319
Nyctanthes arbor-tristis	20.746	10.373	38.027	5.85	0.006	15.597	0.016
Paulownia tomentosa	501.145	250.572	918.599	141.32	0.141	376.767	0.377
Millettia pinnata	1725.709	862.854	3163.224	140.59	0.141	374.807	0.375
Bauhinia purpurea	477.907	238.953	876.003	70.08	0.070	186.834	0.187
Gliricidia sepium	375.503	187.752	688.298	21.18	0.021	56.462	0.056
Leucaena leucocephala	2396.389	1198.194	4392.581	313.76	0.314	836.473	0.836
Roystonea regia	1695.761	847.881	3108.330	138.15	0.138	368.303	0.368
Ficus religiosa	6488.668	3244.334	11893.728	339.82	0.340	905.962	0.906
Santalum album	135.182	67.591	247.789	14.16	0.014	37.749	0.038
Manilkara zapota	21.023	10.512	38.536	5.93	0.006	15.806	0.016
Kigelia Africana	8774.071	4387.036	16082.873	378.42	0.378	1008.869	1.009
Mimusops elengi	1881.720	940.860	3449.192	125.43	0.125	334.383	0.334
Tamarindus indica	24268.032	12134.016	44483.303	808.79	0.809	2156.227	2.156
Tectona grandis	1834.173	917.086	3362.039	149.42	0.149	398.364	0.398
Tipuana tipu	1006.718	503.359	1845.313	136.69	0.137	364.415	0.364
Ficus benjamina	1602.770	801.385	2937.878	178.05	0.178	474.690	0.475
Sterculia foetida	1051.551	525.775	1927.493	116.82	0.117	311.436	0.311
Limonia acidissima	2183.070	1091.535	4001.567	106.71	0.107	284.485	0.284
Tecoma stans	177.972	88.986	326.222	50.19	0.050	133.801	0.134
Peltophorum pterocarpum	11316.925	5658.463	20743.924	377.16	0.377	1005.515	1.006
Bambusa vulgaris	31.641	15.820	57.998	5.80	0.006	15.462	0.015

Carvota mitis (0.004 ton tree⁻¹year⁻¹) and *Malpighia emarginata* $(0.006 \text{ ton tree}^{-1}\text{vear}^{-1})$ were the species with the lowest net carbon sequestration (Fig. 4). The net oxygen release, of selected tree species were ranged from 2.745 ton tree⁻¹year⁻¹ to 0.011 ton tree⁻¹year⁻¹ (Table 3). The tree species with the highest potential for net oxygen release were Albizia lebbeck (2.745 ton tree⁻¹year⁻¹), *Tamarindus indica* (2.156 ton tree⁻¹ ¹year⁻¹), *Parkia biglandulosa* (1.921 ton tree⁻ ¹year⁻¹), *Delonix regia* (1.027 ton tree⁻¹year⁻¹), tree⁻¹vear⁻¹), Kigelia Africana (1.009 ton Peltophorum pterocarpum (1.006 ton tree⁻¹year⁻¹ ¹), *Ficus religiosa* (0.906 ton tree⁻¹year⁻¹), Leucaena leucocephala (0.836 ton tree⁻¹year⁻¹), Pterospermum acerifolium (0.827 ton tree⁻¹year ¹) and Azadirachta indica (0.804 ton tree⁻¹year⁻¹). *Caryota mitis* (0.011 ton tree⁻¹year⁻¹) and *Malpighia emarginata* (0.015 ton tree⁻¹year⁻¹) were the species with the lowest net oxygen release (Table 3; Fig. 4). Oxygen production varies by tree size, age and type of species. Oxygen production regulates the metabolic process of living things, it is clear that the

production of oxygen by trees is a crucial ecological service [30]. Similar results were reported by [9].

3.4 Correlation between DBH and Carbon Stock, Carbon Dioxide eq. and Net Oxygen Release of Selected Tree Species

The significant correlations and trends that have been identified in this study (Fig. 5 and Fig. 6). The DBH, age and height of the tree are the important factors that determine carbon sequestration and oxygen production. The correlation relationship between DBH and carbon stock was analysed (Fig. 5). The results showed a positive correlation of R^2 (0.81434) with a gradient of 2533.66 showing a strong relationship between DBH and Carbon stock. The relationship between Carbon dioxide (eq.) and Net oxygen release was also analysed (Fig. 6). The results showed a strong positive correlation of R^2 (0.89521) with a gradient of 0.046.

Fig. 5. Correlation coefficient (r² value) between DBH and Carbon stock of selected tree species

Fig. 6. Correlation coefficient (r² value) between Carbon dioxide eq. and Net oxygen release of selected tree species

4. CONCLUSION

The present study confirms that species with higher biomass, resulted in high carbon sequestration and high oxygen release. Among 58 tree species evaluated, Fabaceae species were abundant, with larger tree volumes, biomass, carbon stocks resulting in high net carbon sequestration and net oxygen release. Similarly, growth of Albizia lebbeck was noticeably supreme when compared to others, followed by Tamarindus indica. Parkia biglandulosa, Delonix regia, Kigelia Africana, Ficus religiosa, Peltophorum pterocarpum, Leucaena leucocephala, Pterospermum acerifolium and Azadirachta indica. Green cover development projects with the above-mentioned trees could improve the carbon capture, oxygen release and air quality of Coimbatore city. India. In order to improve air quality along with substantial economic benefits in urban areas. appropriate number of trees, age of planting and spacing must be ascertained in future studies.

ACKNOWLEDGEMENTS

The would like to express my gratitude to all the co-authors for their important suggestions. I am very much grateful to Dr. M. Prasanthrajan Professor (Env. Science) Dept. of Environmental Sciences Tamil Nadu Agricultural University Coimbatore, for his invaluable guidance and support during the course of this study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Sangeetha A, Amudha T, editors. A study on estimation of CO₂ emission using computational techniques. 2016 IEEE International Conference on Advances in Computer Applications (ICACA); 2016.
- Batterman S, Ganguly R, Isakov V, Burke J, Arunachalam S, Snyder M, et al. Dispersion modeling of traffic-related air pollutant exposures and health effects among children with asthma in Detroit, Michigan. Transportation research record. 2014;2452(1):105-13.
- 3. Metya A, Datye A, Chakraborty S, Tiwari YK, Sarma D, Bora A, et al. Diurnal and seasonal variability of CO₂ and CH₄ concentration in a semi-urban environment

of western India. Scientific reports. 2021;11(1):1-13.

- 4. John JE, Lakshmanan A. Carbon sequestration as biomass carbon and mineral carbonates by Cyanobacterial systems in rice soil. Trends in Biosciences. 2018;11(27):3478-84.
- Ragula A, Mukandam S, Banoth S. Carbon sequestration potential of road side standing trees in kamareddy municipality, Telangana, India. Plant Archives. 2021;21(2):848-53.
- Yoo S-Y, Kim T, Ham S, Choi S, Park C-R. Importance of urban green at reduction of particulate matters in Sihwa Industrial Complex, Korea. Sustainability. 2020;12(18):7647.
- Janhäll S. Review on urban vegetation and particle air pollution–Deposition and dispersion. Atmospheric environment. 2015;105:130-7.
- Salmond J, Williams D, Laing G, Kingham S, Dirks K, Longley I, et al. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon. Science of the total environment. 2013;443:287-98.
- Mokashi M, Ghatanatti S, Mutanal S. Oxygen productivity in different tree species. Indian Journal of Ecology. 2021;48(2):373-5.
- Arunkumar M, Manisekar A, Dhanakumar S. Influence of urbanization on particulate matter pollution in Coimbatore City, India. Ecology, Environment and Conservation. 2022;28:790-801.
- 11. Prabu P, Dar MA. Land-use/cover change in Coimbatore urban area (Tamil Nadu, India)—a remote sensing and GIS-based study. Environmental monitoring and assessment. 2018;190(8):1-14.
- 12. Chavan B, Rasal G. Sequestered standing carbon stock in selective tree species grown in University campus at Aurangabad, Maharashtra, India. International Journal of Engineering Science and Technology. 2010;2(7):3003-7.
- 13. Frank EF. Crown Volume Estimates. Bull Eastern Nat Tree Soc. 2010;9(3):3-8.
- Hangarge L, Kulkarni D, Gaikwad V, Mahajan D, Chaudhari N. Carbon Sequestration potential of tree species in Somjaichi Rai (Sacred grove) at Nandghur village, in Bhor region of Pune District, Maharashtra State, India. Annals of Biological Research. 2012;3(7):3426-9.

- Pandya IY, Salvi H, Chahar O, Vaghela N. Quantitative analysis on carbon storage of 25 valuable tree species of Gujarat, Incredible India. Indian Journal of Scientific Research. 2013;4(1):137.
- Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, et al. Global wood density database. 2009.
- 17. Sheikh MA, Kumar M, Bussman RW, Todaria N. Forest carbon stocks and fluxes in physiographic zones of India. Carbon balance and management. 2011;6(1):1-10.
- Eggleston H, Buendia L, Miwa K, Ngara T, Tanabe K. 2006 IPCC guidelines for national greenhouse gas inventories. 2006.
- Shadman S, Khalid PA, Hanafiah MM, 19. Koyande AK, Islam MA, Bhuiyan SA, et al. The carbon sequestration potential of urban public parks of densely populated improve environmental cities to sustainability. Sustainable Energy Technologies and Assessments. 2022:52:102064.
- 20. Salisbury F, Ross C. Plant physiology. Wadsworth Publishing Company Inc. Belmont, California; 1978.
- Nowak DJ, Hoehn R, Crane DE. Oxygen production by urban trees in the United States. Arboriculture & Urban Forestry. 2007;33(3):220-226.
- 22. Negi SP. Agroforestry potential for increasing forest and tree cover in himachal pradesh-An analysis. Journal of Non-Timber Forest Products. 2017;24(4):185-90.
- 23. Rajaram S. Streettrees are an integral part of a city ecology: Bangalore mirror; 2018 Available from: https://bangaloremirror. indiatimes.com/opinion/sunday-

read/street-trees-are-an-integral-part-of-acitys-ecology/ articleshow/64992153.cms.

- 24. Chandra K, Bhardwaj AK. Growth, biomass and carbon sequestration by trees in nutrient-deficient Bhata land soil of Bilaspur, Chhattisgarh, India. Energy and Environment: Springer; 2018;39-45.
- 25. Zhang J, Ritchie MW, Maguire DA, Oliver WW. Thinning ponderosa pine (*Pinus ponderosa*) stands reduces mortality while maintaining stand productivity. Canadian Journal of Forest Research. 2013;43(999):311-20.
- Shrestha LJ, Devkota MP, Sharma BK. Are sacred groves of Kathmandu valley efficient in sequestering carbon? Journal of Botany; 2016.
- 27. Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: Feast or famine? Tree physiology. 2012;32(6):764-75.
- Bohre P, Chaubey O, Singhal P. Biomass accumulation and carbon sequestration in Dalbergia sissoo Roxb. International Journal of Bio-Science and Bio-Technology. 2012;4(3):29-44.
- Cardoso DJ, Lacerda AEB, Rosot MAD, Garrastazú MC, Lima RT. Influence of spacing regimes on the development of loblolly pine (*Pinus taeda* L.) in Southern Brazil. Forest Ecology and management. 2013;310:761-9.
- Mitra A, Chaudhuri TR, Pal N, Zaman S, Mitra A. Oxygen generation by dominant urban trees: A case study from Konnagar Municipality, West Bengal, India. Biomedical Journal of Scientific & Technical Research. 2017;1(1):1-9.

© 2022 Gowtham et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/89733