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ABSTRACT 
 

Chronic energy imbalance is a strong predictor of metabolic abnormalities; a sizable number of 
research has been carried out to investigate how this system of obesity and energy homeostasis 
are understood, its metabolic consequences, and possible solutions to restore homeostasis. 
Currently, there is an array of methodologies designed for measurements of various aspects of 
energy metabolism. It is exigent therefore to understand the relative merits of each methodology in 
order to choose the most appropriate ones for research and other investigations. It is also 
important to note that studies of this nature require precision and accuracy. In this review article, 
we provide information on the utility and limitations of methodologies that are commonly used in 
energy expenditure research, with a specific focus on its variability, correlations, indications and 
contraindications. 
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1. INTRODUCTION 
 
Obesity, a known major risk factor for a range of 
chronic diseases including diabetes, 
cardiovascular diseases and certain cancers 
have been attributed to the major cause of 
deaths among adults. It also imposes an array of 
socio-economic setbacks to individuals and the 
society as a whole. In 2014, WHO [1] declared 
an alarming estimation of 1.9 billion adults (or 
39% of the world population aged 18 years and 
over) that are overweight and among which over 
600 million are obese. In Nigeria, a systemic 
review study in 2013 showed that the prevalence 
of overweight individuals ranged from 20.3%–
35.1%, while the prevalence of obesity ranged 
from 8.1%–22.2% [2]. These epidemic 
proportions, therefore, call for a closer attention 
to combating these health disorders. Obesity is a 
physiological condition of chronic energy 
imbalance, while the regulation of energy 
metabolism varies widely among individuals, 
identifying those who are metabolically prone to 
weight gain and intervening accordingly is a key 
challenge for reversing the course of the obesity 
epidemic [3]. Energy expenditure is a 
fundamental property of living humans and other 
animals for the maintenance of cellular 
homeostasis when evaluated over 24 hours; 
Total Energy Expenditure (TEE) therefore can be 
described as the sum of five components: 
Resting Energy Expenditure (REE), Physical 
activity- induced Energy Expenditure, Thermic 
effect of food, Facultative thermogenesis and 
anabolism/growth

 
[4,5]; Hence, the thermogenic 

response to food is an increase in REE after 
ingestion of food [6].  
 
The REE is the energy necessary to run the 
basic process of the body such as the energy to 
maintain electrochemical gradients, generate 
heat and synthesize proteins required by body 
cell to maintain post absorptive homeostatic 
functions in resting subjects. REE is also used 
routinely by clinicians for estimation of energy 
requirements in patients care as well as by 
governmental agencies and health organizations 
in defining population energy requirement and it 
accounts for approximately 60% to 70% of the 
TEE [4,5,7]. A minor change in REE could lead 
to a significant energy imbalance and a huge 
change of body weight over a long period and 
REE decreases with muscle wasting, not losing 
fat alone [8]. For an average adult, the REE is 
fairly close to 1 kcal/kg body weight/hr or about 
1,680 kcal/day for an individual weighing 
70kg(5). Weight-controlling can be supported by 

a proper prescription of energy intake. The 
individual energy requirement is usually 
determined through REE and physical activity [9].  
 

2. Genetics and Resting Energy 
Expenditure  

 
REE is a modestly heritable trait and yet virtually 
nothing is known about the genetic factors that 
might influence the familial patterns. Also, 
despite the paucity of information on the genetics 
of energy and substrate metabolism, 
investigations into the genetic susceptibility to 
obesity suggest that altered energy expenditure 
and/or preferential substrate utilization are likely 
to be involved in the etiology of obesity, Such 
studies are confounded by the fact that both 
energy expenditure and substrate utilization are 
influenced predominantly by fat-free mass and 
likely to be genetically influenced [10]. Other 
study [11] observed that after adjustment for 
body size; approximately 11% of the observed 
variance in REE is due to familial aggregation, 
suggesting that genetic polymorphisms might 
influence the level of metabolic activity at rest 
and that one of the primary aims of energy 
metabolism research is to understand the 
inherent relations between REE and body 
composition. Ageing is associated with a decline 
in whole body REE at a rate of 1-2% per decade 
after the second decade of life. And the age-
related lowering of REE occurs when body 
weight remains stable over the same time period. 
The changes in body composition could partly 
explain the age-related decrease in REE since 
Fat-Free Mass (FFM) is the main contributor to 
REE [7,12]. This could also mean that the age-
related decline in the REE is primarily associated 
with loss of FFM and the loss is partially related 
to decrements in VO2 max and nutritional factors 
[13]. Other study observed that the age-related 
decline of REE in healthy subjects is not caused 
by a decreasing organ metabolic rate but is fully 
accounted for by a reduction in FFM and 
proportional changes in its metabolically active 
components [14]. However, change in body 
composition cannot entirely explain the age-
related decrease in REE. Ageing has been 
shown to be associated with a decrease in β-
adrenergically stimulated thermogenesis, and 
sympathetic nervous system activity is a 
determinant of facultative thermogenesis. 
Metabolic active organs like heart, liver, kidney or 
brain and metabolic less active tissues like 
muscle, bone or skin could also be responsible 
for the decline in REE during ageing [7]. Recent 
findings regarding the existence of functional 
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brown adipose tissue in adult humans have 
suggested its physiological role and the 
uncoupling protein 1 (UCP1)-linked 
thermogenesis in energy balance; these was 
found to be associated with REE and 
thermoregulatory sympathetic nervous system 
activity in humans. Diminished REE in G-allele 
carriers as well as reduced thermoregulatory 
sympathetic nervous system activity for the G/G 
genotype, suggest that attenuated UCP1-linked 
thermogenesis has an adverse effect on the 
regulation of energy balance [15]. However, 
variations in human energy expenditure are 
partly because of an influence of the genotype, 
even after control for the well-established 
concomitants of energy expenditure. The 
existence of a genotype-environment interaction 
and the emerging nutrient partitioning which is 
the major determinant of the individual 
differences in metabolic rate responses to 
overfeeding or negative energy balance 
conditions, consistently support the hypothesis 
that heredity plays a significant role in the various 
components of energy expenditure in humans 
[16]. The variability of REE among individuals 
has been linked to body size, body composition, 
age, gender, hormones, organ sizes and genetic 
factors. It was suspected that the relative 
proportion of high and low metabolically active 
tissues independent of differences in FFM, 
significantly add to the residual variance in REE 
[17]. Other factors like puberty [18], antipsychotic 
medications [19], menarche [20], ethnicity and 
race [21], Diabetes [22], work of breathing,           
sleep and starvation[23] have also been 
investigated and they showed significant positive 
correlations. 
 
A positive association was found between REE 
and weight gain in a lean adult Nigerian 
population and it was noted that the increased 
REE in this population was the result, rather than 
the cause of weight gain [24]. Also, some 
environmental factors like changes in body 
temperature in the tropics, increase muscle 
relaxation induced by the climate, temperature-
induced changes to thyroid activity and dietary 
differences with particular references to protein 
intake, physiological adaptation to chronic energy 
restriction or to racial/genetical differences have 
been suggested to regulate some components of 
REE [25]. Other study also reported the influence 
of leptin, sympathetic activities, aerobic activity 
and resistance training, as well as dietary 
composition [26]; However, FFM remains the 
principal determinant of REE across all age 
ranges [27]. 

The African- American men and women tend to 
be more overweight and have lower REE 
compared with Caucasian men and women of 
comparable weight, height, age and FFM, the 
reported observation in those women might be a 
predisposing risk factor for long term weight gain 
and obesity but the racial differences in REE 
were reduced by >50% and were no longer 
significant when the mass of specific high-
metabolic-rate organ was considered, differences 
in FFM composition may be responsible for the 
reported REE differences [28,29,30]. 
 
REE has been shown to be significantly higher in 
adult men than in women by an average 50 
kcal/day irrespective of differences in body 
composition and aerobic fitness. It was 
suggested that the greater thermogenic effect of 
androgens compared with estrogens might also 
contribute to the gender differences [31]. Also, 
Creatine kinase activity was reported to be a 
determinant of REE, and high activities of this 
enzyme are particularly described in black 
people [32]; Creatine kinase increases the cell’s 
capacity to function under high demands, thus 
greater Creatine kinase activity in cardiovascular 
muscle and other tissue with high energy 
demands could increase cardiovascular 
contractile reserve, enhance tropic responses 
and increase renal tubular activity to retain salt; 
and this could facilitate the development of 
arterial hypertension. On the other hand, studies 
on sleeping metabolic rate (SMR) have shown 
that the rate of decline in metabolic rate during 
sleep is directly related to body weight, BMI and 
FFM. Average SMR tends to be lower than REE 
in obese subjects and higher than REE in non- 
obese subjects [33]. 
 

3. Cardiometabolic Risks and Resting 
Energy Expenditure 

 
Obesity-related cardiometabolic risk factors 
contribute to inter individual variation in REE, 
with hypertension, insulin resistance and T2DM 
been associated with higher REE. There are also 
significant associations of REE with systolic and 
diastolic blood pressure, FPG, insulin 
concentrations, and HOMA-IR. Similarly, 
increase REE is associated with hyperglycemia 
and glycemic intolerance and positively 
correlated with fasting insulin concentrations in 
non-diabetics [14]. Evidence suggests that a low 
REE may be due to genetic variation involving 
sympathetic activity, thyroid activity, β-receptor 
sensitivity, sodium, potassium and adenosine 
triphosphatase (Na+, K+-ATPase) enzyme 
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activity [34,35]. The etiology of a greater REE in 
diabetics has been suggested to be the result of 
abnormal protein metabolism and high insulin 
resistance. However, the exact mechanism still 
remains unclear [8]. Studies have also shown 
linear relationships among T2DM patients, REE, 
rates of hepatic glucose production, lipid 
oxidation, urinary albumin loss and anaemia 
accompanied by diabetic nephropathy [36,37].  
 
A significant link between serum adiponectin 
concentrations and low REE was also reported 
[38], with the speculation that protection by 
adiponectin against obesity-related disorders is 
especially important for subjects with low REE. 
Again, subjects with low REE are at increased 
risk of developing these disorders because larger 
portion of their daily food intake is stored as fat.  
These findings, together with the well-known 
inverse relation between adiponectin and insulin 
resistance, fit in the same framework and confirm 
the important interplay between adiponectin and 
the pathogenesis of the Metabolic Syndrome.   
 
In theory, higher energy expenditure should 
promote a negative energy balance and thereby 
weight loss in obese T2DM patients. Together 
with urinary glucose, this may serve as a defense 
mechanism against further weight gain. 
However, T2DM patients are often more resistant 
than matched  non-diabetic individuals to losing 
weight In weight management programs, 
independent of whether the intervention is 
conventional or pharmaceutical assisted [39]. In 
contrast, acquired insulin resistance as a 
consequence of obesity may lead to a higher 
REE by increasing protein turnover, futile cycling, 
gluconeogenesis, and the activity of the 
sympathetic nervous system; as a result an 
increased REE at an impaired glucose tolerance 
is a metabolic consequence of obesity that is 
directed against further weight gain [14]. 
 

4. Measurements of Resting Energy 
Expenditure 

 
The gold standard for measurement of REE                
is Calorimentry (Direct or Indirect).  The 
equipment required to measure respiratory 
exchange make this procedure time consuming, 
costly and often unavailable. It requires extensive 
subject cooperation as well as accurate and 
precise flow and concentration measurement, 
using sophisticated flow and gas analyzers.  
 
Direct Calorimetry can be used for the 
assessment of energy expenditure by 

measurement of the body’s heat production in a 
Calorimeter, but the most commonly used 
method is the Indirect Calorimetry, a ventilated 
open circuit system by which the rate of energy 
expenditure is estimated in vivo from total body 
respiratory gas exchange measurements rather 
than directly from heat. It allows air (gas) 
volumes to be measured, and CO2 and O2 gas 
analyzers to determine the volumes of individual 
gases being produced or used. The respiratory 
quotient (RQ), which provides information about 
metabolic substrate utilization (lipid or 
carbohydrate), is calculated by dividing the 
volume of CO2 produced by the volume of 
O2 consumed (RQ = VCO2/VO2).  It collects and 
mixes the expired air, measures the flow rate, 
and analyzes the gas concentration of the 
incoming and outgoing air for both O2 and CO2 

[40]. Other methods, though less common, are 
the Refractometry, Mass Spectrometry,  The 
Doubly Labeled Water method, metabolic carts 
and non-calorimetric techniques like physical 
activity log and kinematic measurements, heart 
rate and ventilation monitoring etc. However, 
using indirect calorimetry to compare energy 
expenditure among individual subjects that differ 
in body weights has inherent inaccuracies.  
Differences in body weight are usually 
associated with differences in tissue distribution; 
Since Energy expenditure of different tissues 
varies over a broad range and it is not possible to 
calculate the contribution of each organ, there is 
no clear-cut agreement about how Energy 
Expenditure is best expressed. To control for this 
confounder, some researchers perform pair 
feeding experiments which on its own has flaws 
possibly owing to a relative state of semi-
starvation that is perceived by experimental 
animals [41]. Likewise, the impractical direct 
measurement of REE and characterized two 
perspectives from which a prediction of REE 
could be approached, i.e, clinical and physiologic 
has been supported [42]. The corresponding 
variables of interest are weight, height and 
gender for the clinical and FFM for the 
physiologic perspective. 
 
5. Equations for Predicting Resting 

Energy Expenditure 
 
A number of recognized prediction equations to 
calculate REE of individuals have been 
developed and recommended in clinical practice. 
They are estimates of how many calories an 
individual will burn if he/she were to do nothing 
but rest for 24 hrs [43]. These can provide the 
basis for prescribing an individualized energy 
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intake to attain a desired level of energy deficit 
and serve as the basis from which daily energy 
needs are established for the prescription of the 
meal plan with computation of macronutrients for 
weight control [9,37]. These prediction formulas 
were originally important in diagnosing thyroid 
disease, although today their primary role is in 
estimating subject’s energy requirements [44,45].  
  
The most frequently used formula for predicted 
energy expenditure are the Harris – Benedict 
equations which was established in 1919 and 
took into account gender, age, height and weight; 
although the non consideration of weight history 
and ethnicity of the individuals has been 
questioned [46]. 
 
The comparative studies for accuracy of some of 
the prediction equations by [43,47,48,49], 
showed that the Harris – Benedict equation is the 
most accurate of all the equations studied, 
considering the clinical variables, i.e. Age, 
gender, Weight and Height. The prediction 
equations of REE is highly dependent on the 
methodology employed to compare the various 
formulas, and  Harris- Benedict equations have 
been supported to yield reasonable REE 
predictions for normal sized and obese 
subjects[50].  Harris - Benedict derived their 
equation using data from healthy, non-obese 
infants and other subjects in the age range 18-
70yrs old, thus excluding a large group including 
the pediatric obese population [47,51]. 
 
Harris-Benedict equation is correct 80-90% of the 
time in healthy and normal volunteers. In obese 
volunteers, the equation predicts REE correctly 
only 40- 64% of the time. In critically ill patients 
the equation is correct only 50% of the time. The 
total energy expenditure of a hospitalized patient 
can however be calculated by multiplying the 
REE with the injury or activity factor and the 
thermic effect (if they are digesting and 
absorbing food). The activity factor for such 
patient is simplified to a factor of 1.2 if the patient 
is confined to bed, or 1.3 if allowed out of              
bed [23].        
 
A major investigative focus of energy metabolism 
research over the past four decades is the 
development of REE prediction formulas based 
on FFM. Although investigations have expressed 
an increasing interest in REE – FFM 
relationships, several fundamental questions 
remain unanswered. Zimian et al. [52] showed 
The linear REE- FFM relationship long observed 
in adult humans is qualitatively consistent with 

the curvilinear REE – Body Mass relationship 
observed in mammals as a whole. The 
experimental data also suggest that mammals 
exhibit a decrease in the proportion of FFM as 
high metabolic rate organs with greater FFM. 
FFM may thus not be a “metabolically 
homogenous” compartment across mammals 
generally, and humans specifically, varying 
widely in Body Mass. The derived whole body 
level and tissue/organ level REE – FFM models 
are general and unsuitable for individual REE 
prediction [52].    
 
The use of prediction equations has been 
recommended for calculating energy expenditure 
more importantly among the populations from 
which they were derived. This is due to 
individuals not within a particular population 
falling outside the parameters set forth in the 
equation [47,53].  In addition, some predicted 
equations were proposed based on whole body 
level, tissue organ level, cellular level and 
molecular level [54]. Despite several other 
proposed predicted equations, the most frequent 
used formula for predicted energy expenditure 
are the Harris – Benedict equations. 
FAO/WHO/UNU [55] advocated the use of 
multiples of REE to estimate energy expenditure 
and then proposed a revised equation which has 
also been investigated. Besides, most clinicians 
rely on REE prediction equations that incorporate 
easily measurable variables, such as body 
weight and height. Of these, the Harris-Benedict 
equations gave the lowest bias and narrowest 
limits of agreement, followed by the Owen 
equations. Therefore if weight and height are 
available, Harris- Benedict equation is highly 
recommended [46]. There are now many 
published methods and equations (Tables I and 
II) for predicting REE from measured body mass 
and body composition. Although these published 
reports extend back almost a century, new 
related studies appears on a regular basis, It 
then remains unclear what the similarities and 
differences are between these many methods 
and what, if any, advantages the newly 
introduced REE prediction models offer [56]. 
 
Studies comparing predictive equations with 
indirect calorimetry in critically ill patients showed 
a poor agreement between calculated and 

measured energy expenditure [57,58]. Indirect 
calorimetry allows for accurate determination of 
Energy expenditure, but widespread adoption of 
the technique has been limited due to the 

technical demands of measurements [59]. More 
so, even when Indirect Calorimetry is not 
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available, there is no consensus about which 
equation to use in hospitalized patients and 
critically ill children and this is has presented as a 
huge challenge for clinicians. Hence, nutrition for 
critically ill should be provided according to 
measurement of REE to avoid the consequences 
of overfeeding or malnutrition [60]. Several 
guidelines recommend a calorie delivery targeted 
at energy expenditure and suggested that lower 

energy targets may be acceptable during the first 
weeks of ICU stay, but there is still uncertainty 
regarding optimal targets for patients with 
preexisting malnutrition or a prolonged course of 
critical illness. Regardless of feeding strategy, 
setting individual caloric goals requires an 
estimation of EE either by use of equations with 
inputs from various patient characteristics, or 
indirect calorimetry [61].  

 
           Table 1. Equations for predicting REE derived from FFM in adult humans  
 

Author Descriptive equation 

Owen et al. ( 1986) REE = 19.7 × FFM + 334 

Mifflin et al. (1990) REE = 19.7 × FFM + 413 

Luke & Schoeller (1992) REE = 20.0 × FFM + 585 

Jensen et al. (1988) REE = 20.0 × FFM + 662 

Ravussin et al. (1982) REE = 20.82 × FFM + 471 

Ravussin et al. (1986) REE = 20.93 × FFM + 478.7 

Elia 1992) REE = 21.11 × FFM + 450 

McNeil et al. (1987) REE = 21.5 × FFM + 329 

Heymsfield et al. (1988) REE = 21.6 × FFM + 302 

Cunningham (1980) REE = 21.6 × FFM + 501.6 

Ravussin & Bogardus (1989) REE = 21.8 × FFM + 392 

Owen et al. (1987) REE = 22.3 × FFM + 290 

Heshka et al. (1990) REE = 22.94 × FFM + 356.7 

Owen (1988) REE = 23.6 × FFM + 186 

Kashiwazaki et al. (1988) REE = 24.5 × FFM + 304 
FFM, fat-free mass (kg); Sex, male=0; female=1.REE, whole body resting energy expenditure (kcal/day). [52] 

 
Table 2. The predictive equations for REE derived from age, weight, height, and gender 

 

Authors  Equations  

Kleiber (1932)  REE= 73.3xBM0.74 ( kcal/day) 

Kleiber (1961) REE= 73.3xBM
0.75

 (kcal/day) 

Harris & Benedict (1919) REE= 66.437+13.752 Wt+5.003 Ht-6.755 Age (male) 

REE= 655.096+9.563 Wt+1.85 Ht-4.676 Age (female) 

[kcal/day (18-30 years)] 

Gallagher et al. (1998)  REE= 689 brain+27.5 skeletal muscle-210 (kcal/day) 

WHO/FAO/UNU (1985)  REE= 679+15.3 Wt (male) 

REE= 496+14.7 Wt (female) [kcal/day (18-30 years)] 

Schofield et al.  (1985)  

 

REE= 688.5+15.1Wt (male) 

REE= 603.2+13.1Wt (female)  [kcal/day (18-30 years)] 

Henry & Rees (1991)  

 

REE= 672+13.4 Wt (male) 

REE= 614.8+11.5 Wt(female) (kcal/day) 

Maffies (1993)  REE= 28.6 Wt+23.6 Ht-69.1 Age+1287(male) 

REE= 35.8 Wt+15.6 Ht-36.3 Age+1552(female) (kj/day) 

Mifflin et al. (1990)  REE= 15.1 Wt+371 (kcal/day) 

Molner (1995) REE= 50.2 Wt+29.6 Ht-144.5 Age-550 Sex+594.3 (kj/day) 
Wt-Weight (kg); Ht-Height (cm); FM-Fat mass (gm); FFM-Fat free mass (gm); Age (years); gender: male=0; 

female=1 [4,62] 
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When indirect Calorimetry is not available, 
predictive equations are used to estimate REE, 
However many researchers have investigated 
the validity of most of these equations; and 
comparative studies on different equation and 
indirect Calorimetry have been carried out and 
have also presented their opinions. There is no 
consistency regarding a more accurate equation 
with a closer estimate to that of Indirect 
Calorimetry, or a specific and common equation 
either for obese, non-obese, children, adult or 
critically ill patients. Although, no predictive 
equations had the same values of REE as 
compared to those of Indirect Calorimetry, WHO 
and Harris-Bennedict equations were 
recommended because they least 
underestimated REE [63]. Also, validity studies 
[57,64,65] have shown that there is a wide 
variation in the accuracy of REE predictive 
equations; and there is no consensus about 
which equation should be used in hospitalized 
patients(60). Akin to these, it was recommended 
that clinical judgment should be adhered to, 
regarding when to accept estimated REE using 
predictive equations in any given individual. 
Indirect calorimetry may be an important tool 
when, in the judgment of the clinician, the 
predictive methods fail an individual in a clinically 
relevant way. For members of groups that are 
greatly underrepresented by existing validation 
studies of predictive equations, a high level of 
suspicion regarding the accuracy of the 
equations is warranted [66]. 
 

6. CONCLUSION 
 

The developed prediction equations for REE has 
been skirmished with a lot of inconsistencies and 
criticisms, the general opinion is that indirect 
calorimetry remains the most reliable method for 
REE estimation, be it in obese, non-obese, 
children, adults or the critically ill, regardless of 
gender, ethnic or racial background. However, 
the importance of REE estimation cannot be 
overemphasized and researchers have shown 
severally how it influences the development of 
obesity and cardiometabolic risks. There is a 
need for a more accurate, precise and non- 
ambiguous prediction equation for a dietary 
prescription, clinical and research purposes. 
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