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Abstract 
 

In this work, a study involving magnetic field actuation over reentry flows in thermochemical non-
equilibrium is performed. The Euler and Navier-Stokes equations, on a finite volume and structured 
contexts, are studied. The Maciel algorithm used to perform the numerical experiments is centered and 
2nd-order accurate. The “hot gas” hypersonic flow around a blunt body is simulated. Two time integration 
methods are tested: Euler Backward, and Middle Point. The reactive simulations involve Earth 
atmosphere of eleven species. The Dunn and Kang model with thirty-two reactions and the Park model 
with forty-three reactions are taken into account. The work of Gaitonde is the reference to couple the fluid 
dynamics and Maxwell equations of electromagnetism. The results have indicated that the Maciel 
scheme, employing the Dunn and Kang chemical model, using the Mavriplis dissipation model and the 
Euler Backward to march in time, for the inviscid case, yields the best prediction of the stagnation 
pressure. Moreover, the drag coefficient and the temperature peak have presented the expected behavior 
in the simulations. 
 

 
Keywords: Hypersonic flow; Euler and Navier-Stokes equations; Maxwell equations; 11 species chemical 

model; Maciel scheme; reentry flows; two-dimensions. 
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NOMENCLATURES 
 

B


 = Complete magnetic field vector, Tesla 
Bx, By = Cartesian components of the magnetic field vector in the x and y directions, respectively, Tesla 

eV = Sum of the vibrational energy of the molecules, J/kg 

*
ve  = Molecular-vibrational-internal energy calculated with the translational/rotational temperature, 

J/kg 

fx, fy = Cartesian components of the viscous work and Fourier heat flux functions 

P = pressure term considering the magnetic effect, N/m2 

qJ,x  = component of the Joule heat flux vector in the x direction, J/(m2s) 

qJ,y  = component of the Joule heat flux vector in the y direction, J/(m2s) 

qv,x = vibrational Fourier heat flux components in the x direction, J/(m2s) 

qv,y = vibrational Fourier heat flux components in the y direction, J/(m2s) 

Rb = magnetic force number or pressure number 

Re = laminar Reynolds number 

Reσ  = magnetic Reynolds number 

V


 = complete velocity vector, m/s 

u, v = Cartesian components of the velocity vector in the x and y directions, respectively, m/s 

Z = fluid total energy considering the contribution of the magnetic field, J/kg 

x, y = Cartesian components of the mixture diffusion terms in the x and y directions, respectively 

v,x = term of molecular diffusion calculated at the vibrational temperature in the x direction 

v,y = term of molecular diffusion calculated at the vibrational temperature in the y direction 

µM = mean magnetic permeability, 4πx10-7 T.m/A, to atmospheric air 

 = mixture density, kg/m3 

s = species density, kg/m3 

svsx = species diffusion flux in the x direction, defined by the Fick law, kg/(m2s) 

svsy = species diffusion flux in the y direction, defined by the Fick law, kg/(m2s) 

’s = components of the Newtonian viscous stress tensor, N/m2 

s = translational-vibrational characteristic relaxation time of each molecule, seconds 

σ  = electrical conductivity, ohm/m 

s  = chemical source term of each species equation, defined by the law of mass action, kg/(m3s) 

 

1 Introduction 
 
Renewed interest in the area of hypersonic flight has brought computational fluid dynamics (CFD) to the 
forefront of fluid flow research [1]. Many years have seen a quantum leap in advancements made in the 
areas of computer systems and software which utilize them for problem solving. Sophisticated and accurate 
numerical algorithms are devised routinely that are capable of handling complex computational problems. 
Experimental test facilities capable of addressing complicated high-speed flow problems are still scarce 
because they are too expensive to build and sophisticated measurements techniques appropriate for such 
problems, such as the non-intrusive laser, are still in the development stage. As a result, CFD has become a 
vital tool, in some cases the only tool, in the flow research today. 
 

The study of hypersonic flows has gained momentum with the advent of concepts like the National 
AeroSpace Plane (NASP) and similar transatmospheric vehicles. Under the very high velocity and 
temperature conditions experienced by hypersonic vehicles, departure from chemical and thermal 
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equilibrium occurs. Properties of air change dramatically as new chemical species are produced at the 
expense of others. The simple one temperature model used to describe the energy of air becomes 
inapplicable, and it becomes necessary to consider one or more additional temperatures (corresponding to 
vibrational and electronic energies). Determination of aerothermal loads on blunt bodies in such an 
environment is of great importance. 
 
In high speed flows, any adjustment of chemical composition or thermodynamic equilibrium to a change in 
local environment requires certain time. This is because the redistribution of chemical species and internal 
energies require certain number of molecular collisions, and hence a certain characteristic time. Chemical 
non-equilibrium occurs when the characteristic time for the chemical reactions to reach local equilibrium is 
of the same order as the characteristic time of the fluid flow. Similarly, thermal non-equilibrium occurs 
when the characteristic time for translation and various internal energy modes to reach local equilibrium is 
of the same order as the characteristic time of the fluid flow. Since chemical and thermal changes are the 
results of collisions between the constituent particles, non-equilibrium effects prevail in high-speed flows in 
low-density air. 
  
In chemical non-equilibrium flows the mass conservation equation is applied to each of the constituent 
species in the gas mixture. Therefore, the overall mass conservation equation is replaced by as many species 
conservation equations as the number of chemical species considered. The assumption of thermal non-
equilibrium introduces additional energy conservation equations – one for every additional energy mode. 
Thus, the number of governing equations for non-equilibrium flow is much bigger compared to those for 
perfect gas flow. A complete set of governing equations for non-equilibrium flow may be found in [2-3]. 
  
The problems of chemical non-equilibrium in the shock layers over vehicles flying at high speeds and high 
altitudes in the Earth’s atmosphere have been discussed by several investigators ([4-7]). Most of the existing 
computer codes for calculating the non-equilibrium reacting flow use the one-temperature model, which 
assumes that all of the internal energy modes of the gaseous species are in equilibrium with the translational 
mode ([6-7]). It has been pointed out that such a one-temperature description of the flow leads to a 
substantial overestimation of the rate of equilibrium because of the elevated vibrational temperature [5]. A 
three-temperature chemical-kinetic model has been proposed by [8] to describe the relaxation phenomena 
correctly in such a flight regime. However, the model is quite complex and requires many chemical rate 
parameters which are not yet known. As a compromise between the three-temperature and the conventional 
one-temperature model, a two-temperature chemical-kinetic model has been developed ([9-10]), which is 
designated herein as the TTv model. The TTv model uses one temperature T to characterize both the 
translational energy of the atoms and molecules and the rotational energy of the molecules, and another 
temperature Tv to characterize the vibrational energy of the molecules, translational energy of the electrons, 
and electronic excitation energy of atoms and molecules. The model has been applied to compute the 
thermodynamic properties behind a normal shock wave in a flow through a constant-area duct ([9-10]). 
Radiation emission from the non-equilibrium flow has been calculated using the Non-equilibrium Air 
Radiation (NEQAIR) program ([11-12]). The flow and the radiation computations have been packaged into a 
single computer program, the Shock-Tube Radiation Program (STRAP) ([10]). 
  
The effects associated with the interaction of magnetic forces with conducting fluid flows have been 
profitably employed in several applications related to nuclear and other ([13]) technologies and are known to 
be essential in the explanation of astrophysical phenomena. In recent years, however, the study of these 
interactions has received fresh impetus in the effort to solve the problems of high drag and thermal loads 
encountered in hypersonic flight. The knowledge that electrical and magnetic forces can have profound 
influence on hypersonic flow fields is not new ([14-15]) – note increased shock-standoff and reduced heat 
transfer rates in hypersonic flows past blunt bodies under the application of appropriate magnetic fields. The 
recent interest stems, however, from new revelations of a Russian concept vehicle, known as AJAX ([16]), 
which made extensive reference to technologies requiring tight coupling between electromagnetic and fluid 
dynamic phenomena. A magnetogasdynamics (MGD) generator was proposed ([17]) to extract energy from 
the incoming air while simultaneously providing more benign flow to combustion components downstream. 
The extracted energy could then be employed to increase thrust by MGD pumping of the flow exiting the 
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nozzle or to assist in the generation of a plasma for injection of the body. This latter technique is known to 
not only reduced drag on the body but also to provide thermal protection ([18]). 
 
In addition to daunting engineering challenges, some of the phenomena supporting the feasibility of an 
AJAX type vehicle are fraught with controversy (see, for example, [19]). Resolution of these issues will 
require extensive experimentation as well as simulation. The latter approach requires integration of several 
disciplines, including fluid dynamics, electromagnetics, chemical kinetics, and molecular physics amongst 
others. This paper describes a recent effort to integrate the first three of these, within the assumptions of 
ideal and non-ideal magnetogasdynamics. 
 
In this work, a study involving magnetic field actuation over reentry flows in thermochemical non-
equilibrium condition is performed. The Euler and Navier-Stokes equations, on conservative and finite 
volume contexts, employing structured spatial discretization, are studied. The numerical algorithm of Maciel 
is used to perform the reentry flow numerical experiments, which give us an original contribution to the 
CFD community. Two types of numerical dissipation models are applied, namely: [20-21]. The “hot gas” 
hypersonic flow around a blunt body, in two-dimensions, is simulated. The convergence process is 
accelerated to steady state condition through a spatially variable time step procedure, which has proved 
effective gains in terms of computational acceleration ([22-23]). Two time integration methods are tested to 
march the scheme in time, and it is another original contribution of this work. They are: Euler Backward, 
and Middle Point. The reactive simulations involve Earth atmosphere chemical model of eleven species. The 
[24] model with thirty-two reactions and the [25] model with forty-three reactions are taken into account. 
The work of [26-27] are the references ones to couple the fluid dynamics and Maxwell equations of 
electromagnetism based on a conservative and finite volume formalisms. The results have indicated that the 
Maciel scheme employing the [24] chemical model, using the [20] artificial dissipation operator and the 
Euler Backward method to march in time, for the inviscid case, yields the best prediction of the stagnation 
pressure value. Moreover, the shock-standoff distance did not suffer alteration with the increase of the 
magnetic field intensity, but the drag coefficient reduces in value, as well the temperature peak. 
 

2 Navier-stokes and Maxwell Equations 
 
The flow is modelled by the Navier-Stokes equations in the condition of thermochemical non-equilibrium, 
where the rotational and vibrational contributions are considered, and by the Maxwell equations. Once the 
reactive Euler equations are obtained from the reactive Navier-Stokes equations in the limit of infinity 
Reynolds number, only the latter are presented. The reactive formulation involves an eleven species 
chemical model. Details of the eleven species model implementation, as well the thermodynamic and 
transport properties, are described in [28-29], and the interested reader is encouraged to read these works to 
become aware of the present study. 
 
The reactive Navier-Stokes equations, in thermal and chemical non-equilibrium, coupled with the Maxwell 
equations, were implemented on conservative and finite volume contexts, in the two-dimensional space. In 
this case, these equations in integral and conservative forms can be expressed by: 

 

  




V V

CV

S

dVSdSnFQdV
t


, with:     jFFiEEF veve


 ,                                               (1) 

 

where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete 
flux vector, n


 is the unity vector normal to the flux face, S is the flux area, SCV is the chemical and 

vibrational source term, Ee and Fe are the convective flux vectors or the Euler flux vectors in the x and y 

directions, respectively, Ev and Fv are the viscous flux vectors in the x and y directions, respectively. The i


 

and j


 unity vectors define the Cartesian coordinate system. Seventeen (17) conservation equations are 

solved: one of general mass conservation, two of linear momentum conservation, one of total energy, ten of 
species mass conservation, one of the vibrational internal energy of the molecules, and two of the Maxwell 
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equations. Therefore, one of the species is absent of the iterative process. The CFD literature recommends 
that the species of biggest mass fraction of the gaseous mixture should be omitted, aiming to result in a 
minor numerical accumulation error. To the present study, in which is chosen a chemical model of the air 
composed of eleven (11) chemical species, this species can be the N2 or the O2. It was chosen the N2. The 
vectors Q, Ee, Fe, Ev, Fv, and SCV can, hence, be defined as follows: 
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The viscous stresses, in N/m2, are determined, according to a Newtonian fluid model, by: 
 

  , yvxu32xu2xx   xvyuxy  , and  

    yvxu32yv2yy  ,                                                                                         (5) 

 
with µ being the molecular viscosity. Expressions to fx and fy are given below: 

 

x,vxxyxxx qqvuf     and   vyyyyxyy qqvuf  ,                                                   (6) 

 
where qx and qy are the Fourier heat flux components and are given by: 

 

xTkq TRx     and   yTkq TRy  ,                                                                                    (7) 

 
with kTR is the translational/rotational thermal conductivity. The qv,x and qv,y are the vibrational heat flux 
components and are given by: 

 

xTkq VVx,v     and   yTkq VVy,v  .                                                                             (8) 

 
with kV being the vibrational thermal conductivity and TV is the vibrational temperature, what characterizes 
this model as of two temperatures: translational/rotational and vibrational. The Z total energy is defined as: 
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with: TREF is the reference temperature, and 0
mix,fh is the mixture formation enthalpy. The pressure term is 

given by: 
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with p the fluid static pressure. The magnetic force number or pressure number is determined by: 
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where B∞, ∞, V∞, and  ,M  are freestream flow properties. The laminar Reynolds number is estimated by: 
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with LREF a characteristic configuration length. The magnetic Reynolds number is calculated by: 

 

  ,MREFVLRe .                                                                                                                  (13) 

 

The components of the Joule heat flux vector, which characterizes the non-ideal formulation, are determined 
by: 
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The terms of species diffusion, defined by the Fick law, to a condition of thermal non-equilibrium, are 
determined by ([30]): 
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
 ,                                                                        (15) 

 

with “s” referent to a given species, YMF,s being the molar fraction of the species, defined as: 

 








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1k

kk

ss
s,MF

M

M
Y                                                                                                                          (16) 

and Ds is the species-effective-diffusion coefficient. The diffusion terms x and y which appear in the 
energy equation are defined by ([31]): 
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
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ns

1s

ssysy hv ,                                                                                     (17) 

 

being hs the specific enthalpy (sensible) of the chemical species “s”. The molecular diffusion terms 
calculated at the vibrational temperature, v,x and v,y, which appear in the vibrational-internal-energy 
equation are defined by ([30]): 
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



mols

s,vsxsx,v hv and 



mols

s,vsysy,v hv ,                                                                                (18) 

 

with hv,s being the specific enthalpy (sensible) of the chemical species “s” calculated at the vibrational 
temperature TV. The sum of Eq. (18), as also those present in Eq. (4), considers only the molecules of the 
system, namely: N2, O2, NO, N2

+, O2
+ and NO+. 

 

3 Maciel Centered Scheme 
 
Maciel centered scheme is obtained by arithmetical average between the flux at the left and right states of the 
interface. Considering the two-dimensional and structured case, the algorithm is divided in three parts, as 
recommended by [32], each one corresponding to a characteristic flux. The first part takes into account the 
dynamic part, which considers the Navier-Stokes equations plus the Maxwell equations, the second one 
takes into account the chemical part, and the third part takes into account the vibrational part. Hence, the 
discrete-dynamic-convective flux is given by: 
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(19) 

 
the discrete-chemical-convective flux is defined by: 
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and the discrete-vibrational-convective flux is determined by: 
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R  .                                                                 (21) 

 

The viscous formulation follows that of [33], which adopts the Green theorem to calculate primitive variable 
gradients. The viscous vectors are also obtained by arithmetical average between cell (i,j) and its neighbors. 
As was done with the convective terms, there is a need to separate the viscous flux in three parts: dynamical 
viscous flux, chemical viscous flux and vibrational viscous flux. The dynamical part corresponds to: 
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(22) 
 

To the chemical part one has: 
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Finally, to the vibrational part: 
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where   t

j,2/1iyxj,2/1i SSS
   defines the normal area vector for the surface (i+½,j). The normal area 

components Sx and Sy to each flux interface are given in Table 1. Fig. 1 exhibits the computational cell 
adopted for the simulations, as well its respective nodes and flux interfaces. 
 
The resultant ordinary differential equation system can be written as: 

 

  j,ij,2/1i2/1j,ij,2/1i2/1j,ij,ij,i CRRRRdtdQV   ,                                                                             (25) 

 
where the cell volume is given by: 

 

            1j,1ij,i1j,ij,i1j,i1j,1i1j,i1j,1ij,ij,1ij,i1j,1ij,i1j,1ij,1i1j,1ij,1ij,ij,i yxxyxxyxx5.0yxxyxxyxx5.0V   .  

(26) 
 

This centered scheme is second order accurate in space, according to a finite difference discretization, and 
needs an artificial dissipation operator, D, to guarantee stability in presence of shock waves and background 
instabilities. Considering this operator, Eq. (25) can be rewritten as: 
 

  j,ij,ij,ij,i VDCdtdQ  ,                                                                                                                            (27) 
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where D has the following structure: 

         j,i
4

j,i
2

j,i Qd-QdQD  ,                                                                                                         (28) 

 
with: 

 
         j,ij,1ij,1ij,i

2
j,2/1ij,i1j,i1j,ij,i

2
2/1j,i

)2( Q-QAA5.0Q-QAA5.0d    

         j,ij,1-ij,1-ij,i
2

j,2/1-ij,i1j,i1j,ij,i
2

2/1j,i Q-QAA5.0Q-QAA5.0   ,                                   (29) 

 
named the undivided Laplacian operator, responsible by the numerical stability in presence of shock waves; 
and 

 
             j,i

2
j,1i

2
j,1ij,i

4
j,2/1ij,i

2
1-j,i

2
1-j,ij,i

4
2/1-j,i

4 Q∇-Q∇AA5.0Q∇-Q∇AA5.0d  

         j,i
2

j,1-i
2

j,1-ij,i
4

j,2/1-ij,i
2

1j,i
2

1j,ij,i
4

2/1j,i Q∇-Q∇AA5.0Q∇-Q∇AA5.0   ,         (30) 

 
named the bi-harmonic operator, responsible by the background stability (odd-even instabilities, for 
instance). In this last term, 

 

       j,ij,1-ij,i1j,ij,ij,1ij,i1-j,ij,i
2 Q-QQ-QQ-QQ-QQ∇   .                                               (31) 

 

In the d(4) operator, j,i
2Q  is extrapolated from its neighbor cell every time that such one represent an 

especial boundary layer cell, recognized in the CFD literature as “ghost” cell. The  terms are defined, for 
instance, as: 

 
     j,ij,1i

22
j,2/1i ,MAXK      and          2

j,2/1i
44

j,2/1i K,0MAX   ,                                    (32) 

 
in which: 

 

   j,ij,1-i1j,ij,1i1-j,ij,ij,1ij,i1j,ij,ij,1ij,i1j,ij,i p4ppppppp-pp-pp-p   .          (33) 

 
represents a pressure sensor employed to identify regions of high gradients. Each time that a neighbor cell 

represent a ghost cell, it is assumed that, for instance, j,ighost  . The Ai,j terms define the particular 

artificial dissipation operator. Two models were studied in this work. 
 

3.1 Artificial dissipation operator of mavriplis / scalar, non-linear, and isotropic 
model 

 
In this case, the Ai,j terms represent the sum of the contributions of the maximum normal eigenvalue 
associated to the flux interface of the Euler equations, integrated along each cell face. Based on [20] work, 
these terms are defined as: 

 

    




 





 



5.0

j,2/1i

2
y

2
xintj,2/1iyintxint

5.0

2/1-j,i

2
y

2
xint2/1-j,iyintxintj,i SSaSvSuSSaSvSuA  

   




 





 



5.0

j,2/1-i

2
y

2
xintj,2/1-iyintxint

5.0

2/1j,i

2
y

2
xint2/1j,iyintxint SSaSvSuSSaSvSu ,                                (34) 

 
where “a” represents the sound speed and the interface properties are evaluated by arithmetical average. The 
K(2) and K(4) constants have typical values of 1/4 and 3/256, respectively. 
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3.2 Artificial dissipation model of Turkel and Vatsa / scalar, non-linear, and 
anisotropic model 

 
The aforementioned artificial dissipation model presents the characteristic of being isotropic. In words, the 
dissipation introduced artificially in a given coordinate direction to stabilize the scheme weights equally the 
phenomena originated from all directions, having not a more significant weighting from the particular 
direction under study. The dissipation is clearly isotropic. The scalar, non-linear and anisotropic artificial 
dissipation model of [21] aims to provide a numerical attenuation that considers with bigger weight the 
propagation information effects associated to the characteristic maximum eigenvalue from the coordinate 
direction under study. Basically, such artificial dissipation model differs from the non-linear, isotropic model 
of [20] only in the determination of the weighting term of the dissipation operator. 

 


































 

5.0

j,2/1i

1A
j,2/1i

   and     j,2/1ij,2/1iyxj,2/1i
Savnun   ;                              (35) 

                           

 

































 

5.0

2/1j,i

1A
2/1j,i

   and     2/1j,i2/1j,iyx2/1j,i
Savnun   .                             (36) 

 

To this artificial dissipation model, the recommended values to K(2) and K(4) by [21] are 1/2 and 1/64, 
respectively. 
 

4 Time Integration 
 
Two methods of time integration were studied in this work: Euler Backward, and Middle Point. They are 
described by the equations below. 
 

4.1 Euler backward 
 
This method is first-order accurate in time, to the three types of complete flux. To the dynamic part, this 
method can be represented in general form by: 

 

      )n(
j,i

)n(
j,ij,ij,i

)n(
j,i

)1n(
j,i QDQCVtQQ  ,                                                                            (37) 

 
to the chemical part, it can be represented in general form by: 

 

       )n(
j,iCj,i

)n(
j,i

)n(
j,ij,i

)n(
j,i

)1n(
j,i QSVQDQCtQQ  ,                                                              (38) 

 
where the chemical source term SC is calculated with the temperature Trrc (reaction rate controlling 
temperature), defined in [28-29]. Finally, to the vibrational part: 
 

       )n(
j,iVj,i

)n(
j,i

)n(
j,ij,i

)n(
j,i

)1n(
j,i QSVQDQCtQQ  ,                                                             (39) 

 
in which: 
 




 
mols

s,vs,C

mols

s,VTV eSqS ,                                                                                                      (40) 
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where qT-V is the heat flux due to translational-vibrational relaxation, defined in [28-29]. 

4.2 Middle point 
 
This method is a second-order, two-stage Runge-Kutta one, to the three types of complete flux. To the 
dynamic part, this method can be represented in general form by: 

 

         
)k(

j,i
1n

j,i

)1k(
j,i

)1k(
j,ij,ij,ik

)0(
j,i

)k(
j,i

n
j,i

)0(
j,i

QQ

)Q(D)Q(CVtQQ

QQ










,                                                                      (41) 

 
to the chemical part, it can be represented in general form by: 
 

    
)k(

j,i
1n

j,i

1k
j,iCj,i

)1k(
j,i

)1k(
j,ij,ik

)0(
j,i

)k(
j,i

n
j,i

)0(
j,i

QQ

QSV)Q(D)Q(CtQQ

QQ










,                                                         (42) 

 
and to the vibrational part: 

          

    
)k(

j,i
1n

j,i

1k
j,iVj,i

)1k(
j,i

)1k(
j,ij,ik

)0(
j,i

)k(
j,i

n
j,i

)0(
j,i

QQ

QSV)Q(D)Q(CtQQ

QQ










,                                                         (43) 

where the α values of each stage are: α1 = 1/2 and α2 = 1.0. 
 

5 Spatially Variable Time Step 
 
The spatially variable time step has proved efficient gains in terms of convergence acceleration, as proved by 
[22-23]. Initially, the parameter  is determined, where: 

 

s

s
s

M

c
    and   




N

1s

s ,                                                                                                          (44) 

 
with cs being the mass fraction and Ms the molecular weight. The total specific heat at constant volume due 
to translation is defined as: 

 





N

1s

s,T,VsT,V cc ,                                                                                                                         (45) 

 
where, for each gas constituent of the eleven (11) species chemical model, the specific heat at constant 
volume, based on the kinetic theory of gases ([34]), is defined by 

 

NN,T,V R
2

3
c  , OO,T,V R

2

3
c  , 

22 NN,T,V R
2

5
c  , 

22 OO,T,V R
2

5
c  , NONO,T,V R

2

5
c  ;             (46) 
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 
NN,T,V

R
2

3
c ,  

OO,T,V
R

2

3
c ,  

22 NN,T,V
R

2

5
c ,  

22 OO,T,V
R

2

5
c ;                                    (47) 

 
NONO,T,V

R
2

5
c ,  

ee,T,V
R

2

3
c ,                                                                                              (48) 

 
being Rs the specific gas constant. The total pressure of the gaseous mixture is determined by Dalton law, 
which indicates that the total pressure of the gas is the sum of the partial pressure of each constituent gas, 
resulting in: 
 

TRcp sss     and   



N

1s

spp .                                                                                                     (49) 

The speed of sound to a reactive mixture can be determined by: 
 

  
 






p1
a ,                                                                                                                                  (50) 

 

where 
T,V

univ

c

R 
 , with Runiv = 1.987 cal/(g-mol.K). Finally, the spatially variable time step is defined from 

the CFL definition: 
 

j,i
2

j,i
2

j,i

j,i
j,i

avu

sCFL
t




 ,                                                                                                                (51) 

 

where j,is  is the characteristic length of each cell (defined between the minimum cell side length and the 

minimum centroid distance between each cell and its neighbors). 
 

6 Dimensionless, Initial and Boundary Conditions 
 
6.1 Dimensionless 
 
The dimensionless employed to the reactive equations consisted in: Rs is dimensionless by achar, where 

  pa char ; cv is dimensionless by achar; hs and 0
sh   are dimensionless by 2

chara ; T and Tv, 

translational/rotational temperature and vibrational temperature, respectively, are dimensionless by achar; s 
and  are dimensionless by ; u and v are dimensionless by achar;  is dimensionless by ; D, diffusion 

coefficient, dimensionless by 2
chara dtchar, where dtchar is the minimum time step calculated in the 

computational domain at the first iteration;   is dimensionless by char
3 dt10x 

 ; ev is dimensionless by 

2
chara ; p is dimensionless by 2

chara ; s, relaxation time, is dimensionless by dtchar. To the Maxwell 

equations: the Bx and By Cartesian components of the magnetic field dimensionless by B∞; the magnetic 
permeability of the mean is dimensionless by µM,∞; and the electric conductivity is dimensionless by σ∞. 
 

6.2 Initial condition 
 
The initial conditions to this problem, for an eleven species chemical model, and the actuation of a magnetic 
field, are presented in Tab. 2. The Reynolds number is obtained from data of [35]. 
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6.3 Boundary conditions 
 
The boundary conditions are basically of three types: solid wall, entrance, and exit, implemented in ghost 
cells. 
 
Wall Condition: In the inviscid case, this condition imposes the flow tangency at wall. This condition is 
satisfied considering the velocity component tangent to the wall relative to the ghost cell as equal to the 
respective component of the real neighbor cell. At the same time, the velocity component normal to the wall 
relative to the ghost cell is equaled to the negative of the corresponding component of the real neighbor cell. 
This procedure leads to a system of equations which results in: 
 

    ryxr
2
x

2
yg vnn2unnu     and       r

2
y

2
xryxg vnnunn2v  ,                                    (52) 

 
where “g” indicates ghost cell properties and “r” indicates real cell properties. In the viscous case, the non-
slip condition is enforced. Therefore, the tangent velocity component of the ghost volume at wall has the 
same magnitude as the respective velocity component of its real neighbor cell, but opposite signal. In the 
same way, the normal velocity component of the ghost volume at wall is equal in value, but opposite in 
signal, to the respective velocity component of its real neighbor cell. It results in: 
 

rg uu     and   rg vv  .                                                                                                              (53) 

 
The normal pressure gradient of the fluid at the wall is assumed to be equal to zero according to an inviscid 
formulation or a boundary-layer like condition. The same hypothesis is applied for the normal temperature 
gradient at the wall, assuming an adiabatic wall. 
 
From the above considerations, density and translational/rotational temperature are extrapolated from the 
respective values of its real neighbor volume (zero order extrapolation). The total vibrational internal energy 
is also extrapolated. 
 
With the mixture species mass fractions and with the values of the respective specific heats at constant 
volume, it is possible to obtain the mixture specific heat at constant volume. The mixture formation enthalpy 
is extrapolated from the real cell. The Cartesian components of the induced magnetic field at the wall to the 
ghost cells are fixed with their initial values. The magnetic permeability is considered constant with its initial 
value. The mixture total energy to the ghost cell is calculated by: 
 

       gg,M
2

g,y
2

g,xb
2
g

2
ggdim,,v

0
g,mixtREFg,trg,mixtg 2BBRvu5.0ehTTCvZ  ,                    (54) 

 
To the species density, the non-catalytic condition is imposed, what corresponds to zero order extrapolation 
from the real cell. The vibrational internal energy is also extrapolated. 
 
Entrance Condition: It is divided in two flow regimes: 
 

(a)  Subsonic flow: Five properties are specified and one extrapolated in the boundary conditions of the 
dynamic part of the algorithm. This approach is based on information propagation analysis along 
characteristic directions in the calculation domain ([36]). In other words, for subsonic flow, five 
characteristics propagate information point into the computational domain. Thus five flow 
properties must be fixed at the inlet plane. Just one characteristic line allows information to travel 
upstream. So, one flow variable must be extrapolated from the interior grid to the inlet boundary. 
The total energy was the extrapolated variable from the real neighbor volumes, for the studied 
problem. Density, velocity components, and the induced magnetic field components adopted values 
of freestream flow. To the chemical part, ten information propagate upstream because it is assumed 
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that all ten equations are conducted by the eigenvalue “(qn-a)”. In the subsonic flow, all eigenvalues 
are negative and the information should be extrapolated. In the same reasoning to the chemical 
boundary conditions, the vibrational-internal-energy equation is dictated by the “(qn-a)” eigenvalue 
and, in the subsonic region, its value is negative. Hence, the vibrational internal energy should be 
extrapolated. 

 
(b)  Supersonic flow: In this case no information travels upstream; therefore all variables are fixed with 

their of freestream values. 
 
Exit Condition: It is also divided in two flow regimes: 
 

(a)  Subsonic flow: Five characteristics propagate information outward the computational domain. 
Hence, the associated variables should be extrapolated from interior information. The characteristic 
direction associated to the “(qn-a)” velocity should be specified because it points inward to the 
computational domain ([36]). In this case, the ghost volume total energy is specified from its initial 
value. Density, velocity components, and the induced magnetic field components are extrapolated. 
To the chemical part, the eigenvalue “(qn-a)” is again negative and the characteristics are always 
flowing into the computational domain. Hence, the ten chemical species under study should have 
their densities fixed by their freestream values. In the same reasoning, the internal vibrational 
energy should have their value prescribed by its initial value due to the eigenvalue “(qn-a)” be 
negative. 

(b)  Supersonic flow: All variables are extrapolated from interior grid cells, as no flow information can 
make its way upstream. In other words, nothing can be fixed. 

 

7 Physical Problem and Meshes 
 
One physical problem is studied in this work: the blunt body problem. The geometry under study is a blunt 
body with 1.0 m of nose ratio and parallel rectilinear walls. The far field is located at 20.0 times the nose 
ratio in relation to the configuration nose. 
 
Fig. 2 shows the inviscid mesh used to the blunt body problem. This mesh is composed of 2,548 rectangular 
cells and 2,650 nodes. This mesh is equivalent in finite differences to a one of 53x50 points. The same mesh 
with, however, an exponential stretching of 5.0% in the  direction, was used to the viscous simulations, Fig. 
3. A “O” mesh is taken as the base to construct such meshes. No smoothing is used in this mesh generation 
process, being this one constructed in Cartesian coordinates. 
 

8 Results 
 
Tests were performed in a Core i7 processor of 2.1GHz and 8.0Gbytes of RAM microcomputer, in a 
Windows 7.0 environment. Four (4) orders of reduction of the maximum residual in the field were 
considered to obtain a converged solution. The residual was defined as the value of the discretized 
conservation equation. In the dynamic part, such definition results in: 

 

 j,ij,ij,ij,i DCVtsidualRe  .                                                                                              (55) 

 
The attack angle was adopted equal to zero. 

 
8.1 Inviscid results 
 
Euler Backward: Figs. 4 and 5 show the pressure contours obtained by the Maciel scheme as using the [20] 
artificial dissipation model. Fig. 4 is related to the [24] chemical model, whereas Fig. 5 is related to the [25] 
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chemical model. The value of the pressure peak is around 92.38 unities to the [24] chemical model, whereas 
is around 92.91 unities to the [25] chemical model. Good symmetry properties are observed in both figures. 
The normal shock wave is well captured by the numerical algorithm. 
 
Figs. 6 and 7 present the N2 mass fraction contours obtained by the Maciel scheme, employing the [20] 
artificial dissipation model, for the [24] and [25] chemical models, respectively. No pre-shock oscillations 
are observed in both figures. The N2 mass fraction contours generated by the [24] and [25] chemical models 
present good dissociation of this species, where the maximum dissociation has the value 0.7349 due to [25] 
chemical model. Good symmetry characteristics are observed in both solutions. 
 
Figs. 8 and 9 present the contours of the Bx component of the magnetic field obtained by the Maciel scheme 
as using the [20] artificial dissipation operator for the [24] and [25] chemical models, respectively. 
Reasonable characteristics of symmetry are observed with the [20] operator solution, as can be seen by the 
legend. 
 
Figs. 10 and 11 show the magnetic induction lines captured by the Maciel scheme as using the [20] 
dissipation operators for the [24] and [25] chemical models, respectively. As expected, the induction lines 
surround the blunt body configuration. This behavior is described in [27] and verified in the present 
simulations. Good symmetry characteristics are observed in both figures. 
 
Figs. 12 and 13 show the pressure contours obtained with the Maciel scheme as using the [21] dissipation 
operator for the [24] and [25] chemical models, respectively. The [25] solution is more strength than the [24] 
solution, reaching a more severe value to the stagnation pressure. The former reaches the value of 100.81 
unities, whereas the latter reaches the value of 100.19 unities. Good symmetry properties are observed in 
both solutions. The shock wave is well captured without pressure oscillations. 
 
Figs. 14 and 15 exhibit the N2 mass fraction contours obtained with the Maciel scheme as using the [21] 
dissipation model for the [24] and [25] chemical models, respectively. Good N2 dissociation is observed in 
both solutions, with slightly increase for the [25] chemical model. Good symmetry properties are observed. 
 
Figs. 16 and 17 show the Bx component contours generated by the Maciel scheme as using the [21] 
dissipation model for the [24] and [25] chemical models, respectively. Both solutions present good results in 
terms of symmetry, better than the solutions with the [20] dissipation model. It can be observed in both 
legends. 
 
Figs. 18 and 19 exhibit the magnetic induction lines captured by the Maciel scheme as using the [21] 
dissipation model for the [24] and [25] chemical models, respectively. The curves surround the blunt body, 
as expected. Good symmetry properties of the induction magnetic field are observed. The induction lines 
generated by the [24] and [25] chemical models using the [21] dissipation model are more curved than the 
respective ones using the [20] dissipation model, indicating less dissipation of the former. 

 
Middle Point: Figs. 20 and 21 show the pressure contours calculated by the Maciel scheme as using the [20] 
dissipation model for the [24] and [25] chemical models, respectively. Good symmetry properties are 
observed in both solutions. The pressure field calculated with the [25] chemical model is more strength than 
the respective one calculated with the [24] chemical model, as occurred in Figs. 4 and 5. No pre-shock 
oscillations are observed. 
 
Figs. 22 and 23 exhibit the N2 mass fraction contours obtained by the Maciel scheme as using the [20] 
artificial dissipation model for the [24] and [25] chemical models, respectively. The mass fraction field 
associated with the [25] chemical model is slightly more intense than the respective one associated with the 
[24] chemical model. The maximum dissociation reaches the value of 0.7349, the same of the Euler 
Backward time integration. 
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Figs. 24 and 25 show the contours of the Bx component of the magnetic field obtained by the Maciel scheme 
as using the [20] dissipation model for the [24] and [25] chemical models, respectively. Reasonable 
symmetry properties are observed in both solutions, as observed by the legend. 
 
Figs. 26 and 27 present the magnetic induction lines captured by the Maciel scheme as using the [20] 
dissipation operator for the [24] and [25] chemical models, respectively. As expected, the induction lines 
surround the blunt body configuration. This behavior is described in [27] for the perfect gas formulation and 
verified in the present reactive simulation. Good symmetry characteristics are observed in both figures. 
 
Figs. 28 and 29 show the pressure contours generated by the Maciel scheme as using the [21] dissipation 
model for the [24] and [25] chemical models, respectively. The pressure field calculated with the [24] 
chemical model is smaller than the respective one calculated with the [25] chemical model. No pre-shock 
oscillations are observed. 
 
Figs. 30 and 31 exhibit the N2 mass fraction contours generated by the Maciel scheme as using the [21] 
dissipation model for the [24] and [25] chemical models, respectively. Good dissociation is observed in both 
figures, with the maximum dissociation captured by the [25] chemical model with the value of 0.7347. Good 
symmetry characteristics are observed. 
 
Figs. 32 and 33 present the Bx component contours obtained by the Maciel scheme as using the [21] 
dissipation model for the [24] and [25] chemical models, respectively. Good symmetry properties are 
observed as seen in the legends. No pre-shock oscillations are observed. 
 
Figs. 34 and 35 show the magnetic induction lines obtained by the Maciel scheme as using the [21] 
dissipation model for the [24] and [25] chemical models, respectively. Good symmetry aspects are observed 
in these magnetic induction lines in relation to the blunt body symmetry line. Curves more curved than the 
[20] solutions are observed. 
 
As conclusion of the inviscid case, the [25] chemical model presents the best values to the stagnation 
pressure than the [24] chemical model, as using both artificial dissipation models, being more severe with 
the [21] dissipation model. Moreover, the [21] dissipation model presents more curved induction lines in the 
field close to the blunt body, indicating minor dissipation aspects in its application. 
 

8.2 Viscous results 
 
Euler Backward: Figs. 36 and 37 show the pressure contours obtained by the Maciel numerical scheme as 
using the [20] dissipation model for the [24] and [25] chemical models, respectively. Good symmetry 
properties are observed in both solutions. The stagnation pressure estimated by the [24] chemical model, 
155.26 unities, is bigger than the respective one estimated by the [25] chemical model, 155.14 unities. This 
behavior is opposed to that observed in the inviscid case and, due to its more realistic conditions, is the most 
correct. No pre-shock oscillations are observed and good symmetry aspects are observed. 
 
Figs. 38 and 39 exhibit N2 mass fraction contours obtained by the Maciel algorithm as using the [20] 
artificial dissipation model for the [24] and [25] chemical models, respectively. In this viscous case, minor 
dissociation is observed in both solutions, with its maximum value reaching 0.7332 for the [25] chemical 
model. Good symmetry properties are observed. No pre-shock oscillations are noted in both solutions. The 
shock wave behaves normally: normal shock at the stagnation line, oblique shock waves close to the body, 
and Mach wave far from the body. 
 
Figs. 40 and 41 present the Bx component of the magnetic field contours obtained by the Maciel scheme as 
using the [20] artificial dissipation operator for the [24] and [25] chemical models, respectively. Both 
solutions present problems of asymmetry as observed in the legends. 
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Figs. 42 and 43 show the magnetic induction lines captured by the Maciel scheme as using the [20] artificial 
dissipation model for the [24] and [25] chemical models, respectively. Reasonable behavior and reasonable 
symmetry properties are observed in both solutions. 
 
Figs. 44 and 45 exhibit the pressure contours generated by the Maciel scheme as using the [21] dissipation 
model for the [24] and [25] chemical models, respectively. The most severe pressure field is again captured 
by the [24] chemical model for this viscous case. The former presents the value of 154.89 unities, whereas 
the latter presents the value of 154.84 unities. Good symmetry properties are observed and not pre-shock 
oscillations are noted. 
 
Figs. 46 and 47 present the N2 mass fraction contours obtained by the Maciel scheme as using the [21] 
dissipation model for the [24] and [25] chemical models, respectively. Good dissociations are observed, 
although inferior to the respective ones calculated in the inviscid case. Good symmetry properties are 
observed in both figures. 
 
Figs. 48 and 49 show the Bx component contours captured by the Maciel scheme as using the [21] 
dissipation operator for the [24] and [25] chemical models, respectively. Good symmetry aspects are 
observed, better than the respective ones obtained by the inviscid case. 
 
Figs. 50 and 51 exhibit the magnetic induction lines generated by the Maciel scheme as using the [21] 
artificial dissipation model for the [24] and [25] chemical models, respectively. Good symmetry aspects are 
observed, with the induction lines more curved, indicating less dissipative affects with this dissipation 
model. 

 
Middle Point: Figs. 52 and 53 present the pressure contours obtained by the Maciel scheme employing the 
[20] dissipation model for the [24] and [25] chemical models, respectively. Good symmetry properties are 
observed. The stagnation pressure associated with the [24] chemical model is more strength than the 
respective one of the [25] chemical model. Solutions without pressure oscillations are observed. 
 
Figs. 54 and 55 exhibit the N2 mass fraction contours obtained by the Maciel scheme as using the [20] 
dissipation model for the [24] and [25] chemical models, respectively. Both solutions present good 
dissociation of N2, although inferior to that observed in the respective inviscid case. In the inviscid case, the 
maximum dissociation reaches the value of 0.7349, whereas in the viscous case its maximum value is 
0.7332. Good symmetry properties and good capture of the shock wave are observed. No pre-shock 
oscillations are noted in both fields. 
 
Figs. 56 and 57 show the Bx component of the magnetic field contours captured by the Maciel algorithm as 
using the [20] artificial dissipation operator for the [24] and [25] chemical models, respectively. Reasonable 
symmetry aspects are observed, as can be confirmed by the legend values. 
 
Figs. 58 and 59 exhibit the magnetic induction lines captured by the Maciel scheme as using the [20] 
dissipation model for the [24] and [25] chemical models, respectively. The induction lines are more 
symmetrical, present a better behavior, than the respective inviscid case. 
 
Figs. 60 and 61 show the pressure contours obtained by the Maciel numerical scheme as using the [21] 
artificial dissipation model for the [24] and [25] chemical models, respectively. The stagnation pressure 
calculated with the [24] chemical model, 154.89 unities, is bigger than the respective one calculated with the 
[25] chemical model, 154.84 unities. Good symmetry properties are observed. The shock wave is well 
captured by the Maciel algorithm as using any of the chemical models and any of the artificial dissipation 
operators. 
 
Figs. 62 and 63 exhibit the N2 mass fraction contours obtained by the Maciel algorithm as using the [21] 
dissipation model for the [24] and [25] chemical models, respectively. Again, good dissociation is observed 
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in the field, although inferior to that observed in the inviscid case. Good symmetry properties are observed in 
both figures. 
 
Figs. 64 and 65 present the Bx component of the magnetic field contours generated by the Maciel algorithm 
as using the [21] dissipation model for the [24] and [25] chemical models, respectively. As can be observed, 
symmetry properties are better observed in the viscous solution, as noted in terms of contour curves as in 
terms of the legends. 
 
Figs. 66 and 67 show the magnetic induced lines captured by the Maciel scheme as using the [21] artificial 
dissipation model for the [24] and [25] chemical models, respectively. Better symmetry aspects and behavior 
are observed in the solution obtained with [21] dissipation model. More curved induction lines are observed 
in the solution with the [21] operator, indicating that minor dissipation is in use. 
 
As conclusion of the viscous case, the [24] chemical model presents the best values to the stagnation 
pressure than the [25] chemical model, as using both artificial dissipation models, being more severe with 
the [20] dissipation model, opposed to the behavior observed in the inviscid case. As the Navier-Stokes 
equations coupled with the Maxwell equations are the most realistic formulation, these solutions are the 
most correct. Finally, the [21] dissipation model presents more curved induction lines in the field close to the 
blunt body, indicating minor dissipation aspects in its application. 
 

8.3 Shock-standoff distance, drag coefficient, and temperature peak 
 
For this study, the Maciel scheme was applied to the [24] chemical model, using the [20] dissipation model, 
in the inviscid case, due to its good solution quality, and using the Euler Backward to march in time. 
 
Fig. 68 exhibits the pressure along the stagnation line versus the stagnation line x coordinate. It is possible to 
note that with the variation of the magnetic field intensity, no alteration in the shock position is observed. It 
is opposed to the observed in the perfect gas formulation (see [27]). 
 
Table 3 shows the shock-standoff distance measured in relation to the blunt body nose. As can be observed, 
the actuation of a magnetic field did not alter the shock position in the thermochemical non-equilibrium case, 
opposed to the observed in the perfect gas formulation (see [27]). These values corroborate the observed 
behavior shown in Fig. 68. 
 
Table 4 presents the values of the aerodynamic drag coefficient in relation to increase values of the By 
component of the magnetic field. As can be noted, the aerodynamic drag is reduced as the values of the 
magnetic component are increased. This behavior agrees with that observed in the perfect gas formulation 
(see [27]). 
 
Finally, Table 5 exhibits the variation of the temperature peak, observed at the configuration nose, with the 
increased values of the By component of the magnetic field. As can be seen, the temperature at the nose is 
reduced with the increase of the magnetic field intensity. It is in accord with the perfect gas formulation (see 
[27]). 

 

8.4 Quantitative analysis 
 
In terms of quantitative results, the present author compared the reactive effects coupled with the magnetic 
effects with the perfect gas solutions. The stagnation pressure at the blunt body nose was evaluated assuming 
the perfect gas formulation. Such parameter calculated at this way is not the best comparison, but in the 
absence of practical reactive coupled with magnetic results, this constitutes the best available result. 
 
To calculate the stagnation pressure ahead of the blunt body, [37] presents in its B Appendix values of the 
normal shock wave properties ahead of the configuration. The ratio pr0/pr∞ is estimated as function of the 
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normal Mach number and the stagnation pressure pr0 can be determined from this parameter. Hence, to a 
freestream Mach number of 9.0 (close to 8.78), the ratio pr0/pr∞ assumes the value 104.8. The value of pr∞ is 
determined by the following expression: 

 

2

initial

a

pr
pr






 .                                                                                                                               (56) 

 
In the present study, prinitial = 687N/m2, ∞ = 0.004kg/m3 and a∞ = 317.024m/s. Considering these values, one 
concludes that pr∞ = 1.709 (non-dimensional). Using the ratio obtained from [37], the stagnation pressure 
ahead of the configuration nose is estimated as 179.10 unities. Table 6 compares the values obtained from 
the simulations with this theoretical parameter and presents the numerical percentage errors. As can be 
observed, the best combination was the Maciel scheme employing the [20] artificial dissipation model, in the 
viscous case, for the [24] chemical model, with an error of 13.31%, which can be considered a good result. 
This solution was only observed with the Euler Backward time integration method. 
 

 
 

Fig. 1. Computational cell 

 
 

Fig. 2. Blunt body inviscid mesh 
 

 
 

Fig. 3. Blunt body viscous mesh 

INVISCID CASE / Euler Backward 

 
 

Fig. 4. Pressure contours (DK-MAV) 
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Fig. 5. Pressure contours (Park-MAV) 

 

 
Fig. 6. N2 mass fraction contours (DK-MAV) 

 

 
Fig. 7. N2 mass fraction contours (Park-MAV) 

 

 
 

Fig. 8. Bx component contours (DK-MAV) 
 

 
Fig. 9. Bx component contours (Park-MAV) 

 

 
Fig. 10. Induction lines (DK-MAV) 
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Fig. 11. Induction lines (Park-MAV) 

 

 
Fig. 12. Pressure contours (DK-TV) 

 

 
Fig. 13. Pressure contours (Park-TV) 

 

 
Fig. 14. N2 mass fraction contours (DK-TV) 

 

 
Fig. 15. N2 mass fraction contours (Park-TV) 

 

 
Fig. 16. Bx component contours (DK-TV). 
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Fig. 17. Bx component contours (Park-TV). 

 

 
Fig. 18. Induction lines (DK-TV) 

 

 
Fig. 19. Induction lines (Park-TV) 

 

INVISCID CASE / Middle Point 

 
Fig. 20. Pressure contours (DK-MAV) 

 

 
Fig. 21. Pressure contours (Park-MAV) 

 

 
 

Fig. 22. N2 mass fraction contours (DK-MAV) 
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Fig. 23. N2 mass fraction contours (Park-MAV) 

 

 
Fig. 24. Bx component contours (DK-MAV). 

 

 
Fig. 25. Bx component contours (Park-MAV) 

 

 
 

Fig. 26. Induction lines (DK-MAV) 
 

 
Fig. 27. Induction lines (Park-MAV) 

 

 
Fig. 28. Pressure contours (DK-TV) 

 



 
 
 

Maciel; JAMCS, 24(6): 1-36, 2017; Article no.JAMCS.36904 
 
 
 

25 
 
 

 
Fig. 29. Pressure contours (Park-TV) 

 

 
Fig. 30. N2 mass fraction contours (DK-TV) 

 

 
Fig. 31. N2 mass fraction contours (Park-TV) 

 

 
 

Fig. 32. Bx component contours (DK-TV) 
 

 
Fig. 33. Bx component contours (Park-TV) 

 

 
Fig. 34. Induction lines (DK-TV) 
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Fig. 35. Induction lines (Park-TV) 

 

VISCOUS CASE / Euler Backward 

 
Fig. 36. Pressure contours (DK-MAV) 

 

 
Fig. 37. Pressure contours (Park-MAV) 

 

 
Fig. 38. N2 mass fraction contours (DK-MAV) 

 

 
Fig. 39. N2 mass fraction contours (Park-MAV) 

 
Fig. 40. Bx component contours (DK-MAV) 
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Fig. 41. Bx component contours (Park-MAV) 

 

 
Fig. 42. Induction lines (DK-MAV) 

 

 
Fig. 43. Induction lines (Park-MAV) 

 

 
Fig. 44. Pressure contours (DK-TV) 

 

 
Fig. 45. Pressure contours (Park-TV) 

 

 
Fig. 46. N2 mass fraction contours (DK-TV) 
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Fig. 47. N2 mass fraction contours (Park-TV) 

 

 
Fig. 48. Bx component contours (DK-TV) 

 

 
Fig. 49. Bx component contours (Park-TV) 

 

 
Fig. 50. Induction lines (DK-TV) 

 

 
Fig. 51. Induction lines (Park-TV) 

 

VISCOUS CASE / Middle Point 

 
Fig. 52. Pressure contours (DK-MAV) 
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Fig. 53. Pressure contours (Park-MAV) 

 

 
Fig. 54. N2 mass fraction contours (DK-MAV) 

 

 
Fig. 55. N2 mass fraction contours (Park-MAV) 

 

 
Fig. 56. Bx component contours (DK-MAV) 

 

 
Fig. 57. Bx component contours (Park-MAV) 

 

 
Fig. 58. Induction lines (DK-MAV) 
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Fig. 59. Induction lines (Park-MAV) 

 

 
Fig. 60. Pressure contours (DK-TV) 

 

 
Fig. 61. Pressure contours (Park-TV) 

 

 
Fig. 62. N2 mass fraction contours (DK-TV) 

 

 
Fig. 63. N2 mass fraction contours (Park-TV) 

 

 
Fig. 64. Bx component contours (DK-TV) 
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Fig. 65. Bx component contours (Park-TV) 

 

 
Fig. 66. Induction lines (DK-TV) 

 

 
Fig. 67. Induction lines (Park-TV) 

 

 
 

Fig. 68. Pressure distribution at the stagnation 
line 

 

Table 1. Values of Sx and Sy 
 

Surface Sx Sy 
i,j-1/2  j,ij,1i yy    j,1ij,i xx   

i+1/2,j  j,1i1j,1i yy     1j,1ij,1i xx    

i,j+1/2  1j,1i1j,i yy     1j,i1j,1i xx    

i-1/2,j  1j,ij,i yy    j,i1j,i xx   

 

8.5 Computational performance 
 
Table 7 presents the computational data of the Maciel scheme for the blunt body problem. It shows the CFL 
number and the number of iterations to convergence for all studied cases in the present work. As can be 
seen, the best performance is due to Maciel scheme employing the [24] chemical model, using the [20] 
artificial dissipation model and the Euler Backward time integration method for the inviscid case. For the 
viscous case, the best performance is due to the Maciel scheme employing the [24] chemical model, using 
the [21] artificial dissipation model and the Middle Point time integration method to march in time. 
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Table 2. Initial conditions to the problem of the blunt body 
 
Property Value 

M 8.78 

 0.00326 kg/m3 

p 687 Pa 

U 4,776 m/s 

T 694 K 

Tv, 694 K 
TREF 0 K 
Altitude 40,000 m 
cN 10-9 
cO 0.07955 

2Oc  0.13400 

cNO 0.05090 

N
c  0.0 

O
c  0.0 


2N

c  0.0 


2O

c  0.0 

NO
c  0.0 

ce- 0.0 
LREF 2.0 m 
Re 2.3885x106 
By,∞ 0.15 T 
µM,∞ 1.2566x10-6 T.m/A 
σ∞ 1,000 ohm/m 

 
Table 3. Shock-standoff distance 

 
By (T) Xshock (m) 
0.05 2.327 
0.10 2.327 
0.15 2.327 
0.20 2.327 
0.25 2.327 

 
Table 4. Drag aerodynamic coefficient 

 
By (T) cD 
0.05 0.931 
0.10 0.930 
0.15 0.929 
0.20 0.927 
0.25 0.925 

 
As final conclusion, it is possible to highlight the [20] artificial dissipation model as the best in the 
estimative of the stagnation pressure ahead of the blunt body. The Maciel scheme employing the [24] 
chemical model, using the [20] artificial dissipation model in the inviscid case and with the Euler Backward 
method was the most efficient in terms of computational performance. It is also important to note that both 
time integration methods studied in this work have obtained the same steady state solutions in each case 
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(inviscid and viscous), which allows the conclusion that everyone of such march methods can be used to 
reach convergence. 
 

Table 5. Temperature at the blunt body nose 
 

By (T) T (K) 

0.05 11,850.80 

0.10 11,840.75 

0.15 11,823.44 

0.20 11,799.76 

0.25 11,771.31 
 

Table 6. Values of stagnation pressure and errors 
 

March method Flow Regime Chemical model pr0 Error (%) 

 Inviscid Dunn and Kang 92.38 48.42 

Euler Backward Inviscid Park 92.91 48.12 

and [20] model Viscous Dunn and Kang 155.26 13.31 

 Viscous Park 155.14 13.38 

 Inviscid Dunn and Kang 100.19 44.06 

Euler Backward Inviscid Park 100.81 43.71 

and [21] model Viscous Dunn and Kang 154.89 13.52 

 Viscous Park 154.84 13.55 

 Inviscid Dunn and Kang 92.38 48.42 

Middle Point Inviscid Park 92.91 48.12 

and [20] model Viscous Dunn and Kang 155.25 13.32 

 Viscous Park 155.14 13.38 

 Inviscid Dunn and Kang 100.19 44.06 

Middle Point Inviscid Park 100.81 43.71 

and [21] model Viscous Dunn and Kang 154.89 13.52 

 Viscous Park 154.84 13.55 
 

Table 7. Computational data 
 

March method Flow Regime Chemical model CFL Iterations 
 Inviscid Dunn and Kang 0.05 10,546 
Euler Backward Inviscid Park 0.05 10,629 
and [20] model Viscous Dunn and Kang 0.05 17,320 
 Viscous Park 0.05 16,373 
 Inviscid Dunn and Kang 0.05 18,245 
Euler Backward Inviscid Park 0.05 17,841 
and [21] model Viscous Dunn and Kang 0.05 12,899 
 Viscous Park 0.05 12,986 
 Inviscid Dunn and Kang 0.05 10,560 
Middle Point Inviscid Park 0.05 10,642 
and [20] model Viscous Dunn and Kang 0.05 17,194 
 Viscous Park 0.05 16,372 
 Inviscid Dunn and Kang 0.05 18,272 
Middle Point Inviscid Park 0.05 17,868 
and [21] model Viscous Dunn and Kang 0.05 12,883 
 Viscous Park 0.05 12,967 
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9 Conclusions 
 
In this work, a study involving magnetic field actuation over reentry flows in thermochemical non-
equilibrium condition is performed. The Euler and Navier-Stokes equations, on conservative and finite 
volume contexts, employing structured spatial discretization, are studied. The numerical algorithm of Maciel 
is used to perform the reentry flow numerical experiments, which give us an original contribution to the 
CFD community. Two types of numerical dissipation models are applied, namely: [20-21]. The “hot gas” 
hypersonic flow around a blunt body, in two-dimensions, is simulated. The convergence process is 
accelerated to steady state condition through a spatially variable time step procedure, which has proved 
effective gains in terms of computational acceleration ([22-23]). Two time integration methods are tested to 
march the scheme in time, and it is another original contribution of this work. They are: Euler Backward, 
and Middle Point. The reactive simulations involve Earth atmosphere chemical model of eleven species. The 
[24] model with thirty-two reactions and the [25] model with forty-three reactions are taken into account. 
The work of [26] is the reference one to couple the fluid dynamics and Maxwell equations of 
electromagnetism based on a conservative and finite volume formalisms. The results have indicated that the 
Maciel scheme employing the [24] chemical model, using the [20] artificial dissipation operator and the 
Euler Backward method to march in time, for the inviscid case, yields the best prediction of the stagnation 
pressure value. Moreover, the shock-standoff distance did not suffer alteration with the increase of the 
magnetic field intensity, opposed to the perfect gas behavior, the drag coefficient reduces in value with the 
increase of the magnetic field intensity, corroborating the perfect gas results. Finally, the temperature peak is 
reduced with the increase of the magnetic field intensity, also corroborating the perfect gas behavior.  
 
This work is the couple of the [27] study, involving perfect gas magnetic actuation, and [28-29] study, 
involving reactive reentry flows, in two-dimensions. 
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