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Abstract

The primary challenge in the study of explosive astrophysical transients is their detection and characterization
using multiple messengers. For this purpose, we have developed a new data-driven discovery framework, based on
deep learning. We demonstrate its use for searches involving neutrinos, optical supernovae, and gamma-rays. We
show that we can match or substantially improve upon the performance of state-of-the-art techniques, while
significantly minimizing the dependence on modeling and on instrument characterization. Particularly, our
approach is intended for near- and real-time analyses, which are essential for effective follow-up of detections. Our
algorithm is designed to combine a range of instruments and types of input data, representing different messengers,
physical regimes, and temporal scales. The methodology is optimized for agnostic searches of unexpected
phenomena, and has the potential to substantially enhance their discovery prospects.

Unified Astronomy Thesaurus concepts: Transient detection (1957); Time series analysis (1916); Gamma-ray
transient sources (1853); Neutrino astronomy (1100); Neural networks (1933); Gamma-ray bursts (629)

1. Introduction

Multimessenger astronomy explores the universe by studying
phenomena involving the electromagnetic, weak, strong, and
gravitational forces, utilizing a variety of instruments (Huerta
et al. 2019; Meszaros et al. 2019). Successful campaigns hinge
on speedy and comprehensive coordination of observations.
Examples include association of gravitational waves (GWs)
from the binary neutron star merger, GW170817, with a short
g-ray burst (GRB; Abbott et al. 2017), as well as evidence for
neutrino emission from the flaring blazar, TXS 0506+056
(Aartsen et al. 2018). The main observational strategies are:

1. real-time detection of signals in multiple channels;
2. near- and late-time follow-up for direct association of

events;
3. archival stacking/population studies;
4. correlation of multiple low-significance observables,

which combined may result in meaningful detections.

Such cross-domain analyses must reconcile differences in
instrument sensitivities, spatial and temporal coverage, and
measurement uncertainties. In the following we present a new
data-driven deep learning (DL) framework, designed to tackle
these challenges.

Machine learning is a computational technique, where
learning from examples takes the place of explicit functional
modeling. DL is a type of machine learning, based on artificial
neural networks (ANNs) (LeCun et al. 2015; Goodfellow et al.
2016). ANNs are computational models composed of neurons,
inspired by biological brains. Individual neurons perform
simple transformations on vectors of inputs, using weight and
bias parameters that are modified during training. Abstract
representations of data sets can be encoded by arranging
neurons in multiple interconnected layers, using nonlinear
activation functions. DL utilizes deep and wide layouts of ANN
layers, able to represent complex models, avoiding the need for
explicit feature engineering by domain experts. Effective
training of these large architectures has become achievable
due to advances in optimization algorithms and in computa-
tional resources. A prominent type of DL is the recurrent neural

network (RNN). Unlike feedforward ANNs, where information
passes through a network in one direction, RNNs include cyclic
connections; this allows them to effectively process sequential
data, such as time series. A variant of RNNs called a long
short-term memory network (LSTM) has the ability to
simultaneously retain information spanning different time-
scales. Such networks have proven very successful for, e.g.,
speech recognition and natural language translation (Graves &
Jaitly 2014; Sutskever et al. 2014).
Deep learning has been used for a variety of astronomical

analyses (see e.g., Carleo et al. 2019; Muthukrishna et al. 2019,
and citations therein). The nominal approach has been to
perform supervised learning, based on labeled data. Examples
include GW waveforms (George & Huerta 2018a, 2018b),
neutrino detector data (Choma et al. 2018), and optical images
(Khan et al. 2019). When used for source detection, the inferred
rate of false positives of these methods strongly depends on the
completeness of the training data. For instance, one must verify
that training includes all possible sources of systematics,
including glitches (non-Gaussian noise; Zevin et al. 2017;
George et al. 2018; Wei & Huerta 2020). One must also take
care that such systematics are distributed in realistic proportion
to each other and to true signal events. In principle, reliability
of detection may be improved by imposing additional
constraints (e.g., coincidence between detectors, as introduced
by George & Huerta 2018a). However, it remains challenging
to directly interpret classification outputs as detection prob-
abilities (Gebhard et al. 2019).
An alternative strategy is to use data-driven anomaly

detection. The latter is the task of identifying data that differ
in some respect from a reference sample (Pimentel et al. 2014).
Anomaly detection has been used in the past in different
contexts. For instance, LSTMs have been utilized to detect
hardware failure in medical and industrial data sets, assuming
Gaussian anomaly distributions (Malhotra et al. 2015). For
astronomy, traditional learning methods have mostly been
employed, such as principal component analysis (Williamson
et al. 2019) or isolation forests (Pruzhinskaya et al. 2019).
We present a novel use of anomaly detection for the

discovery and characterization of astrophysical transients,
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utilizing LSTM–RNNs. The networks are coupled to a
statistical pipeline used to interpret the results. Our framework
facilitates the combination of data sets of various types. It
therefore enables derivation of realistic joint (multimessenger)
probability distributions. These may be used for discovery, or
for setting limits in cases of non-detection. Training samples
may nominally be derived from an experiment in situ, or from
historical data. Compared to existing approaches, this circum-
vents the potential pitfall of relying on unrepresentative
reference data sets. Our method mitigates uncertainties on
instrumental modeling and on physical backgrounds (e.g.,
galactic foregrounds). It also avoids the need for the explicit
characterization of observing conditions, or of artifacts (e.g.,
stars in the field of view). Finally, this data-driven approach
allows for agnostic searches, as minimal assumptions need to
be taken on the properties of putative sources.

We illustrate our algorithm for three analyses, which
represent the primary detection strategies of multimessenger
astronomy: real-time source detection, population studies, and
the correlation of (low-significance) observables. Specifically,
we present examples for the study of high-energy transients, as
observed with neutrinos, optical data, and g-rays.

2. Network Architecture and Inference Pipeline

Our software pipeline and chosen RNN architecture are
shown in Figure 1. The RNN may be decomposed into two
elements, an encoder and a decoder (Cho et al. 2014). The
RNN accepts t t t= +RNN enc dec time steps as input. The first
tencencoder steps represent the background interval, before a
transient appears. A potential signal event is searched for
within the following tdec decoder steps. For each of the
example analyses described below, the value of tRNN is chosen
according to the expected properties of signals (e.g., physical
timescales), accounting for the structure of the available data.
Each step receives a collection of (analysis-specific) h inputs.

In our nominal approach we employ an anomaly detection
technique. We utilize sequences of input data, t hS ,RNN( ),
which for training correspond to the response of an instrument
in the absence of signal events. The RNN is used to predict the
expected background of the experiment, t hB ,dec( ). Transients
are then detected as significant divergences from these
predictions. We define a unique test statistic (TS), which
encapsulates the difference (mean squared error) between S
and B for each analysis.

Additionally, we employ a complementary classification
approach (illustrated for the g-ray analysis example). In this
case, the RNN is used to to directly classify transient events,
rather than to predict the background. Correspondingly, the
network is trained using labeled examples of both background
and putative signal data. The discovery TS is based on the ratio
between the background and signal classification probabilities
(Cranmer et al. 2015; Goodfellow et al. 2016).

The TS output of the RNN is coupled to a pipeline that is used
to derive the significance of detection. Nominally, we do not
assume a specific statistical model for the background or for the
signal. We therefore generate multiple realizations of the input
background sample, from which we derive cumulative distribu-
tions of TS. The latter are used to calibrate the relationship between
TS-values and p-values for a background-only test hypothesis.

We train the RNNs using Adam optimization with a learning
rate of 0.01. For each of the three anomaly detection analyses,
we have 104 background sequences of tRNN steps. For the

single classification example, an additional 104 signal events
are used as well. The inputs are independently normalized,
such that their nominal range of values for the background
training sample is mapped to the interval, [0, 1]. Data are
randomly split into batches of 64sequences for training, where
20% of events are set aside for validation. In order to mitigate
over-fitting, we apply 30% dropout training regularization
(random masking of units). The process of training for the
various analyses lasts several minutes on a laptop–CPU, with
corresponding sub-sec inference (well below the requirements
on the relevant real-time applications).
We compared several configurations of RNN hyper-

parameters (internal configuration parameters of the network).
For instance, this included doubling the number of LSTM
layers, increasing the batch size, varying the learning rate,
etc. In addition, we performed analysis-dependent systematic
checks, as described below. We found no significant variation
in the results. The robustness in performance is due to our
design choice of a simple RNN, and to the fact that we rely on
data-driven calibration of test statistics post-training.
In the following, we illustrate our framework using concrete

examples. We restrict the discussion to the general features of
the method in each case, such as relevant timescales, RNN
inputs, and significance of detection. For a comprehensive
description of the data sets, definition of test statistics, source
modeling, and systematic tests, see the Appendix.

3. Results

3.1. Neutrino Point-source Search

A diffuse TeV–PeV flux of astrophysical neutrinos has been
discovered by IceCube (Aartsen et al. 2013). While the exact
nature of the emission remains elusive, its apparent isotropy
suggests that it originates from relatively weak extragalactic
sources. Possible sources of ultra high-energy cosmic rays
(UHECRs) and neutrinos include long- and short-duration
gamma-ray bursts (GRBs), as well as core-collapse supernovae
(CC-SNe) with choked jets or shock breakouts (Kashiyama
et al. 2013; Senno et al. 2018). The energy density of the
astrophysical neutrinos is comparable to that of the isotropic
g-ray background and to that of UHECRs (Meszaros et al.
2019). This indicates that multimessenger interpretation may
lead to breakthroughs in our understanding of cosmic ray (CR)
accelerators. It may elucidate the connection between super-
novae (SNe) and GRBs, and may shed light on the nature of
their central engine. Searches commonly take the form of either
spatio-temporal clustering of neutrinos, or their direct associa-
tion with steady or transient sources (Aartsen et al. 2015).
We search for clustering in two all-sky samples. The first

comprises IceCube event lists of track-like muon neutrino
candidates, taken between 2011 and 2012 (MJD 55694–56415;
Aartsen et al. 2017). The second is of ANTARES muon
neutrinos, observed within the same time period (Adrián-
Martínez et al. 2014). The nominal inputs to our RNN are based
on neutrino event density metrics (see Appendix A.2). The
densities are defined with respect to a given location on the sky.
For the IceCube sample, the data are split into four logarith-
mically spaced bins in the energy proxy, between10GeV
and8PeV. For ANTARES the metrics are inclusive in energy.
The data are integrated over 24 hr time periods, which effectively
avoids dependence of event rates on R.A. (Aartsen et al. 2015).
The response of the IceCube and ANTARES detectors depends
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on the zenith of the observed event, which is therefore added as
input to the RNN. In cases where an IceCube source is not within
the field of view of ANTARES, we use background data instead.
In total, we have h = 6 inputs per time step. The collection of
inputs is derived for t = 15RNN days periods. The first t = 10enc

days are assumed to only contain background events. Transient
signals are searched for within the next t = 5dec days interval. In
total, the RNN receives ´ =6 15 90 inputs.
The RNN is trained to predict the neutrino event densities in

each of the five days being probed, for a particular sky position.

Figure 1. Schematic illustrations of the software pipeline, and of the architecture of the RNN. (A)The pipeline comprises two main phases, training/calibration and
inference. Training includes a pre-processing stage for generation of background simulations. These data are used to train the RNN and calculate test statistics (TS).
The latter are mapped to p-values as part of the calibration phase. Inference includes evaluation of TS- and p-values, using the trained RNN and the pre-calculated
calibration. (B)The network may be decomposed into an encoder (tenc time-steps) and a decoder (tdec time-steps), where the decoder represents the search interval.
The RNN is made up of LSTMs (green rectangles). Each LSTM comprises two layers of128 and 64hidden units. The input data, t hS ,dec( ) (blue circles), make up h
numbers for each time step (blue hexagons). Similarly, the outputs of the LSTMs are indicated as t hB ,dec( ) (red circles). For anomaly detection, the decoder inputs
and outputs, S and B, are directly used to calculate the TS for discovery. For classification, the decoder outputs are fed into logits, z tdec( ) (proxies for classification
probabilities), which are used to derive the corresponding TS. The particular set of parameters used for each one of the example analyses (η, tenc, and tdec) are are
shown in the bottom panel. The specific choices are described in detail in the text.
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As part of anomaly detection, these predictions are meant to
correspond to the background. Potential transient signals must
therefore be removed from the training data set. This is done by
scrambling neutrino events in R.A. and time of detection.

The test statistics for detection are based on differences
between the predictions of the network and the true data. For
our particular definitions of observables, one can not assume
a priori that a particular statistical model (e.g., Poissonian
counts) would be valid. We therefore calculate detection
probabilities in a more general approach, using simulations. We
consider the zenith to be an auxiliary RNN parameter, as it is
not directly used to derive detection probabilities. Rather, we
bin the data in zenith into90 intervals of 2 width, in which the
detector response is approximately uniform. We then generate
~106 scrambled background sequences for each bin and
evaluate them with the RNN. The derived distributions of test
statistics are used to parameterize the correspondence between
TS- and p-values, accounting for all spatial and temporal trials.

We proceed to use the trained network to evaluate the
original (non-scrambled) data, carrying out an all-sky grid
search with 0.3° spacing. The corresponding spatial distribution
of p-values is shown in Figure 2. The most significant position
is = -R.A., Decl. 163 , 26.5{ } { }  . It has = ´n

-p 1.9 10 7

(pre-trials) and =np 0.1 (post-trials), corresponding to s5.2
and s1.6 significance. The result does not correspond to any
astronomical object of interest, and is consistent with a
statistical fluctuation. We also use the outputs of the RNN to
perform a correlation analysis between the IceCube and
ANTARES events (see Appendix A.2), finding no significant
result.

Our conclusions on the existence of neutrino sources are
consistent with previous studies of these data, which did not
detect any source ( =np 0.6, by Aartsen et al. 2015). In this
case, however, the analysis is done without the need to
explicitly define likelihood functions for the background or
sources. The study is performed on a combined IceCube and

ANTARES data set. Another advantage of our approach, is
that there is no need to model the relative response between the
two neutrino observatories. This example also illustrates the
flexibility of the methodology regarding observables. Our
choice of inputs and test statistics is motivated by the properties
of the data sets, but is by no means unique. However, our
framework is designed to provide self-consistent detection
probabilities in general, given a set of primary (e.g., neutrino
densities) and auxiliary (e.g., zenith) parameters. Finally, we
note that the limitations of the public data sets constrain us to
1 day time bins. Provided that the full data-streams of the
experiments become available, the same approach would be
applicable for real-time searches on shorter timescales.

3.2. Correlation Analysis between Neutrinos and CC-SNe

An alternative to auto-correlation analyses is to search for
cross-correlation between different messengers. An important
physical example is that of CC-SNe with relativistic outflows
(Murase & Ioka 2013; Cano et al. 2017). CC-SNe may
accelerate UHECRs, which produce g-rays and neutrinos, for
instance, via pp or gp interactions. A direct connection
between neutrinos and their SN counterparts can be made for
events that also exhibit high-energy emission, e.g.,GRBs.
However, g-rays are not always observed in association with
CC-SNe. For example, depending on the environment within
and around a source, g-rays may become attenuated due to gg
interactions (Boncioli et al. 2019). A few percent of CC-SNe
are estimated to harbor undetectable jets, which are not
powerful enough to punch through their progenitors and
winds. Such events are associated with choked jets, and
possibly shock breakouts (Kashiyama et al. 2013). Conversely,
those jets that are successful are mostly launched off-axis with
respect to the observer, and thus are also undetected (Denton &
Tamborra 2018). Finally, even when the high-energy emission
is beamed toward Earth, individual SNe are unlikely to be
identified as sources of neutrinos, as illustrated in Figures 3(A)

Figure 2. Results of the neutrino point-source search analysis. The sky-map in equatorial coordinates displays the pre-trials p-values, np , for time-dependent neutrino
point sources, utilizing IceCube and ANTARES data from 2011 to 2012. The most significant point =  - R.A ., Decl. 163 , 26 . 5({ } { }) is indicated by the red oval. It
has = ´n

-p 1.9 10 7 and =np 0.1 pre- and post-trials, respectively, corresponding to s5.2 and s1.6 significance. The result does not correspond to any astronomical
object of interest, and is consistent with a statistical fluctuation.
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–(B). This motivates performing a stacking analysis, combining
observations from many events.

We simulate a neutrino stacking analysis, intended to
identify an accumulated neutrino over-density in spatio-
temporal coincidence with CC-SNe (Senno et al. 2018). (This
should be distinguished from the more direct cross-correlation
approach, which involves optical follow-up of specific neutrino
events; Morgan et al. 2019.) The purpose of the RNN is to
provide a background model for the joint neutrino and optical
observation. Optical transients are simulated according to
projected observations with the Wide-Fast-Deep survey of the
upcoming Vera C. Rubin Observatory (previously referred to
as the Large Synoptic Survey Telescope, LSST; LSST Science
Collaboration et al. 2009). These SNe are only used to define
time-intervals, during which neutrino flares may occur.

Neutrino signals, based on our IceCube sample, are integrated
over these intervals.
The inputs to the RNN are of two types. For a given time

step, the first consists of the IceCube neutrino densities (as for
the previous example). The second type consists of LSST
signal-to-noise metrics (Zackay & Ofek 2017) in five optical
bands (see Appendix A.3). The zenith of observation is also
added as an auxiliary parameter. We thus have h = 10 inputs
per time step in total. SNe light curves evolve over days–
weeks. We therefore construct t = 20RNN days data sequences,
with the first t = 10enc days representing the background, and
the next t = 10dec the search period. In total the RNN receives

´ =10 20 200 inputs.
We begin by creating background samples. These represent

periods of joint neutrino and optical observations, in which no

Figure 3. Results of the correlation analysis between neutrinos and CC-SNe. (A)–(B): The top 1% (most significant) of the distribution of p-values, n-p Ice, for
neutrinos associated with individual SNe (not corrected for trials), (A)as a function of the redshift, z; and (B)as a function of the energy of a source deposited into
cosmic rays, CR. The dashed–dotted horizontal lines highlight the value corresponding to the pre-trials s5 detection significance of a single event. The combined
values of n-p Ice from different samples of SNe serve as the basis for the stacking analysis. (C):Post-trials p-values, n-p SN, for the stacked sample of neutrinos, as a
function of the maximal redshift of observed SNe included in the analysis, zmax. Dashed and full lines, respectively, correspond to s s= 5SN

min and s3 for the optical
detection threshold for individual SNe. The dashed–dotted horizontal line in the top panel highlights the value corresponding to 5σ significance for the stacked search.
As indicated, we consider5 and 10 yr LSST surveys, where it is assumed that all SNe have = ´ 2.5 10 ergCR

52 . The three panels illustrate the results for different
values of fjets, the fraction of SNe for which neutrino emission is observable. In general, f 1jets  is expected for beamed emission, and ~f 1jets for shock breakouts.
(D):The sensitivity of the stacking analysis, expressed as the minimal value of fjets, for which s5 detection is achievable. Different values of CR are compared in
the three panels, where dashed and full lines, respectively, correspond to s s= 5SN

min and s3 .
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transient exists in either messenger. The neutrino data are
derived by the scrambling procedure described above. The
optical data are chosen based on the true peak time of simulated
SNe. The background samples are used to train the RNN. For a
particular sky position, we then derive individual test statistics
for source detection with each messenger, which are calibrated
to p-values as a function of zenith.

In the next step of the analysis, we simulate stacked neutrino
signal samples. For the source model, we assume that optically
detected SNe are in fact GRBs, and that neutrinos are emitted
during the short prompt phase of explosions. The fluence of
muon neutrinos is modeled as µnm  DCR L

2, where CR is the
energy deposited in CRs, and DL is the luminosity distance to
the source (Waxman & Bahcall 1999; Senno et al. 2018). We
consider different values for fjets, the fraction of SNe for which
the neutrino emission is directed toward the Earth. Depending
on the physical model, the emission may e.g., be collimated
(relativistic jets; f 1jets  ), or quasi-spherical (shock break-
outs; ~f 1jets ). We also account for SN misclassifications, in
which cases neutrino signals are not injected. For this
simplified example, we assume that CC-SNe may be identified
from their photometric light curves with a 10% fake-rate
(Muthukrishna et al. 2019).

The TS of the stacked signal is computed by averaging the
individual neutrino detection significance of all events passing
a selection threshold, sSN

min . This threshold is defined by the
detection significance of the corresponding optical SN. In order
to derive the final stacked detection significance, we simulate
the background hypothesis; we impose the nominal optical
detection procedure, but do not inject any signals into the
neutrino data. We generate ~107 such realizations of a full
LSST survey, accounting for random coincidence between
observables.

The results of the analysis are shown in Figure 3. We
compare different values of fjets and CR, different optical

detection thresholds (s s s= 3 , 5SN
min ), and different durations

of LSST surveys (5,10 yr). The search would be sensitive in
the case of high fjets and CR values, in accordance with Senno
et al. (2018). Using our method, it would be possible to e.g.,
significantly constrain shock breakout scenarios. If no signal is
detected, the sensitivity curves could be used to derive physical
limits on neutrino emission.

For the neutrino point-source search, the RNN was used to
derive joint detection probabilities for two experiments.
Similarly in this case, we avoid having to impose a specific
relationship between two messengers. In addition, our approach
provides a statistical framework to optimize searches, and to
derive limits on non-detections. In this illustrative example, we
use the RNN to tune the redshift range and to relax the
detection threshold of individual events. This circumvents the
need to a priori refine the selection criteria of SNe. While we do
not explicitly incorporate SN classification or redshift estima-
tion as part of our pipeline, such extensions are feasible
(Muthukrishna et al. 2019). They are planned for future work,
paving the way for real-time applications.

3.3. Serendipitous Discovery of GRBs

For SNe engines of sufficient power, relativistic jets manage
to break out of the progenitor. Depending on their inclination,
these may be observed as long GRBs. Observations of GRBs
at high energies are very interesting, e.g., for the study of

acceleration mechanisms in relativistic shocks. In many cases,
g-ray emission extending up to GeV energies has been detected
(Ackermann et al. 2013). Recently, emission of up to hundreds
ofTeV has been detected for the first time with ground-based
Cherenkov Telescopes, which were following up alerts from
other instruments (Abdalla et al. 2019; Acciari et al. 2019).
For the current example, we simulate an uninformed search

scenario for the upcoming Cherenkov Telescope Array (CTA;
Acharya et al. 2017). We focus on low-luminosity bursts (LL-
GRBs), a sub-class of long GRBs (Virgili et al. 2009), which
have been connected to SNe having mildly relativistic outflows
(Cano et al. 2017), and are potential sources of UHECRs and
neutrinos (Murase & Ioka 2013; Boncioli et al. 2019). The true
properties of LL-GRBs are not well constrained by observa-
tions. Our sample therefore encompasses a wide range of
spectral and temporal parameters. As such, it may be used to
illustrate the detection prospects of such bursts, rather than to
make precise predictions on observable rates. We correspond-
ingly choose simple models, simulating the spectra of LL-
GRBs as either simple power laws (PLs) in energy and time, or
as PLs having exponential cutoffs.
We simulate observations for the Northern array of CTA

using the ctools analysis framework (Knödlseder et al. 2016).
The simulations consists of g-ray-like events. These corre-
spond to true g-rays, as well as to cosmic rays and electrons
passing the nominal CTA selection and classification cuts. The
inputs to the RNN are event counts, gn , within h = 4
logarithmically spaced energy bins between30 and200GeV.
They are integrated within circular regions of interest (RoIs),
over 1s periods (in order to probe the prompt emission phase
of long GRBs). We construct the RNN to represent t = 25RNN
s of data. The first t = 20enc steps correspond to the
background, and the final t = 5dec steps to the putative signal.
In total, the RNN receives ´ =4 25 100 inputs.
For anomaly detection, the RNN is trained to predict g-ray-

like counts in the absence of signals. In addition, we employ a
classification approach. Here, the network is trained with
examples of both background and signal events, where signals
are injected over the t = 5dec step interval.
Figure 4(A) shows the real-time discovery potential of the

RNN. As expected, bursts with lower redshifts and higher
luminosities are more likely to be detected. In general, a large
fraction of the parameter space is accessible. In Figure 4(B) we
compare our algorithm with the likelihood-based method for
source detection of ctools. The RNN performs similarly or
better. For anomaly detection, this is achieved without relying
on instrument response functions.
Contrary to anomaly detection, classification requires some

assumption on sources as part of training. However, the
performance of the method is shown to be robust to this
constraint. In the current example, we simulate the intrinsic
spectra of LL-GRBs as exponentially cutoff PLs. The classifier
is trained exclusively with simple PL examples. However,
nonetheless it is able to generalize, and outperforms the
likelihood approach by achieving higher detection rates. We
emphasize that for both RNN configurations, training will
primarily utilize real CTA data, once it becomes available,
rather than simulations. (For instance, for classification a hybrid
approach is possible, where simulated signals are injected into
background sequences from real data.) Correspondingly, the
dependence on instrumental modeling is minimized using our
framework.
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The advantage of the RNN is particularly evident when only
PL models are used as part of the ctools likelihood fit. This
represents a realistic strategy for blind searches, for which
simple assumptions are generally made. Both our algorithms
are comparatively agnostic to the properties of sources. They
therefore enable real-time detection of a wider range of
transients compared to standard techniques. This illustrates
the merits of the methodology for unbiased searches, and the
potential for unexpected discoveries.

4. Discussion

Our method is optimized to minimize the bias on (real-time)
detection of transients. It is distinguished from previous works,
which have either incorporated explicit examples of signal
events (mostly for classification), or have modeled the
characteristics of backgrounds. Conversely, we use a data-
driven strategy, which is less susceptible to the pitfalls of
unrepresentative training data sets. The predictions of the
network are relatively robust against theoretical and systematic
uncertainties on sources and instruments. Considering the
simple architecture, searches may be conducted on different
timescales. This may be done by modifying the value of tRNN;
by relating one or several RNN steps to other temporal
intervals; or by constructing (multiple) tests statistics that span
different scales. In all cases the calibration phase facilitates
correct derivation of the final p-values for detection, account-
ing for trials. As illustrated for the SNe correlation study, the
framework may also be used to derive limits from non-
detections, though this requires instrument modeling.

Our approach is relatively generalizable, enabling model-
independent combination of observables. In principle, the
framework facilitates sophisticated schemes of data fusion,
where different data formats may be integrated consistently.
However, in our nominal approach, this is not necessary.
Subsequently, simple RNN architectures may be used. This
leads to robust predictions that do not depend on extensive
optimization of hyper-parameters.

In a realistic scenario of real-time searches, various
systematic effects may initially be detected as transients.
Experience with a particular instrument is necessary in order to
suppress these spurious signals. Different strategies may be
employed to this effect. For example:

1. incorporating more sophisticated architectures, such as
Bayesian networks (Shen et al. 2019), which may
improve the calibration phase;

2. using data that include these systematics for training (e.g.,
the scrambling procedure for our neutrino point-source
analysis);

3. injecting known glitches as background events during
training;

4. correlating multiple observables that are susceptible to
different systematics (e.g., real-time combination of
g-rays and optical data), or cross-correlating RoIs across
the field of view;

5. adding informative auxiliary observables to the RNN;
6. performing selection cuts pre-processing (e.g., image

quality cuts);
7. performing filtering post-processing (e.g., incorporating

an additional network that would be trained either to
classify systematic-induced events, or to perform anom-
aly detection with regards to known glitches; George
et al. 2018);

8. performing selection cuts post-processing, based on
source modeling (e.g., general constraints on timescales
and energetics).

In any case, even after accounting for systematics, true
detections could correspond to different physical scenarios. In
order to correctly characterize transients, multiwavelength/
multimessenger follow-up will be essential. One of the primary
applications of our method will be the effective identification of
candidates for follow-up.

We would like to thank the following people for numerous
useful discussions: D. Biehl, D. Boncioli, Z. Bosnjak, A.

Figure 4. Results of the serendipitous GRB search analysis. (A):The probability to detect a GRB with at least s5 significance, sf5 , derived with anomaly detection,
after accounting for trials. The simulated sample includes different combinations of redshift, z, and isotropic equivalent luminosity, gL ,iso, spanning the expected
properties of LL-GRBs, assuming PL spectral models (see Equation (A12)). (B):Dependence of sf5 on the cutoff energy, Ecut , for bursts simulated as exponentially
cutoff PLs (see Equation (A14)). The shaded regions correspond to s1 statistical uncertainties on the values of sf5 . Two alternative models are assumed for detection
with the likelihood method of ctools, an exponentially cutoff PL, and a simple PL, as indicated. While the classification method was exclusively trained using simple
PL examples, it effectively generalizes and identifies sources having cutoff spectra.
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Franckowiak, O. Gueta, T. Hassan, D. Horan, M. Krause, F.
Longo, G. Maier, M. Nievas Rosillo, I. Oya, A. Palladino, E.
Pueschel, R. R. Prado, L. Rauch, and W. Winter. This Letter
has also gone through internal review by the CTA Consortium.

We use the publicly available, all-sky point-source IceCube
data for years 2011–2012 (Aartsen et al. 2017; see https://
icecube.wisc.edu/science/data/PS-3years). We also use pub-
licly available data from the ANTARES experiment for the
same time period (Adrián-Martínez et al. 2014; see http://
antares.in2p3.fr/publicdata2012.html.) We utilize simulations
from the Photometric LSST Astronomical Time Series
Classification Challenge (PLAsTiCC), an open data challenge
to classify simulated astronomical time-series data (Kessler
et al. 2019; see https://plasticc.org; PLASTICC Team &
PLASTICC Modelers 2019). We also use SNCosmo, an open
source library for supernova cosmology analysis (see Barbary
et al. 2016). This research makes use of ctools (Knödlseder
et al. 2016), a community-developed analysis package for
Imaging Air Cherenkov Telescope data. ctools is based on
GammaLib, a community-developed toolbox for the high-level
analysis of astronomical gamma-ray data (see http://cta.irap.omp.
eu/ctools/;http://cta.irap.omp.eu/gammalib/). We also use
CTA-IRFs, provided by the CTA Consortium and Observatory
(version prod3b-v1; see http://www.cta-observatory.org/science/
cta-performance/). This research makes use of the open source
software, tensorflow (see Abadi et al. 2015).

Appendix
Statistical Analysis

A.1. Network Architecture and Inference Pipeline

Our software pipeline and chosen RNN architecture are
shown in Figure 1. The RNN is implemented using tensorflow
(Abadi et al. 2015). It may be decomposed into two elements,
an encoder and a decoder (Cho et al. 2014). The RNN accepts
t t t= +RNN enc dec time steps as input. The different steps are
implemented as LSTM cells. A cell is composed of a pair of
LSTM layers, respectively, comprising128 and64 hidden
units (the set of parameters tuned during training). Each step
receives a collection of (analysis-specific) h inputs. The inputs
are independently normalized, such that their nominal range of
values for the background training sample is mapped to the
interval, 0, 1[ ].

In our nominal approach we employ an anomaly detection
technique. We utilize sequences of input data, t hS ,RNN( ),
which for training correspond to the response of an instrument
in the absence of signal events. The RNN is used to predict the
expected background of the experiment, t hB ,dec( ), having the
same data structure as t hS ,RNN( ). Transients are then detected
as significant divergences from these predictions. Training
involves minimizing a loss function, which is defined as the
mean squared error between B and S for each set of tRNN–η.

For classification, an external layer is appended to the output
decoder. The latter maps t hB ,dec( ) into logits, z tdec( ). Each of
these is a proxy for the RNN probability density function
(PDF) for data of a given step to belong to the signal class
(Goodfellow et al. 2016). Training proceeds by minimizing a
cross-entropy loss function for the different steps, where the
final probability is taken as the average, z z= á ñtdec dec. The
corresponding TS is based on the ratio between the background
and signal PDFs for a given value of zdec (Cranmer et al. 2015).
As for anomaly detection, calibration of test statistics into

p-values is performed once following the training stage, using
simulations.
In the following we detail the data reduction, source

modeling, and definition of test statistics used for the example
analyses presented in this study. A short summary is given in
Figure A1.

A.2. Neutrino Point-source Search

We search for clustering in two publicly available all-sky
Î -  Decl. 85 , 85( { }) neutrino samples. The first comprises

IceCube event lists of track-like muon neutrino candidates,
taken between 2011 and 2012 (MJD 55694–56415), with the
IC-86I detector configuration (Aartsen et al. 2017). The second
is of ANTARES muon neutrinos, observed within the same
time period (Adrián-Martínez et al. 2014). Both samples
include time-stamps, reconstructed event directions, and
angular uncertainties. In the case of IceCube, energy-proxy
metrics and tabulated instrument response functions (IRFs)
estimates are available as well. These public data sets are
limited in scope. It is therefore not feasible to, e.g., reliably
correct for instrumental dead-time, or to estimate the efficiency
of event reconstruction and selection cuts. An advantage of our
methodology, is that such explicit corrections are not always
necessary, so long as unbiased self-consistent observables can
be derived.
The nominal inputs to our RNN are based on neutrino event

density metrics with respect to a given location on the sky, x.
We define the density for a given neutrino as

d
=

D
n

n

n
xs min , 1 . A1

x,
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

Here dn is the angular uncertainty of the event, and Dn x, is the
angular distance between the position of the neutrino and x.
We note that this definition of observables, while well
motivated, is not unique. However, our framework is designed
to provide self-consistent detection probabilities, given such
informative input parameters.
We integrate the event densities over 24 hr time periods,

which effectively avoids dependence of the event rates on R.A.
(Aartsen et al. 2015). For the IceCube sample, the data are split
into four logarithmically spaced bins in the energy proxy, nE ,
between10GeV and8PeV. For ANTARES the summation is
inclusive in energy. We therefore have five density metrics as
RNN inputs,

å

å

=

=

n n

n n

-
D

-

n





x x

x x

S s ,

and S s
, A2

Ice
1 day, E

ANT
1 day

( ) ( )

( ) ( )
( )

with energy bins, Î 1, 2, 3, 4{ }. The response of the
IceCube and ANTARES detectors depends on the zenith of
the observed event, which therefore is added as an auxiliary
input to the RNN. We nominally use the IceCube events to
determine the zenith for a particular sequence. Considering the
time of arrival and the location of the observatories, we
calculate the corresponding zenith for the same putative source
with ANTARES. In cases where an IceCube source is not
within the field of view of ANTARES, we use background data
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instead. In total, we have h = 6 inputs per time step. The
collection of inputs is derived for t = 15RNN days periods. The
first t = 10enc days are assumed to only contain background
events. Transient signals are searched for within the next
t = 5dec days interval. In total, the RNN receives ´ =6 15 90
inputs.

We construct a background sample of 104 tRNN sequences,
where potential transient signals are removed by scrambling the
events in R.A. and time of detection (Aartsen et al. 2015). The
RNN is trained to predict the neutrino event densities in each of
the five days being probed, for a particular x. The outputs of
the network of the five event densities for a given day are
denoted by n-

-B Ice
1 4( ) and n-B ANT for the two experiments. We

use these to calculate a combined test statistic,

= +n n n- -x x xTS TS TS , A3Ice ANT( ) ( ) ( ) ( )

where

å

å

= -

= -

n
n

n

n
n

n

-
-

-

-
-

-





x

x

B

S
TS log ,

and TS log
B

S
. A4

Ice
5 days,

10
Ice

Ice

ANT
5 days

10
ANT

ANT

( )

( ) ( )

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

High values of nTS correspond to large discrepancies between
(background) predictions and the corresponding true data. TS-
values are calibrated to p-values, np , as a function of the
auxiliary parameter (the zenith, binned into 90 intervals of 2
width).

Note that we take a generalizable approach, where the two
data sets are combined on equal footing. More complicated
schemes are also possible, e.g., by introducing relative weights
in the definition of nTS . Similarly, different timescales may be

probed, either by modifying the definition of tRNN, or that
of nTS .
We also use the outputs of the RNN to perform a correlation

test between the IceCube and ANTARES events over the entire
period of the data set for each spatial position. For this purpose,
we consider n-TS Ice and n-TS ANT individually. As part of the
calibration stage, we derive the relation between TS-values and
p-values for each statistic independently. This is done using
simulations (as for nTS above).
Our metrics for the correlation analysis are Pearson

coefficients, based on the p-values of the two samples, n-p Ice
and n-p ANT. Explicitly, we define,

r r r r

r r r r
=

å - á ñ - á ñ

å - á ñ å - á ñ
n- xTS .

A5

t
t t

t
t

t
t

IA
Ice Ice ANT ANT

Ice Ice
2

ANT ANT
2

( )
( )( )

( ) ( )
( )

Here r º - n-x plogt
Ice 10 Ice( ) , and r º - n-x plogt

ANT 10 ANT( ) .
The summation is over the entire period of the data set, with
t representing a particular 5 days interval for a given sample.
We proceed to derive the p-value for detection of a correlation
signal, n-p IA. For this purpose, we independently scramble rt

Ice

and rt
ANT in time and R.A. This procedure is used to create

multiple realizations of n- xTS IA( ), for which the two samples
are uncorrelated. Using these background distributions, we
account for spurious correlations, as well as for the number of
spatial and temporal grid points.

A.3. Correlation Analysis between Neutrinos and CC-SNe

We simulate a neutrino stacking analysis. The general
strategy is to identify an accumulated neutrino over-density
(based on n-TS Ice) in spatio-temporal coincidence with CC-

Figure A1. Summary of the specific RNN and pipeline configurations used for the three analysis examples. The RNN architectures are defined by the number of
encoder and decoder steps, tenc and tdec, and by the type and number of inputs per RNN cell, η (blue hexagons), as indicated. The calibration phases of the pipeline are
defined by the particular choices of TS and their corresponding p-values for each analysis. The specific notation for each of the analyses is defined in the text.

9

The Astrophysical Journal Letters, 894:L25 (12pp), 2020 May 10 Sadeh



SNe (Senno et al. 2018). This should be distinguished from the
more direct cross-correlation approach, which involves optical
follow-up of specific neutrino events (Morgan et al. 2019). A
direct analysis is in principle preferred, as it enables the
detailed study of a particular source (Aartsen et al. 2018).
However, it has two main disadvantages for the case of CC-
SNe. First, one must have high confidence that a given neutrino
is astrophysical, which generally constrains events to very-high
energies. Additionally, the sensitivity is limited by the
irreducible contamination of unassociated SNe within the
uncertainty region of the neutrino. Given the weak nature of
neutrino sources and the large number of potential counterparts,
indirect population studies become competitive.

SNe for our stacking analysis are simulated according to
projected observations with the upcoming LSST Wide-Fast-
Deep survey (LSST Science Collaboration et al. 2009). We
utilize the public PLAsTiCC data set, which was created as part
of an open data challenge in preparation for LSST (Kessler
et al. 2019). The data set represents the projected cadence and
observing constraints for LSST. For instance, it includes a
prototype scheduler for science program optimization; realistic
environmental conditions, such as weather and seeing;
maintenance downtime; and instrumental artifacts.

The inputs to the RNN are of two types. For a given time
step, the first consists of the IceCube neutrino densities,
n-
 xS Ice ( ). The second type consists of LSST signal-to-noise

metrics in several optical bands, Îb g r i z y, , , ,{ }. These are
defined as

d
=xS

m

m
, A6b b

b
SN( ) ( )

where mb and dmb, respectively, stand for an observed
magnitude in band, b, and the corresponding uncertainty. As
above, the zenith of observation is added as an auxiliary
parameter. We thus have h = 10 inputs per time step in total.
We construct t = 20RNN days data sequences, with the first
t = 10enc days representing the background, and the next
t = 10dec days the search period. In total the RNN receives

´ =10 20 200 inputs.
We begin by creating background samples. These represent

periods of joint neutrino and optical observations, in which no
transient exists in either messenger. The scrambling procedure
described for the neutrino point-source analysis is used to
derive n-S Ice. We extract SSN from simulation periods that lack
transient signals, based on the true peak time of SNe light
curves. The simulated LSST observations include gaps in
observations in some/all bands. We account for missing inputs
by randomly interleaving background optical data in such gaps.
The background samples are used to train the RNN, using 104

tRNN sequences.
For a particular sky position, we derive individual test

statistics for source detection with each messenger. For
neutrinos, we use n- xTS Ice( ) (here defined over t = 10dec
days intervals). For optical SNe, we have

å= -x
B

S
TS log , A7

b

b

bSN
10 days,

10
SN

SN

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

where B b
SN stands for the output of the network in a given band,

b. In addition to high values of TSSN, we impose a constraint on
optical detections, that a SN is observed over at least three
nights in different bands. The correspondence between n-TS Ice

and TSSN and their respective p-values, n-p Ice and pSN, is
derived from simulations as a function of zenith.
In the next step of the analysis, we simulate signal samples.

The total number of simulated SNe up to a redshift of 0.06 is
~ -2000 yr 1, following the star formation rate (Bernstein et al.
2012). Of these, about 57% are detected with our RNN with at
least s3 significance, and 42% with s5 . We assume that the
optically detected SNe are in fact unobserved GRBs. The SNe
are generally characterized by the peak time of their light
curves, which occurs on average 13days after the putative
GRB (Cano et al. 2017). As the exact time of the emission is
uncertain, we randomly generate it as a Poisson process. We
consider different values for fjets, the fraction of SNe for which
the neutrino emission is directed toward the Earth. Depending
on the physical model, the emission may e.g., be collimated
(relativistic jets; f 1jets  ), or quasi-spherical (shock break-
outs; ~f 1jets ). We also account for misclassifications of CC-
SNe, by introducing a 10% fake-rate, for which neutrino
signals are not injected (Muthukrishna et al. 2019).
A neutrino flare is assumed to occur during the short prompt

phase of the explosion. We relate the simulated flux of muon
neutrinos to the energy deposited by SNe in CRs, CR. We use
a flat L CDM cosmology, with W = 0.3m and the Hubble
constant, = - -H 70 km s Mpc0

1 1. The luminosity distance of
optical SNe, DL, is derived from their redshift. The fluence of
simulated muon neutrinos is then given by µnm  DCR L

2

(Waxman & Bahcall 1999; Senno et al. 2018), assuming a PL
spectrum for the parent CRs with a spectral index of-2, and a
flare duration of ~10 100 s– . We derive the expected observed
neutrino signal from the spectrum using the IRFs of IceCube
(Senno et al. 2018).
The test statistic of the stacked signal is defined as

t s = á- ñn n- -pTS , log , A8SN LSST SN
min

10 Ice( ) ( )

where the average is over all SNe having been detected during
a survey of duration, tLSST (either 5 or 10 yr). In this context,
detections are defined as events having an optical detection
significance, sSN, higher than a given threshold, sSN

min (either s3
or s5 ). In order to derive the stacked detection p-value, n-p SN,
we simulate the background hypothesis; we impose the
nominal optical detection procedure, but do not inject any
signals into the neutrino data. We generate ~107 such
realizations of a full LSST survey of duration tLSST, accounting
e.g., for misidentified SNe, and for random coincidence
between observables (Senno et al. 2018).

A.4. Serendipitous Discovery of GRBs

Observations are simulated for the Northern array of CTA
using ctools (Knödlseder et al. 2016), one of the proposed
analysis frameworks for the observatory. The simulations
produce g-ray-like events. These correspond to true g-rays, as
well as to CRs and electrons, which pass all selection and
classification cuts. ctools allows generation of background (CR,
electron) sky-maps, as well as of background+signal observa-
tions, by inclusion of source spectral models. We use IRFs
optimized for 30minutes observations at zenith angles of 20 .
The RoI for the simulation is chosen as a circular area with a
radius of 0.25°. It is centered at the position of the putative
source, and is displaced by 0.5° from the center of the camera.
The inputs to the RNN are g-ray-like event counts, gn ,

within h = 4 logarithmically spaced energy bins, Eγ,
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between30 and200GeV ( Î 1, 2, 3, 4{ }), integrated within
1s intervals within the RoI,

å=g g
D g





S n . A9
E1 s,

( )

For anomaly detection, we train the network with background-
only ctools simulations. The RNN therefore predicts g

-B 1 4( ),
the background event counts in each of the energy bins for each
of the steps. We construct the RNN to represent t = 25RNN s of
data. The first t = 20enc steps correspond to the background,
and the final t = 5dec steps to the putative signal. In total, the
RNN receives ´ =4 25 100 inputs. We train the network
using 104 background sequences.

Our framework allows for explicit statistical models to be
used, avoiding the need for calibration with background
simulations. We illustrate this for the LL-GRB analysis with
Poissonian models of the signal and background+signal
hypotheses. These are defined as l l= l-P k e kk

pois( ∣ ) !,
given an observed number of events, k, and a rate,l. We
approximate l from the event count corresponding to a given
hypothesis, integrating over the final t = 5dec steps of the RNN
for a given energy bin,

å ål l= =g g
   S , and B . A10S B

5 s 5 s

( )

We then define the test statistic,

å
l

l
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⎞
⎠
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We directly derive the pre-trials p-values for anomaly detection,

g-p A, using Wilks’s theorem (Wilks 1938), which was validated
by background simulations).

In addition to anomaly detection, we employ a classification
approach. In this case, we require examples of signal events for
training. To simulate the possible g-ray signatures of LL-GRBs
for CTA, we nominally model their spectra as simple PLs in
energy, E, and time, t,

µ -G -M E t E t, . A12T
PL ( ) ( )

The spectral and temporal indices, Γ and T, are parameters of
the models. The true properties of these events are not well
constrained, due to the scarcity of observations. We therefore
consider a wide range of parameters. Motivated by bright
bursts, detected at high energies with Fermi-LAT, we
randomize over likely values, < G <1.9 2.7 and < <T0.8
2 (Ackermann et al. 2013). The flux normalization is randomly
shifted with regard to these reference events in redshift and
luminosity to the expected ranges for LL-GRBs (Acharya et al.
2017). The observed spectra are corrected for interactions with
the extragalactic background light (EBL), which attenuates
high-energy g-rays (Franceschini et al. 2008).
The network is trained for classification using 104 back-

ground sequences and 104 signal sequences. Signals are
injected over the t = 5dec step interval, as part of the ctools
simulation. The network is trained with a wide range of such
models having different flux normalizations, corresponding to
different signal-to-noise ratios with respect to the background.
The signal models incorporate PL temporal decay. Correspond-
ingly, late-time models are equivalent to early-time models
with relatively lower flux normalization. The inclusive
composition of the training sample therefore enhances general-
ization (time-invariance) of the RNN.
While the inputs to the RNN for classification are the same

as for anomaly detection, the output in this case is a single
number, zdec. The latter takes low values for input sequences
that do not include transient signals, and high values in the
presence of high-significance signals. We use the training
sample to derive PCLAS

B and PCLAS
S , the approximated PDFs for

the background and for the background+signal hypotheses (see
Figure A2 (A)). Under the assumption that zdec is monotonic
with the ratio of PDFs (Cranmer et al. 2015), the classification
test statistic can be defined as

z
z

z z
= -

+
g-

P

P P
TS 2 ln . A13C dec

CLAS
B

dec

CLAS
B

dec CLAS
S

dec

( )
( )

( ) ( )
( )

⎛
⎝⎜

⎞
⎠⎟

We calibrate the relation between g-TS C and the corresponding
pre-trials g-p C with background and signal simulations, using

Figure A2. Calibration of the classification output of the RNN, zdec, for the search for LL-GRBs. (A):The distributions of zdec for the background and signal samples,
from which the probability density functions, PCLAS

B and PCLAS
S , are estimated. (B):Distributions of the test statistic for classification, g-TS C, as a function of zdec,

before and after the correction for trials, as indicated. The dashed–dotted horizontal line highlights the value of g-TS C corresponding to a s5 detection threshold.
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Wilks’s theorem. The calibration is defined as a function of
zdec, as illustrated in Figure A2(B).

In a realistic scenario, an uninformed search would be
performed for RoIs at different positions across the field of view
of CTA. The search would be repeated multiple times,
depending on the definition of tdec and on the amount of
observing time. Correspondingly, the detection significance must
be corrected for trials. We take, = - -p p1 1 n

post pre
trial( ) , as

the relation between pre- and post-trials probabilities. We use the
number of trials, ~ ´n 3.6 10trial

7, corresponding to searches
over 100hr of observations, over the entire CTA field of view.

It is currently difficult to estimate the rate of false detections
for CTA, as the observatory will explore a new regime of
sensitivity (Acharya et al. 2017). Experience with real data will
improve the fidelity of detections. As a first step, we performed
systematic checks on the stability of the g-ray-like event counts
we use as input to the RNN. The counts are susceptible to
fluctuation due to imperfect g-ray reconstruction, and to
uncertainties on the IRFs. In particular, energy dispersion
below~50 GeV may result in migration between bins, and can
change the energy threshold of the analysis. We studied these
effects by comparing simulations where we vary the IRFs by
their expected uncertainty (of up to 10%). We found that the
propagated uncertainties on counts do not significantly affect
our results. We also tested theoretical uncertainties on the effect
of the EBL. Comparing different models of the EBL
(Franceschini et al. 2008; Dominguez et al. 2011; Gilmore
et al. 2012), we found negligible impact on the observed
spectra of LL-GRBs. This is primarily due to the low redshift
and energy regimes we consider in the current study.

We also simulate a separate signal sample, where LL-GRBs
are modeled as PLs having exponential cutoffs,

= -M E t M
E

E
, exp . A14EC PL

cut
( ) · ( )

⎛
⎝⎜

⎞
⎠⎟

In this case, we scan a range of cutoff energies, < <E1 cut

120 GeV. The cutoff models are not used for training. Rather,
we utilize them to illustrate the robustness of our methods (see
Figure 4). As discussed above, the networks perform well for
different source types. For instance, they enable identification
of GRBs having cutoff spectral models, despite only being
trained with simple PL examples.
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