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Abstract
In this paper, a food chain system with ratio-dependent functional response, impulses,feedback
controls and delays is studied. By using the theorem of coincidence degree, homotopy invariance
property and Lyapunov’s approach, a set of sufficient conditions for ensuring the existence and
stability of positive periodic solutions of the system are derived. The results extend some recent
works.
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1 Introduction
Predator-prey system is the classic model in ecology, has been studied extensively (Cheng and Li,
2007; Li et al., 2003). At present, two species predator-prey system with feedback control models
have become hot, also systems which based on rate-dependent functional response have also
been received much attention. The ratio-dependent functional response is the density ratio function
on predator and prey two groups. Generally, predator-prey system with ratio-dependent functional
response is {

dx
dt

= f(x)− yp(x
y

),
dy
dt

= kyq(x
y

)− dy. (1)

The literature [Chen et al.(2003); Gopalsamy and Wang (1993)] proposed the following feedback
system {

dn(t)
dt

= n(t)[1− a1n(t)+a2n(t−τ)
k

− cv(t)],
dv(t)
dt

= −av(t) + bn(t),
(2)
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Here n(t) and v(t) stand for population density of the specie and the feedback controls variable,
respectively. The paper studied the stability of positive equilibrium point, and also gave the global
asymptotic stability conditions.

The literature (Li and Wang, 2009) studied a food chain system with ratio-dependent functional
response, delays and feedback controls to advanced predator. The model as follows

dx1(t)
dt

= x1(t)[a1(t)− b1(t)x1(t)− c1(t)x2(t)
m1x2(t)+x1(t)

],
dx2(t)
dt

= x2(t)[−a2(t) + f1(t)x1(t−τ1)
m1x2(t−τ1)+x1(t−τ1)

− c2(t)x3(t)
m2x3(t)+x2(t)

],
dx3(t)
dt

= x3(t)[−a3(t) + f2(t)x2(t−τ2)
m2x3(t−τ2)+x2(t−τ2)

]− c3(t)v(t)x3(t),
dv(t)
dt

= −a(t)v(t) + b(t)x3(t).

(3)

The author investigated the existence of periodic solutions.
The literatures (Li and Wang, 2009; Si and Chen, 2007) introduces feedback control variables to

the three groups, respectively; literature (Yang and Xu, 2009), proposes a food chain system, in order
to close to the actual situation introduces pulse effects. In this paper, basing on model (1), (2) and
(3), introduces feedback control variables for the three groups respectively and pulse interference.

2 Model formulation
This paper, basing on model (1), (2) and (3), introduces feedback control variables for the three
groups respectively and pulse interference, thus the following food chain system was established.

dx1(t)

dt
= x1(t)[a1(t)− b1(t)x1(t)− c1(t)x2(t)

m1(t)x2(t)+x1(t)
]− h1(t)v1(t)x1(t)

dx2(t)

dt
= x2(t)[−a2(t) + f1(t)x1(t−τ1)

m1(t)x2(t−τ1)+x1(t−τ1)
− c2(t)x3(t)

m2(t)x3(t)+x2(t)
]

−h2(t)v2(t)x2(t)
dx3(t)

dt
= x3(t)[−a3(t) + f2(t)x2(t−τ2)

m2(t)x3(t−τ2)+x2(t−τ2)
]− h3(t)v3(t)x3(t)

dvi(t)

dt
= −αi(t)vi(t) + βi(t)xi(t) i = 1, 2, 3.


t 6= tk,

∆xi = xi(t
+
k )− xi(tk) = dikxi(tk) i = 1, 2, 3. k ∈ N.

(4)

Here xi(t) denote the population density of the i specie in this food chain at time t, vi(t) stand for
the feedback control variables for the i specie, (i = 1, 2, 3) , ∆xi is incremental of the corresponding
population at the pulse time t = tk .

The ecological significance for system (4): because of birth, acquisition, stocking and other
transient factors, the three groups is in the case of high growth rates, through the introduction the
feedback control variables to the three groups, we come to control the growth rates of three species,
achieve to the overall controls for the system, and keep the ecosystem balance. We noted that the
feedback controls variables represent the interference which people have done, so the system (4) has
much practical value. This paper studies existence and global asymptotic stability of Positive Periodic
Solutions of system (4).

Note: This article discusses the generally model. When ∆xi = 0, the system(4) corresponds
to feedback controls predator-prey systems without pulse, such as (Si and Chen, 2007) studied the
persistence of the system, and obtained sufficient conditions for existence of periodic solutions.

When αi(t) = 0 , the system(4)corresponds to the pulse type predator-prey system without
feedback controls, such as (Zhang et al., 2005) studied local stability of the predator eradication
periodic solution of the the system.

When ∆xi = 0, αi(t) = 0 , the system(4) corresponds to predator-prey system with no pulse and
no feedback controls, such as (Xu and Chen, 2001) studied the persistence of the system and global
asymptotic stability.
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For the sake of generality and convenience, we make the following fundamental assumptions for
system (4):

(H1) {tk} satisfies: tk < tk+1 and lim
k→∞

tk =∞, k ∈ N ;

(H2) There exists an integer ω > 0 and positive integer p, such that tkp = tk + ω, di,k+p =
dik ≥ 0. k ∈ N, i = 1, 2, 3;

(H3) ai(t), hi(t), αi, βi, i = 1, 2, 3; fi(t), ci(t),mi(t), i = 1, 2 and b1(t) is a nonnegative continuous
ω−Periodic function, τ1, τ2 is a nonnegative constants.

For continuous ω− periodic function g(t) and ω− periodic sequence {dik}, set

gl = inf
t∈[0,ω]

g(t), gu = sup
t∈[0,ω]

g(t), ḡ =

∫ ω
0
g(t)dt

ω
,

| g |=
∫ ω

0
| g(t) | dt
ω

, ∆i =

p∑
k=1

ln(1 + dik)

ω
.

Considering the initial conditions

xi(s) = φi(s), s ∈ [−τ, 0], xi(0) > 0,

v(t) = ϕi(t), t ∈ [0, ω], vi(0) > 0, i = 1, 2, 3;

and τ = max{τ1, τ2}.

2.1 Important lemma
In order to study the existence of periodic solutions of the system (4), we use the following definition
and Lemma[10].

Let X,Z be real Banach spaces, L : DomL ⊂X −→ Z is the linear mapping, kerL = L−1(0) is
the nucleus of L, ImL = L(DomL) is the range of L,I is the identity mapping.

The mapping L is said to be a Fredholm mapping of index zero, if dim kerL = codimImL < +∞ ,
and ImL is closed in Z .

If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X −→
X and Q : Z −→ Z , such that Imp = kerL, ImL = kerQ = Im(I − Q) , It follows that the
restriction Lp of L to DomL

⋂
kerP : (I − P )X −→ ImL is invertible. Denote the inverse of LP by

KP , KP : ImL = DomL , then PKp = 0, LKp |ImL= I,KpL |DomL= I − P .
The mapping N : X → Z is said to be L− compact on Ω , if Ω is an open bounded subset of X,

QN(Ω) is bounded and KP (I −Q)N : Ω −→ X is compact.
Since ImQ is isomorphic to kerL , there exists an isomorphism J : ImQ −→ kerL .
Lemma 1 (Y angandXu, 2009) Let Ω ⊂ X be an open bounded set, L be a Fredholm mapping

of index zero and N : Ω→ Z be L− compact on Ω . Assume
(1) for each λ ∈ (0, 1) , x ∈ ∂Ω

⋂
DomL , Lx 6= λNx ;

(2) for each x ∈ ∂Ω
⋂

kerL , QNx 6= 0 ;
(3) deg{JQN,Ω

⋂
kerL, 0} 6= 0.

Then Lx = Nx has at least one solution in DomL
⋂

Ω .
Lemma 2 (Gopalsamy, 1992) A non-negative function f(t) ∈ PC[[0,∞), R], and

∫ +∞
0

f(s)ds <
+∞. if for each ε > 0 and n ∈ N , there exists δ > 0, when s1, s2 ∈ (tn−1, tn], |s1 − s2| < δ, there
is |f(s1)− f(s2)| < ε, then lim

t→+∞
f(t) = 0.

Lemma 3 R6
+ = {(x1(t), x2(t), x3(t), v1(t), v2(t), v3(t))T ∈ R6 : xi(t) > 0, vi(t) > 0, i =

1, 2, 3} is the positive invariant set of system (4).
Proof. For t ∈ (tk−1, tk], by the first and fifth equations of system (4), we have

x1(t) = x1(0)(1 + d1k)k−1 exp{
∫ t

0
[a1(s)− b1(s)x1(s)− c1(s)x2(s)

m1x2(s)+x1(s)
− h1(t)v1(t)]ds},

128



British Journal of Mathematics & Computer Science 2(3), 126–136, 2012

because of the initial conditions xi(0) > 0, x1(t) > 0 is clear.
Similarly, by the second, third and fifth equations of system (4), we have

x2(t) ≥ x2(0)(1 + d2k)k−1 exp{
∫ t

0
[−a2(s)− c2(s)x3(s)

m2x3(s)+x2(s)
− h2(s)v2(s)]ds},

x3(t) ≥ x3(0)(1 + d3k)k−1 exp{
∫ t

0
[−a3(s)− h3(s)v3(s)]ds},

because of the initial conditions x2(0) > 0, x3(0) > 0,x2(t) > 0 and x3(t) > 0 is clear.
In addition, from the forth equations of the system (4), we have

vi(t) = e−
∫ t
0 αi(s)ds[vi(0) +

∫ t
0
βi(s)xi(s)e

∫ s
0 αi(u)duds],

Therefore,because of the initial conditions vi(0) > 0, βi(t) ≥ 0 and xi(t) > 0(i = 1, 2, 3) , we
obtain vi(t) > 0(i = 1, 2, 3). This completes the proof.

3 Existence of positive periodic solutions
Theorem 1 In addition to(H1)-(H3),assume further that

(1) ā1 >
c̄1
ml1

+ h̄1β̄1ā1
b̄1

eω(∆1+2ā1)( 1
ᾱ1

+ 2ω) ;

(2) f̄1 > ā2 + c̄2
ml2

+ h̄2β̄2ā1f̄1
b̄1ā2m

l
1
eω(∆1+∆2+2ā1+2f̄1)( 1

ᾱ2
+ 2ω) ;

(3) f̄2 > ā3 + h̄3β̄3ā1f̄1f̄2
b̄1ā2ā3m

l
1m

l
2
eω(∆1+∆2+∆3+2ā1+2f̄1+2f̄2)( 1

ᾱ3
+ 2ω) .

Then system (4) has at least one positive ω periodic solution.
Proof. Let xi(t) = eyi(t), i = 1, 2, . . . , n. It follows that

dy1(t)

dt
= a1(t)− b1(t)ey1(t) − c1(t)ey2(t)

m1(t)ey2(t)+ey1(t) − h1(t)v1(t),

dy2(t)

dt
= −a2(t) + f1(t)ey1(t−τ1)

m1(t)ey2(t−τ1)+ey1(t−τ1)

− c2(t)ey3(t)

m2(t)ey3(t)+ey2(t) − h2(t)v2(t),

dy3(t)

dt
= −a3(t) + f2(t)ey2(t−τ2)

m2(t)ey3(t−τ2)+ey2(t−τ2) − h3(t)v3(t),

dvi(t)

dt
= −αi(t)vi(t) + βi(t)e

yi(t) i = 1, 2, 3.


t 6= tk,

∆yi = yi(t
+
k )− yi(tk) = ln(1 + dik) i = 1, 2, 3. k ∈ N.

(5)

Set y(t) = (y1(t), y2(t), y3(t))T , v(t) = (v1(t), v2(t), v3(t))T .Let
Y = {U(t) = (y(t)T , v(t)T )T ∈ PC(R,R6

+)|U(t+ ω) = U(t)},
Z = Y ×R6p = {z = (((y(t))T , (v(t))T )T , {(ln(1 +d1k), ln(1 +d2k), ln(1 +d3k))T , 0, 0, 0} |p1 |k =

1, 2, . . . , p},
‖U‖Y = sup

t∈[0,ω]

‖y(t)‖+ sup
t∈[0,ω]

‖v(t)‖, ‖V ‖Z = ‖U‖Y +‖z‖, here U ∈ Y, V = (U, z) ∈ Z, z ∈

R6p
+ ,‖ · ‖ is the corresponding norm in R6p,then Y,Z is a Banach spaces. Let L : DomL −→ Z and

N : Y −→ Z,
LU = (U ′(t),∆U(t1), . . . ,∆U(tp)),

where U ∈ DomL, ∆U(tk) =

(
y(t+k )− y(tk)

0

)
,

and DomL = {U(t)|U(t) = (y(t), v(t))T ∈ Y
⋂
PC1(R,R6)}.

NU = (Φ(t),Ξ1, . . . ,Ξp),

where Φ(t) = (φ1(t), φ2(t), φ3(t), ϕ1(t), ϕ2(t), ϕ3(t))T ,
Ξl = (ln(1 + d1l, ln(1 + d2l), ln(1 + d3l), 0, 0, 0) ∈ R6, l = 1, 2, . . . , p.

129



British Journal of Mathematics & Computer Science 2(3), 126–136, 2012

and φ1(t) = a1(t)− b1(t)ey1(t) − c1(t)ey2(t)

m1(t)ey2(t)+ey1(t) − h1(t)v1(t),

φ2(t) = −a2(t) + f1(t)ey1(t−τ1)

m1(t)ey2(t−τ1)+ey1(t−τ1) −
c2(t)ey3(t)

m2(t)ey3(t)+ey2(t) − h2(t)v2(t),

φ3(t) = −a3(t) + f2(t)ey2(t−τ2)

m2(t)ey3(t−τ2)+ey2(t−τ2) − h3(t)v3(t),

ϕi(t) = −αi(t)vi(t) + βi(t)e
yi(t) i = 1, 2, 3.

Then

kerL = R6, ImL = {V = (U, z1, . . . , zp) ∈ Z|
∫ ω

0

U(s)ds+

p∑
j=1

zp = 0}.

so dim kerL = CodimImL < +∞ and ImL is closed in Z. Therefore L is a Fredholm mapping
of index zero.As to U ∈ Y, V = (U, z1, . . . , zp) ∈ Z, define two projectors P : Y −→ Y and
V : Z −→ Z as

PU =
1

ω

∫ ω

0

U(t)dt, QV = (
1

ω
(

∫ ω

0

U(t)dt+

p∑
j=1

zp), 0, . . . , 0),

then P and Q are continuous projectors such that ImP = kerL, and ImL = kerQ = Im(I −
Q). Furthermore, through an easy computation we find that the inverse Kp of L|DomL

⋂
kerP :

(I − P )X −→ ImL, has the form

KP : ImL −→ DomL
⋂

kerP.

For each V = (U, z1, . . . , zp) ∈ Z, there exists χ ∈ X such that χ′(t) = U(t), t 6= tk, k ∈ N,U(t+k )−
U(tk) = zk,then χ(t) =

∫ t
0
U(s)ds+

∑
t>tk

zk + U(0). And
∫ ω

0
χ(t)dt = 0,for χ ∈ kerP , such that

∫ ω

0

∫ t

0

U(s)dsdt+

∫ ω

0

∑
t>tk

zkdt+ ωU(0) = 0.

Then

Kpz = χ(t) =

∫ t

0

U(s)ds+
∑
t>tk

zk −
1

ω

∫ ω

0

∫ t

0

U(s)dsdt− 1

ω

p∑
j=1

(ω − tk)zk.

Clearly, QN and Kp(I − Q)N are continuous.By using Arzela-Ascoli Theorem, it is not difficult
to prove that QN(Ω̄) and Kp(I − Q)N(Ω̄) are relatively compact for any open bounded set Ω ∈
Y . Therefore N : Y −→ Z is L−compact on Ω̄.

In order to apply Lemma 2.2, we need to find an appropriate open, bounded subsets Ω in
Y . Assume Ω = {U |‖U‖ < H}, here H is a constant to be determined. Corresponding to the
operator equation LU = λNU,U ∈ Y ,λ ∈ (0, 1), we have

dy1(t)

dt
= λ[a1(t)− b1(t)ey1(t) − c1(t)ey2(t)

m1(t)ey2(t)+ey1(t) − h1(t)v1(t)],

dy2(t)

dt
= λ[−a2(t) + f1(t)ey1(t−τ1)

m1(t)ey2(t−τ1)+ey1(t−τ1)

− c2(t)ey3(t)

m2(t)ey3(t)+ey2(t) − h2(t)v2(t)],

dy3(t)

dt
= λ[−a3(t) + f2(t)ey2(t−τ2)

m2(t)ey3(t−τ2)+ey2(t−τ2) − h3(t)v3(t)],

dvi(t)

dt
= λ[−αi(t)vi(t) + βi(t)e

yi(t)],


t 6= tk,

∆yi = yi(t
+
k )− yi(tk) = λ ln(1 + dik) i = 1, 2, 3. k ∈ N.

(6)

Integrating (6) over the interval [0, ω] leads to∫ ω

0

[b1(t)ey1(t) +
c1(t)ey2(t)

m1(t)ey2(t) + ey1(t)
+ h1(t)v1(t)]dt = ā1ω, (7)
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∫ ω

0

[a2(t) +
c2(t)ey3(t)

m2(t)ey3(t) + ey2(t)
+ h2(t)v2(t)]dt =

∫ ω

0

[
f1(t)ey1(t−τ1)

m1(t)ey2(t−τ1) + ey1(t−τ1)
]dt ≤ f̄1ω, (8)∫ ω

0

[a3(t) + h3(t)v3(t)]dt =

∫ ω

0

[
f2(t)ey2(t−τ2)

m2(t)ey3(t−τ2) + ey2(t−τ2)
]dt ≤ f̄2ω, (9)∫ ω

0

αi(t)vi(t)dt =

∫ ω

0

[βi(t)e
yi(t)]dt. (10)

By (7)-(10), we have∫ ω
0
|ẏ1(t)|dt <

∫ ω
0
|a1(t)|dt+

∫ ω
0
|b1(t)ey1(t) + c1(t)ey2(t)

m1(t)ey2(t)+ey1(t) + h1(t)v1(t)|dt
= 2ā1ω.

(11)

∫ ω
0
|ẏ2(t)|dt <

∫ ω
0
|a2(t) + c2(t)ey3(t)

m2(t)ey3(t)+ey2(t) + h2(t)v2(t)|dt+
∫ ω

0
| f1(t)ey1(t−τ1)

m1(t)ey2(t−τ1)+ey1(t−τ1) |dt
≤ 2f̄1ω.

(12)∫ ω

0

|ẏ3(t)|dt <
∫ ω

0

|a3(t) + h3(t)v3(t)|dt+

∫ ω

0

| f2(t)ey2(t−τ2)

m2(t)ey3(t−τ2) + ey2(t−τ2)
|dt ≤ 2f̄2ω. (13)

For (yT , vT )T ∈ Y , there exists ξi, ςi, ξ̂i, ς̂i ∈ [0, ω], i = 1, 2, 3, such that

yi(ξ
−
i ) = inf

t∈[0,ω]
yi(t), yi(ς

+
i ) = sup

t∈[0,ω]

yi(t),

vi(ξ̂
−
i ) = inf

t∈[0,ω]
vi(t), vi(ς̂

+
i ) = sup

t∈[0,ω]

vi(t).

Then from (7) and (11) we have

ā1ω ≥
∫ ω

0

[b1(t)ey1(ξ−1 )]dt = b̄1ωe
y1(ξ−1 ), y1(ξ−1 ) ≤ ln[

ā1

b̄1
],

Then,

y1(t) ≤ ∆1ω + y1(ξ−1 ) +

∫ ω

0

|ẏ1(t)|dt ≤ ln[
ā1

b̄1
] + [∆1 + 2ā1]ω , L1.

By (8)(12), we have

ā2ω ≤
∫ ω

0
[ f1(t)ey1(t−τ1)

m1(t)ey2(t−τ1) ]dt =
∫ ω−τ1
−τ1

[ f1(s+τ1)ey1(s)

m1(t)ey2(s) ]ds

≤
∫ ω−τ1
−τ1

[ f1(s+τ1)e
y1(ξ

−
2 )

m1(t)e
y2(ξ

−
2 )

]ds ≤ eL1 f̄1ω

ml1e
y2(ξ

−
2 )
.

ey2(ξ−2 ) ≤ f̄1

ml
1ā2

eL1 ≤ f̄1ā1

ml
1ā2b̄1

eω(2ā1+∆1), y2(ξ−2 ) ≤ ln[
f̄1ā1

ml
1ā2b̄1

eω(2ā1+∆1)].

Therefore

y2(t) ≤ ∆2ω + y2(ξ−2 ) +

∫ ω

0

|ẏ2(t)|dt ≤ ln[
f̄1ā1

ml
1ā2b̄1

eω(2ā1+∆1)] + ω(∆2 + 2f̄1) , L2.

Similarly, it follows from (9) and (13) that

ey3(ξ−3 ) ≤ f̄2

ml
2ā3

eL2 ,

y3(t) ≤ ∆3ω + y3(ξ−3 ) +

∫ ω

0

|ẏ3(t)|dt ≤ ln[
f̄1f̄2ā1

b̄1ā2ā3ml
1m

l
2

e(2ā1+2f̄1+∆1+∆2)ω] + ω(∆3 + 2f̄2) , L3.
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By (10), we have ∫ ω

0

vi(t)dt ≤
eyi(ς

+
i )

αli

∫ ω

0

βi(t)dt ≤
eyi(ς

+
i )

αli
ωβ̄i,∫ ω

0

αi(t)vi(t)dt ≤ eLi
∫ ω

0

βi(t)dt ≤ eLiωβ̄i, (14)

It follows from (14) that

vi(ξ̂i) ≤ eLi
β̄i
ᾱi
,

∫ ω

0

|v̇i(t)|dt ≤ 2

∫ ω

0

αi(t)vi(t)dt ≤ 2eLiωβ̄i,

Then,

vi(t) ≤ vi(ξ̂i) +

∫ ω

0

|v̇i(t)|dt ≤ eLi [
β̄i
ᾱi

+ 2ωβ̄i] , L̂i.

On the other hand,

ā1ω ≤
∫ ω

0

[b1(t)ey1(ς+1 ) +
c1(t)

m1(t)
+ h1(t)L̂1]dt = b̄1ωe

y1(ς+1 ) +
c̄1ω

ml
1

+ h̄1L̂1ω.

y1(ς+1 ) ≥ ln[
ā1 − c̄1

ml1
− h̄1L̂1

b̄1
].

By (11),we have

y1(t) ≥ y1(ς+1 )−
∫ ω

0

|ẋ1(t)|dt ≥ ln[
ā1 − c̄1

ml1
− h̄1L̂1

b̄1
]− 2ā1ω , l1.

From (8) we have

f̄1ωe
y1(ς

+
2 )

mu1 e
y2(ς

+
2 )

+e
y1(ς

+
2 )

≤
∫ ω−τ1
−τ1

f1(s+τ1)ey1(s)

m1(s)ey2(s)+ey1(s) ds

=
∫ ω

0

f1(t)ey1(t−τ1)

m1(t)ey2(t−τ1)+ey1(t−τ1) dt ≤ ā2ω + c̄2ω

ml2
+ h̄2L̂2ω,

ey2(ς+2 ) ≥
f̄1 − ā2 − c̄2

ml2
− h̄2L̂2

mu
1 (ā2 + c̄2

ml2
+ h̄2L̂2)

ey1(ς+2 ) ≥
f̄1 − ā2 − c̄2

ml2
− h̄2L̂2

mu
1 (ā2 + c̄2

ml2
+ h̄2L̂2)

el1 ,

y2(ς+2 ) ≥ ln[
f̄1 − ā2 − c̄2

ml2
− h̄2L̂2

mu
1 (ā2 + c̄2

ml2
+ h̄2L̂2)

el1 ],

y2(t) ≥ y2(ς+2 )−
∫ ω

0

|ẏ2(t)|dt ≥ ln[
f̄1 − ā2 − c̄2

ml2
− h̄2L̂2

mu
1 (ā2 + c̄2

ml2
+ h̄2L̂2)

el1 ]− 2f̄1ω , l2.

Similarly, it follows from (9) that

y3(ς+3 ) ≥ ln[
f̄2 − ā3 − h̄3L̂3

mu
2 (ā3 + h̄3L̂3)

el2 ],

y3(t) ≥ y3(ς+3 )−
∫ ω

0

|ẏ3(t)|dt ≥ ln[
f̄2 − ā3 − h̄3L̂3

mu
2 (ā3 + h̄3L̂3)

el2 ]− 2f̄2ω , l3.

By (10), we have

vi(ς̂)ωᾱi ≥
∫ ω

0

αi(t)vi(t)dt ≥ eliωβ̄i.
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vi(t) ≥ vi(ς̂i)−
∫ ω

0

|v̇i(t)|dt ≥
eli β̄i
ᾱi
− 2ωβ̄i , l̂i.

Then, for λ ∈ (0, 1),
li ≤ yi(t) ≤ Li, l̂i ≤ vi(t) ≤ L̂i. (15)

Clearly , li, Li, l̂i, L̂i, i = 1, 2, 3 are independent of λ .
We take Ω = {U ∈ Y |‖U‖ < H}, here H is taken sufficiently large such that H > max

1≤i≤3
{|li|+

|Li|+ |l̂i|+ |L̂i|}. Now we check the conditions of Lemma 1. By (15),one can conclude that for each
λ ∈ (0, 1), y ∈ ∂Ω, LU 6= λNU .

considering to U = (y1, y2, y3, v1, v2, v3)T ∈ R6 of the system of algebraic equations
ā1 − b̄1ey1 − µ( c̄1e

y2

m̄1e
y2+ey1

+ h̄1v1) = 0,

−ā2 + f̄1e
y1

m̄1e
y2+ey1

− µ( c̄2e
y3

m̄2e
y3+ey2

+ h̄2v2) = 0,

−ā3 + f̄2e
y2

m̄2e
y3+ey2

− µh̄3v3 = 0,

ᾱivi − β̄ieyi = 0, i = 1, 2, 3.

(16)

here µ ∈ [0, 1]. For any µ ∈ [0, 1], the solution (yT , vT )T of algebraic equations (16) satisfies

li ≤ yi ≤ Li, l̂i ≤ vi ≤ L̂i. (17)

For any U ∈ ∂Ω
⋂

kerL, U is a constant vector in R6 with ‖U‖ = H, we have

QNU =




ā1 − b̄1ey1 − c̄1e
y2

m̄1e
y2+ey1

− h̄1v1

−ā2 + f̄1e
y1

m̄1e
y2+ey1

− c̄2e
y3

m̄2e
y3+ey2

− h̄2v2

−ā3 + f̄2e
y2

m̄2e
y3+ey2

− h̄3v3,

(ᾱivi − β̄ieyi)3×1

,


0
0
...
0

, . . . ,


0
0
...
0


 By(17), for any

U ∈ ∂Ω
⋂

kerL, we have QNU 6= 0.
In order to calculate Brouwer Degree, we need make a homotopy mapping.

G(µ,U) = µQNU + (1− µ)H(U), µ ∈ [0, 1],

H(U) =


ā1 − b̄1ey1

−ā2 + f̄1e
y1

m̄1e
y2+ey1

−ā3 + f̄2e
y2

m̄2e
y3+ey2

,

(ᾱivi − β̄ieyi)3×1

 , U = (yT , vT )T .

From (17), for any U ∈ ∂Ω
⋂

kerLandµ ∈ [0, 1], we know G(µ,U) 6= 0. Because of ImQ =
kerL, we take J = I, So, due to homotopy invariance theorem we obtain

deg(JQN,Ω ∩KerL, 0) = deg( QN,Ω ∩ kerL, 0)
= deg( H,Ω ∩ kerL, 0)

= deg( ā1 − b̄1ey1 ,−ā2 + f̄1e
y1

m̄1e
y2+ey1

,−ā3 + f̄2e
y2

m̄2e
y3+ey2

,

ᾱ1v1 − β̄1e
y1 , ᾱ2v2 − β̄2e

y2 , ᾱ3v3 − β̄3e
y3 ,Ω ∩KerL, 0),

and because the following algebraic equations has a unique solution,
ā1 − b̄1z1 = 0,

−ā2 + f̄1z1
m̄1z2+z1

= 0,

−ā3 + f̄2z2
m̄2z3+z2

= 0,

ᾱiui − β̄izi = 0, i = 1, 2, 3.

z∗1 =
ā1

b̄1
, z∗2 =

(f̄1 − ā2)ā1

m̄1ā2b̄1
, z∗3 =

(f̄2 − ā3)(f̄1 − ā2)ā1

m̄1m̄2ā2ā3b̄1
, u∗i =

β̄iz
∗
i

ᾱi
.
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Then there is not difficult to know that H(U) = 0 has also a unique solution, we obtain

deg(H,Ω ∩ kerL, 0) = sign

∣∣∣∣∣∣∣∣∣∣∣∣∣

−b̄1 0 0 0 0 0
f̄1m̄1z

∗
2

(m̄1z
∗
2+z∗1 )2

−f̄1m̄1z
∗
1

(m̄1z
∗
2+z∗1 )2

0 0 0 0

0
f̄2m̄2z

∗
3

(m̄2z
∗
3+z∗2 )2

−f̄2m2y
∗
2

(m̄2z
∗
3+z∗2 )2

0 0 0

−β̄1 0 0 ᾱ1 0 0
0 −β̄2 0 0 ᾱ2 0
0 0 −β̄3 0 0 ᾱ3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= sign| − ᾱ1ᾱ2ᾱ3 b̄1f̄1f̄2m̄1m̄2z

∗
1z

∗
2

(m̄1z
∗
2+z∗1 )2(m̄2z

∗
3+z∗2 )2

| = −1 6= 0.

By now we have proved that Ω satisfies all the requirements in Lemma 1. Hence, (5) has at
least one ω−periodic solution ((y∗(t))T , (v∗(t))T )T . Accordingly, system (4) has at least one
ω−periodic solution ((x∗(t))T , (v∗(t))T )T = ((ey

∗(t))T , (v∗(t))T )T with strictly positive components.
This completes the proof.

3.1 Global asymptotic stability of periodic solutions
Theorem 2 In addition to the condition of Theorem 1, assume further that

bl >
fm1

ml
1l2 + l1

+ βu1 ,
cl1

mu
1L2 + L1

>
fm2

ml
2l3 + l2

+ βu2 ,
cl2

mu
2L3L2

> βu3 , hli + αli > 0

Then system (4) has a unique positive ω−periodic solution which is globally asymptotically stable.
Proof. Based on the conclusion of Theorem 1, we need only to verify the globally asymptotically

stability of positive periodic solutions of (4). Let ((x∗(t))T , (v∗(t))T )T be a positive ω−periodic
solution of system (4). and ((x(t))T , (v(t))T )T be any positive solution of system (4). We define a
Lyapunov function

V (t) =
3∑
i=1

[| lnxi(t)− lnx∗i (t)|+ |vi(t)− v∗i (t)|]

+
∫ t
t−τ1

f1(t)

ml1l2+l1
|x1(u)− x∗1(u)|du+

∫ t
t−τ2

f2(t)

ml2l3+l2
|x2(u)− x∗2(u)|du.

When t = tk, k ∈ N ,

V (tk)− V (t−k ) =

3∑
i=1

[| ln(1 + bik)xi(t
−
k )− ln(1 + bik)x∗i (t

−
k )| − | lnxi(t−k )− lnx∗i (t

−
k )|] = 0,

then V (t) is a a continuous function.
When t 6= tk, k ∈ N , calculating the upper right derivative of V (t) along solutions of system

(4),we derive

D+V (t) ≤ [−bl +
fm1

ml1l2+l1
+ βu1 ]|x1(u)− x∗1(u)|+ [− cl1

mu1L2+L1
+

fm2
ml2l3+l2

+ βu2 ]|x2(u)− x∗2(u)|

+[− cl2
mu2L3+L2

+ βu3 ]|x3(u)− x∗3(u)|+
3∑
i=1

[(−hli − αli)|vi(t)− v∗i (t)|],

By assumption conditions of theorem 2, there exists a constant

γ = min{bl − fm1
ml

1l2 + l1
− βu1 ,

cl1
mu

1L2 + L1
− fm2
ml

2l3 + l2
− βu2 ,

cl2
mu

2L3L2
− βu3 , hli + αli} > 0,

such that

D+V (t) ≤ −γ
3∑
i=1

[|xi(t)− x∗i (t)|+ |vi(t)− v∗i (t)|]. (18)
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Then

γ

3∑
i=1

∫ t

0

[|xi(t)− x∗i (t)|+ |vi(t)− v∗i (t)|]dt ≤ V (0)− V (t), t ≥ 0,∫ ∞
0

[|xi(t)− x∗i (t)|dt <∞,
∫ ∞

0

[|vi(t)− v∗i (t)|dt <∞, i = 1, 2, 3.

Therefore, |xi(t)− x∗i (t)| and |vi(t)− v∗i (t)| are bounded on [0,∞), and it is easy to see that their
derivative are also bounded. By Barbalat’s lemma(lemma 2), we conclude that

lim
t→∞

|xi(t)− x∗i (t)| = 0, lim
t→∞

|vi(t)− v∗i (t)| = 0, i = 1, 2, 3. (19)

Further, there exists a positive number M such that | lnxi(t)− lnx∗i (t)| ≥
|xi(t)−x∗i (t)|

M
, Thus,

V (t) ≥ 1

M

3∑
i=1

[|xi(t)− x∗i (t)|+ |vi(t)− v∗i (t)|].

Combining (18) and (19), we have completed that system (4) has a unique positive ω−periodic
solution which is globally asymptotically stable. This completes the proof.

Note: The results in this paper can be extended to a n species food chain model with ratio-
dependent functional response and feedback controls.

4 CONCLUSIONS
This paper has considered a food chain system with ratio-dependent functional response, pulse,
delays and feedback controls. The sufficient conditions of the existence and global asymptotic stability
of positive periodic solution are derived. The article provides a good theoretical basis for the further
study for the food chain system with ratio-dependent functional response and feedback controls.
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