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Extensions and new inequalities concerning Steffensen's inequality are presented.
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1 Introduction

Steffensen's inequality reads as follows:

Theorem 1.1 Assume that two integrable functions gandf are defined on the interval ),( ba ,

that is f non- increasing and that 1)(0  tg in ),( ba .  Then
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dttg )( .

As an example to Steffensen’s inequality, we can take the following:
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t
tf to have

.46.034.032.0 

Bellman(1950) gives the following generalization via new proof .

Theorem 1.2 Let )(tf be a non-negative and monotone decreasing in ],[ ba and



British Journal of Mathematics & Computer Science 2(3), 176-186, 2012

177

},[ baLp and let 0)( tg in ],[ ba and  
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dttg 1)( ,  where 1p and
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It may be mentioned that Bellman’s result is not correct as has been mentioned by Godunova and
Levin (1968), A generalization in a different sense is made for .1p Inequality for

,1p which similar to inequality (2) is given in Berch ((1973),

Pecaric (1982), however, through some modification, gives the following result

Theorem 1.3 Let ),(]1,0[: f be a nonnegative and non-increasing function and

let ]1,0[:g be an integrable function such that 1)(0  tg for each ]1,0[t . If

,1p then
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The aim of this paper is to give a generalization of Theorem 1.2, as well as other new results
concerning Steffensen's inequality.

2 Results

The following theorem gives a generalization of Theorem 1.2.

Theorem 2.1 Let ],[:, bahf be nonnegative functions with f non-increasing and

let ],[: bag be an integrable function such that )()(0 1 thtgLp   for

each ],[ bat , where 
b

a

dttgL .)( If ,1p then
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where .)(
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pLdtth

Proof. Since by Hölder’s inequality
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then, it is sufficient to prove that
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As an example, we can take:
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Remark. Theorem 1.2 follows from Theorem 2.1 by putting
\

.1)(,1,0  thba
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Corollary 2.2. Let ],[:, bahf be nonnegative functions with f non-increasing and

let ],[: bag be an integrable function such that )()(0 1 thtgLp   for

each ],[ bat , where 
b
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dttgL .)( If ,1p then
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In particular, if  g  is non-increasing, then
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Proof. We have via Theorem 2.1,
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The following gives the inequality for the case .10  p

Theorem 2.3. Let ],[:, bahf be nonnegative functions and f non-decreasing and

let ],[: bag be an integrable function such that )()(0 1 thtgLp   for each

j ],[ bat , where 
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4 Steffensen’s Inequality via Double Integrals

Theorem 3.1 Let  ],[],[:, dcbahf be nonnegative functions and f non-increasing

w.r.t s and let  ],[],[: dcbag be an integrable function such that
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Proof. Since for any non-negative function )(xm , we have, by Hölder’s inequality
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then,  we have via above and Theorem 2.1,
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Theorem 3.2 Let  ],[],[:, dcbahf be nonnegative functions and f non-increasing

w.r.t  s and t,  let  ],[],[: dcbag be an integrable function such that
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5 Steffensen’s Inequality via Hölder’s, Minkowski’s and Hardy-
Hilbert’s Inequalities

Theorem 4.1. Let the conditions of Theorem 2.1 are satisfied. Let ,1p
1/1/1  qp .  Then
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Proof. We have, by Theorem 2.1, via Hölder’s inequality
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Theorem 4.2. . Let the conditions of Theorem 2.1 are satisfied. Let ,1p
1,1/1/1  rqp .  Then
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Proof. We have, via Minkowski’s inequality
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Hardy-Hilbert’s integral inequality has been extended by Yang (2001) via presenting the
following result
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where ,
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function.

Theorem 4.3 Let the conditions of Theorem 2.1 are satisfied for both f and g with )(1 xfx p ,

)(1 xgx q , .,0,1)(  bath Let ,1p 1/1/1  qp ,  qp,min2 .

Then

dxdy
yx

ygxgyhxf qp

 
 

0 0

11

)(

)()()()(


2

2

2

2

/1

0

)1(

/1

0

)1( )()()(

q

qq

p

pp dxxhxdxxfxpk 















  







 (14)

Proof. We have via Hardy-Hilbert’s integral inequality
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6 Conclusion

Three results are given as generalizations of Steffensen’s inequality. Other two results concerning
inequalities are similar to Steffensen’s inequality but with double integrals. As well three other
results are similar to Steffensen’s inequalities via Hölder’s, Minkowski’s and Hardy-Hilbert’s
inequalities.
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