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This paper is based on the research hypothesis that the development of the

digital economy can enable urban carbon emission reduction. We use the panel

data of 275 prefecture-level cities in China from 2011 to 2019, the static panel-

data interaction-effect model, and the panel-threshold model to verify the non-

linear impact mechanism and heterogeneity of the digital economy in industrial

structure upgrading affecting urban carbon emissions. The results demonstrate

the following insights. First, due to the heterogeneity of industries, an increase in

the proportion of the tertiary industry cannot reduce urban carbon emissions.

Second, the digital economy has an inverted U-shaped adjustment effect on the

process of industrial structure upgrading, affecting urban carbon emissions.

Consequently, the integration and development of the tertiary industry and the

digital economy can achieve urban carbon emission reductions. Finally, the

digital economy has a double threshold effect on the process of industrial

structure upgrading, affecting urban carbon emissions. The carbon-emission-

reduction effect of industrial structure upgrading only appears after the scale of

the digital economy crosses the first threshold. As the scale of the digital

economy continues to increase, the carbon-emission-reduction effect of

industrial structures is likely to continue increasing significantly. We

recommend that local governments achieve urban carbon reduction by

encouraging the development of high-end service industries and

strengthening digital infrastructure.
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carbon-emission intensity, industrial structure, digital economy, panel thresholdmodel,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fevo.2023.1231855/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1231855/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1231855/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1231855/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.1231855&domain=pdf&date_stamp=2023-08-28
mailto:czh2017@nefu.edu.cn
https://doi.org/10.3389/fevo.2023.1231855
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/science#editorial-board
https://www.frontiersin.org/journals/science#editorial-board
https://doi.org/10.3389/fevo.2023.1231855
https://www.frontiersin.org/journals/science


Jiang et al. 10.3389/fevo.2023.1231855
1 Introduction

The global warming caused by carbon emissions is seriously

threatening human survival and sustainable development; it is one of

the major global challenges facing humanity today. Reducing carbon

emissions and responding to increasingly severe climate change have

become key issues of common concern to the international

community. China’s industry accounts for a relatively large

proportion of the national economy, with problems of high energy

consumption, high emissions, and low efficiency coexisting.

According to data from the National Energy Administration and

the Bureau of Statistics of China, China’s energy consumption and

carbon emissions in 2020 were 4.98 billion tce and 10.25 billion t

CO2e, making China the country with the largest energy

consumption and carbon emissions in the world. China’s energy

consumption per unit of gross domestic product (GDP) is 3.4tce/

10,000 US dollars, and its carbon emissions per unit of GDP are 6.7t/

10,000 US dollars, which are 1.5 times and 1.8 times the world

average annual level, respectively. As such, China is not only one of

the world’s largest emitters (Irfan et al., 2021) of greenhouse gases but

also plays a crucial role in global climate governance. It is urgent that

green development characterized by energy conservation and

emission reduction be promoted. The 2022 report of the 20th

National Congress of the Communist Party of China emphasizes

that promoting green and low-carbon economic and social

development is the key to achieving high-quality development. In

this process, it is necessary to speed up the adjustment and

optimization of industrial, energy, and transportation structures;

improve the market-oriented allocation system of resources and

environmental elements; accelerate the research and application of

advanced energy-saving and carbon-reducing technologies; advocate

green consumption; and promote the formation of green and low-

carbon production patterns and lifestyles. The traditional view holds

that the most direct path to carbon emission reduction is energy-

utilization technology progress and energy-consumption structure

adjustment (Lin and Jiang, 2009; Sarkodie and Strezov, 2019; Li and

Wang, 2022). However, pure technological progress cannot solve the

problem of carbon emissions caused by energy consumption. On the

contrary, technological progress may create an “energy rebound

effect” (Sorrell et al., 2020). Considering China’s resource

endowment status of being rich in coal, poor in oil, and low in gas,

it will likely be difficult to change the energy consumption structure

dominated by coal for many years (Lin and Li, 2015). Determining

how to reduce excessive dependence on energy through industrial

upgrading and industrial structure adjustment is the top priority. The

research has shown that, based on accelerating the application and

innovation of carbon-emission-reduction technologies, industrial

restructuring is an effective way for China to achieve carbon

emission reduction.

Following the traditional agricultural economy and the modern

industrial economy, the digital economy, as a new economic form, has

comprehensively reshaped and upgraded social production methods

and people’s consumption concepts. In addition, the digital economy

has provided a key engine and driving force for China’s economy to

achieve high-quality development. Simultaneously, the digital
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economy is also an important driver and catalyst for industrial

structure upgrading (Xuan, 2017; Li et al., 2021). The digital

economy and upgrading of industrial structures promote one

another, and their integrated development is likely to solve the

problems of high pollution and emissions caused by energy

dependence and the improper allocation of resources. According to

the “White Paper on China’s Digital Economy Development”

(CAICT, 2021), China’s digital economy will likely achieve a growth

rate of more than three times the GDP from 2020, accounting for

38.6% of the GDP, and its scale has also achieved a historic

breakthrough in reaching 39.2 trillion yuan. This demonstrates that

the digital economy has become a fundamental driving force behind

the steady growth of China’s economy. In addition, the scale of digital

industrialization and industrial digitization in 2020 reached 7.5 trillion

yuan and 31.7 trillion yuan, respectively, accounting for 19.1% and

80.9% of the digital economy and 7.3% and 31.2% of the GDP. Some

literature claims the digital economy can not only integrate and

develop with traditional industries but also integrate and innovate

with the fields of resources, energy utilization, and environmental

protection (Shi, 2022). Whether the digital economy plays an effective

role in the realization of China’s “dual carbon” goals and how the role

operates are questions worth exploring.

Scholars have conducted considerable research on the impact

of changes in industrial structures on carbon emissions. Early

scholars mainly focused on the distribution of production factors

among different industries and related relationships and their

impact on carbon emissions (Zhang and Choi, 2013; Lin and

Benjamin, 2017; Hu and Sun, 2022). In this type of research, the

measurement of industrial structures generally uses the proportion

of the secondary or tertiary industry as a proxy variable. This

research has shown that an increase in the proportion of the

tertiary industry is conducive to the improvement of regional

carbon emissions (Pao et al., 2011; Dong et al., 2018). Following

this work, the research perspectives of scholars shifted from the

proportion of industrial output to the impact of the evolution and

upgrading of industrial structures on carbon emissions (Du et al.,

2019). Such studies explored the evolution of primary, secondary,

and tertiary industries in addition to changes in carbon-emission

intensity during the process of industrial evolution. In other

words, they analyzed the impact of advanced industrial

structures on carbon emissions (Zhang et al., 2020; Wu et al.,

2021; Xu et al., 2021). To explain the impact of industrial

restructuring on carbon emissions more comprehensively, some

scholars have begun to draw on the ideas of the Theil index and

Lorenz curve to construct the industrial structure rationality and

industrial structure high-level index (Zhang et al., 2022). This

helps such scholars explore industrial restructuring’s impact on

carbon emissions from multiple perspectives, such as industry

proportion, concentration, and reasonable distribution (Liang

et al., 2021; Zhang and Xu, 2022).

In recent years, however, the digital economy has flourished and

become a new engine of economic growth, and scholars have now

begun to study the impact of the digital economy on carbon

emissions. Research on the impact of digital economy

development on regional carbon emissions is mainly carried out
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from three perspectives. The first is to explore the impact of the

digital economy on high-quality economic development from a

macro perspective and based on qualitative research methods (Li

et al., 2022; Zhang et al., 2022; Zhu X et al. 2022). The second relates

to perspectives of technological progress (Kuang et al., 2020),

urbanization processes (Li et al., 2021), inclusive finance (Dong

et al., 2022), imports and exports (Ma et al., 2022; Zhong et al.,

2022), and government intervention (Lin and Huang, 2022). These

studies explore the impact of the path of digital economy

development on regional carbon emissions. Finally, the third

perspective mainly revolves around the energy-saving and

emission-reduction potential of the digitization of industrial

processes (Zhu Z et al., 2022; Wang et al., 2022).

In summary, scholars have conducted considerable and valuable

research on the impacts of industrial structures and the digital

economy on carbon emissions, which has laid a solid theoretical

foundation for the writing of this paper. However, the digital

economy does not directly affect carbon emissions. Instead, it

indirectly affects carbon emissions through intermediate variables

such as industrial structure and technological progress (Wang et al.,

2019). As such, the aim of this paper is to investigate the non-linear

effects and regional heterogeneity of the digital economy’s impact on

industrial upgrading and urban carbon emissions. This study focuses

on 275 prefecture-level cities in China, where we initially computed

the carbon-emission intensity of each city from 2011 to 2019 and

examined its spatiotemporal pattern evolution. Next, we developed a

panel-data fixed-effects model, which included interactive terms, to

investigate the joint effects of the digital economy and industrial

upgrading on changes in urban carbon emissions. Furthermore, we

constructed a panel-threshold model to explore the threshold effect of

the digital economy on the influence of industrial upgrading on

urban carbon emissions and to analyze the heterogeneity of this

impact in different threshold ranges. Finally, we proposed targeted

policy recommendations, based on our conclusions, to effectively

facilitate the transformation of urban economic growth and industrial

structure upgrading, thus promoting the attainment of the carbon

peaking and carbon neutrality goals. This paper answers the

following three questions: First, does the digital economy have a

regulating effect on the carbon-emission-reduction effect of industrial

structure upgrading? Second, if there is a regulating effect, how do we

determine the threshold interval of its effect? Third, within the range

of different threshold intervals, what kind of heterogeneity exists in

the direction and strength of the effects?

In addition, this study demonstrates innovation in three main

areas. First, it verifies, from both theoretical and empirical

perspectives, the moderating effect of the digital economy on the

relationship between industrial upgrading and urban carbon

emissions. This expands the research field of the low-carbon

economy by considering the digital economy as a factor

influencing carbon emissions. Second, this study uses a panel-

threshold model to test the threshold effect of the digital economy

on the relationship between industrial upgrading and urban carbon

emissions and explore the mechanism and heterogeneity of this

relationship in different threshold ranges. Third, this paper

challenges how existing research has primarily focused on the

impact of industrial upgrading on urban carbon emissions and
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has only provided theoretical guidance at the industry level for

carbon emission reduction. This study instead highlights the joint

impact of the digital economy and industrial upgrading on carbon

emissions and proposes differentiated policy recommendations to

promote urban carbon reduction through industrial upgrading at

different levels of digital economic development.

The remaining sections of this article are structured as follows.

Section 2 introduces the theoretical mechanism and research

hypotheses. Section 3 outlines the methods and data utilized in

this study. Section 4 presents and discusses the empirical analysis

results. Section 5 discusses the research findings. The final section

summarizes the conclusions and presents policy implications.
2 Theoretical analysis and
hypothesis development

2.1 Industrial structure upgrading and
carbon emissions

Existing research on the upgrading of industrial structures,

whether from the perspective of industrial structure rationality or

the industrial structure high-level index, is conducted around the

proportion of the added value of the three industries. Scholars

believe that the core content of industrial structure adjustment and

upgrading is the joint transformation of primary and secondary

industries into the tertiary industry, which ultimately leads to an

increase in the proportion of the tertiary industry. In China, heavy

industry means that it is the leading industry that provides the

material and technological foundation for all sectors of the national

economy. Among the three industries, the secondary industry has

the most characteristics of energy dependence and carbon-emission

intensity. Therefore, the upgrading of industrial structures helps to

reduce the proportion of the secondary industry, especially heavy

industry such as steel, energy, chemicals, and materials, and reduce

the massive consumption of traditional fossil energy (Lin and Du,

2015). The development of China’s economy in recent years has

mainly been driven by investment, and its emphasis on industrial

output inevitably increases its dependence on the input of

production factors. This eventually leads to the characteristics of

“high pollution, high energy consumption and low efficiency” in

economic growth (Crompton and Wu, 2005). Encouraging and

promoting the development of the tertiary industry can help reduce

energy consumption in the production process, break through the

rigid demand for energy in the economic system, improve the

quality of economic growth, and reduce energy intensity and total

carbon emissions. Moreover, the previous development of China’s

industry chose a capital-biased path, resulting in the industrial

system’s high dependence on chemical energy and hindering the

optimization of energy consumption structures and the use of low-

carbon clean energy (Wang et al., 2022). Vigorously developing the

service industry, especially the producer- and technology-service

industries, can promote the service-oriented transformation of

industrial enterprises, improve production efficiency, reduce

energy consumption per unit of product while producing high-

value-added products, and ultimately achieve energy conservation
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and emission reduction. Based on the above analysis, this paper

presents the following hypothesis:

H1: An increase in the proportion of the tertiary industry will

help reduce the energy dependence of the economic system and reduce

the intensity of carbon emissions.
2.2 Tertiary industry heterogeneity and
carbon emissions

Existing studies believe that the carbon-emission-reduction

effect of industrial structure upgrading is also related to the

nature of subdivided industries within the tertiary industry (Sun

et al., 2021). According to the gap in technology intensity and per

capita output value of different industries, the tertiary industry is

usually divided into high-end, middle-end, and low-end industries.

High-end industries generally include the financial industry, the

computer service and software industry, technical services, and the

geological prospecting industry. Middle- and low-end industries

include transportation and postal services, wholesale and retail,

leasing, and business services. Furthermore, different types of

industries have different service targets. High-end industries

generally target technology-intensive and high-end manufacturing

industries, while low-end industries generally target labor-intensive

and capital-intensive manufacturing industries. The varied

proportions of different types of industries in the tertiary industry

can directly affect the carbon-emission-reduction effect of the

tertiary industry. The technology-intensive and high-end

manufacturing industry is at the upstream end of the industrial

chain, and the energy consumption and carbon-emission intensity

per unit product are both relatively low. Therefore, if such

industries account for a large proportion of the tertiary industry,

the “economy of scale effect,” “industrial structure upgrading

effect,” and “technology spillover effect” of industrial structure

upgrading may be effectively introduced (Crompton and Wu,

2005). An increase in the proportion of the tertiary industry,

especially the rapid development of the environmental

governance industry and the public facilities management

industry, is conducive to reducing the cost of environmental

governance for enterprises. This makes it possible to centralize

carbon-emission control and helps reduce carbon-emission

intensity (Liang et al., 2021). In contrast, labor- and capital-

intensive industries are at the middle and low ends of the

industrial chain, respectively, and their energy consumption and

carbon-emission intensity per unit of product are both relatively

high. The increasing share of such industries in the tertiary sector is

not conducive to carbon reduction and even inhibits the reduction

of carbon-emission intensity (Wu et al., 2021). Therefore, this paper

proposes the following hypothesis:

H2: The carbon-emission-reduction effect of the tertiary

industry is affected by the heterogeneity of its internal

industries. A large proportion of high-end industries will help

reduce carbon-emission intensity; conversely, a large proportion of

low-end industries will inhibit the reduction of carbon-

emission intensity.
Frontiers in Ecology and Evolution 04
2.3 Industrial structure upgrading, digital
economy, and carbon emissions

In contrast to traditional industries, the digital economy, as an

emerging economic form, has an impact on the macroeconomic

system through its technical and structural attributes (Chen et al.,

2023). In addition to the widespread discovery that the

development of the digital economy has accelerated an increase in

the proportion of tertiary industries (Xu et al., 2022), within the

tertiary industry, integration of the digital economy will likely

reduce both the energy consumption per unit of product and the

carbon-emission intensity of the industry, regardless of whether it

serves low-end or high-end industries (Dong et al., 2022). As an

emerging economic element, the digital economy has optimized or

reshaped the way value is created after being fully integrated into

the tertiary industry. For instance, it accelerates the process of

upgrading industrial structures and reduces the carbon emissions of

the secondary industry. Moreover, it directly reduces the carbon

emissions of the tertiary industry. Therefore, it is expected that a

greater level of digital industrialization and industrial digitization

will lead to a larger scale of the digital economy and be more

conducive to the exploration and carbon reduction effects of

industrial structure upgrading.

First, the larger scale of the digital economy makes it more

conducive to the energy-saving development of the tertiary

industry. From the perspective of technical attributes of the

digital economy, the rapid development of information

technologies such as big data, cloud computing, and 5G

intelligence has improved the speed and accuracy of business

connections among enterprises in different industries and

significantly reduced transaction and time costs among

enterprises (Wen et al., 2022). For example, the rapid

development of cloud computing and the Internet of Things has

improved the calculation accuracy of transportation nodes and

routes in the logistics industry. The rapid connection between the

transportation industry and other industries, as well as the

optimization of transportation routes, is expected to greatly

reduce energy consumption during transportation and carbon-

emission intensity (Zhao et al., 2022). Furthermore, the larger

scale of the digital economy makes it more conducive to the

development of environmentally friendly industries. Due to the

structural attributes of the digital economy, the integration of

information technology has accelerated the transformation and

upgrading of traditional industries from extensive development to

an environmentally friendly direction. Within the tertiary industry,

industrial structures have changed from being labor and capital

intensive to being technology intensive (Wen et al., 2023).

Simultaneously, the digital economy has also spawned many

emerging industries, most of which are technology-oriented and

environmentally friendly while also promoting sustainable

development. Emerging industries not only alleviate social

employment pressure but also meet the requirements of the era of

green development (Wang et al., 2022).

In summary, the development of the digital economy not only

reduces the energy consumption of low-end industries at the
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technical level but also reduces carbon emissions. At the structural

level, the development of the digital economy can continuously

promote the optimization of the internal industry structure of the

tertiary industry. The optimization of industry structures

significantly enhance the economic benefits per unit of energy,

which then plays a role in promoting and improving carbon-

emission intensity. Figure 1 has been drawn to describe the

mechanism of the digital economy’s impact on carbon emissions.

In view of these insights, this paper posits the following

theoretical hypothesis:

H3: The carbon-emission-reduction effect of the tertiary industry

is affected by the digital economy, and the carbon-emission-reduction

effect of the digital economy can only appear when it reaches a

certain scale.

In the following sections, we will use econometric methods to

verify the validity of the above research hypothesis. Briefly, we will

use the panel-threshold model to examine the nonlinear

mechanism by which the digital economy moderates the impact

of industrial structure on carbon emissions. Additionally, a series of

robustness tests will be performed.
3 Materials and methods

3.1 Baseline regression model

According to the previous theoretical analysis, the scale of the

digital economy has an impact on the carbon-emission-reduction

effect of the tertiary industry. This section first constructs a static

panel-data model to test whether the scale of the digital economy

has a moderating effect on the carbon emission reduction of the

tertiary industry. To reduce the influence of heteroscedasticity on

the model, the following logarithmic processing is performed on all

variables:

lnCIit = a0 + a1lnStrit + biXit + mi + nt + ϵit (1)

lnCIit = a0 + a1lnStrit + a2lnDigitalit + a3lnStrit � lnDigitalit

+ biXit + mi + nt + ϵit (2)

Among these variables, i represents the city, t represents the

year, ϵit represents the random disturbance item, CIit represents the

carbon-emission intensity, Strit represents the industrial structure,

Xit represents a set of control variables,  mi represents regional fixed

effects, and nt represents a fixed time effect. Formula (1) is a basic

econometric model that simply examines the impact of industrial

structure on carbon-emission intensity. To verify the regulating

effect of the digital economy on the carbon-emission-reduction

effect of the industrial structure, formula (1) is extended to include

the interaction term between the digital economy and the industrial

structure. In formula (2), lnDigitalit represents the scale of the

digital economy, lnStrit � lnDigitalit represents the interaction

effect between the scale of the digital economy and the industrial

structure, mi represents regional fixed effects, and nt represents a

fixed time effect.
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3.2 Panel-threshold regression model

If the scale of the digital economy has a regulating effect on the

carbon-emission-reduction effect of the industrial structure, a

reasonable range for the scale of the digital economy must be

determined. For this reason, this section continues to build a panel-

threshold regression model to examine the threshold value of the

different adjustment effects of the scale of the digital economy on

the carbon-emission-reduction effect of the industrial structure. The

regression equation is as follows:

lnCIit = a0 + a11lnStrit � d(q ≤ Digitalit) + a12lnStrit

� d(q > Digitalit) + biXit + ϵit

(3)

Compared with formulas (1) and (2), the meaning of the

response variable in formula (3) has changed. Among the

formula’s variables, d( : ) is the indicative function, Digitalit is the

threshold variable, and a11 and a12 represent the elastic coefficients

of the industrial structure to carbon-emission intensity at q ≤

Digitalit and q > Digitalit , respectively. If the threshold is chosen

reasonably, the estimates or signs of a11 and a12 should be

significantly different. Formula (3) only analyzes the single-

threshold effect. Given that the analysis process of multiple

thresholds is similar to the single-threshold effect, it is not

repeated. In the empirical analysis section, this paper conducts

multiple-threshold verification and analysis.
3.3 Variable selection and description

(1) Interpreted variable: carbon-emission intensity (CI)
This paper uses the ratio of urban carbon emissions to GDP to

represent carbon-emission intensity. It is worth emphasizing that

urban carbon emissions are obtained according to the latest energy-

data revisions (2015) of the National Bureau of Statistics of China.

These values are then combined with the official websites of local

energy bureaus from 2011 to 2018. Due to the use of different

methods, the results obtained by using the apparent emissions

accounting method and the sectoral method sometimes do not

fully align.

(2) Core explanatory variable: industrial structure (Str)
Given that the explained variable in this paper is carbon-

emission intensity, a high level of industrial structure is not

selected to ensure the consistency of the data quality. However,

the proportion of the added value, in GDP, of the tertiary industry

in prefecture-level cities over the years is selected as the

proxy variable.

(3) Threshold variable: digital economy (Digital)
Referring to the research results of Guo et al. (2020), based on

the data of the inclusive finance index, the number of people in the

computer service and software industry of information

transmission, the number of internet broadband access users, the

number of mobile phone users, and the telecom business income of

each prefecture-level city over the years, this paper adopted the

coefficient-of-variation method and the principal-component
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analysis method to calculate the scale of the digital economy as the

proxy variable of the digital economy.

(4) Other control variables

An important control variable is energy efficiency under

carbon-emission constraints (CEE). The improvement of energy

utilization efficiency will likely reduce energy consumption, thereby

promoting the reduction of carbon-emission intensity. This paper

takes the energy consumption, employees, and capital stock of

prefecture-level cities over the years as the input, the GDP as the

desired output, and carbon dioxide as the non-consensual output.

CEE is calculated using the super-efficiency SBMmodel. Population

density (Pd) is measured by dividing the population of prefecture-

level cities by the area of the administrative region. This variable

indicates the impact of differences in the scale of population

activities in each city. The degree of openness (Open) selects the

ratio of the total import and export trade of the region to the GDP

as a proxy indicator of the degree of openness. Government

intervention (Gi) uses the proportion of regional fiscal budget

expenditures in GDP over the years as a proxy indicator.

Enterprise size (Scale) uses the ratio of the added value of

enterprises above the designated size in prefecture-level cities in

every previous year to the GDP as a proxy indicator.

Considering the integrity of the data and the impact of

establishing or cancelling some prefecture-level cities on the balance

of panel data, this paper excludes data from cities such as Danzhou,

Bijie, Tongren, and Pu’er. Finally, this paper selects 275 prefecture-

level cities in China from 2011 to 2019 as the research sample. It

should be emphasized that we used data before 2020 for two reasons.
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On the one hand, China’s economic data after 2020 has been deeply

affected by COVID-19, resulting in large outliers in macroeconomic

data. On the other hand, the urban traffic barring caused by COVID-

19 epidemic control has had a significant impact on urban carbon

emissions, which is difficult to include in the control variables, and the

endogenous problem caused by omitted variables may be very serious.

The data in this paper mainly derives from the “China Statistical

Yearbook 2012–2020” (National Bureau of Statistics of China, 2012–

2020a), “China City Statistical Yearbook 2012–2020” (National

Bureau of Statistics of China, 2012–2020b), “China Energy Statistical

Yearbook 2012–2020” (National Bureau of Statistics of China, 2012–

2020c), “EPS database & WIND database”1 and “China Energy

Statistical Yearbook 2012–2020” (National Bureau of Statistics of

China, 2012–2020d). Supplementary explanation: Some missing

values of urban variables are filled in using the interpolation

method. The specific indicators, data descriptions, and statistical

descriptions are shown in Table 1.
4 Results

4.1 Kernel density estimation

The authors selected the data on carbon-emission intensity,

industrial structure, and digital economy in 2011, 2013, 2015, 2017,
FIGURE 1

Transmission mechanism of carbon-emission-reduction effects in digital economy.
TABLE 1 Variable definitions and descriptive statistics.

Variable Definition Sample size Mean Std. dev.

lnCI Carbon-emission intensity 2,475 1.112 0.391

lnStr Industrial structure 2,475 0.417 0.089

lnDigtial Digital economy 2,475 8.631 0.954

lnCEE Energy efficiency 2,475 0.424 0.122

lnOpen The degree of openness 2,475 1.221 0.426

lnScale Enterprise size 2,475 6.606 1.082

lnFi Government intervention 2,475 0.194 0.094

lnPd Population density 2,475 5.776 0.901
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and 2019, and we drew the kernel density map as shown in Figure 2.

The results illustrate that urban carbon-emission intensity presents a

unimodal distribution during the sample period. Furthermore, after

2015, the kurtosis gradually decreases, indicating that the regional

differences in carbon-emission intensity are gradually shrinking. From

the perspective of skewness, the kernel density curve of carbon-

emission intensity in the sample period gradually tends to be left-

biased and has a long tail to the right, indicating that the city’s carbon-

emission intensity is decreasing year by year. However, there are still

high-emission areas. The kernel density curves for industrial structure

and the digital economy also show a unimodal distribution. In terms of

kurtosis, the industrial structure shows a downward trend during the

sample period, while the digital economy shows an upward trend. This

indicates that the differences in the industrial structure between cities

are gradually shrinking, while the differences in the scale of the digital

economy are gradually increasing. In terms of skewness, the industrial

structure gradually shifts to the right and has a long tail to the left, while

the digital economy gradually shifts to the right and has a long tail to

the right. This shows that the proportion of the tertiary industry and

the scale of the digital economy are increasing each year, but there are

still areas with low proportions in the industrial structure. Moreover,

areas with high-scale digital economies are also increasing each year.
4.2 Baseline regression

This paper uses the individual-time two-way fixed-effect model. In

addition, it uses the urban carbon-emission intensity as the explained
Frontiers in Ecology and Evolution 07
variable and the urban industrial structure as the core explanatory

variable for regression analysis. The results are shown in Table 2.

Columns (1) and (2) in Table 2 are baseline regressions that do

not consider other factors. These results indicate that industrial

structure adjustment has a significant positive impact on urban

carbon emissions. This conclusion is inconsistent with the research

results of Jiang and Sun (2023), who found that the increase in the

proportion of the tertiary sector of the economy is conducive to

reducing urban carbon emissions. The main reason is that Jiang and

Sun (2023) may have ignored the impact of tertiary sector industry

heterogeneity on carbon emissions. The increase in the proportion of

middle- and low-end industries in the tertiary sector of the economy

cannot curb carbon emissions, while digital economy development

has a significant negative impact on urban carbon emissions. Column

(3) reflects the combined impact of industrial structure adjustment

and digital economy development on urban carbon emissions, and the

magnitude and direction of the two factors’ coefficients show no

significant changes. Column (4) builds on column (3) by adding the

interaction term of industrial structure and digital economy

development. The results indicate that the direction of digital

economy development on urban carbon emissions has changed

from the original negative impact to a positive impact, and the

interaction between industrial structure and the digital economy has

a significant negative impact on urban carbon emissions. Column (5),

based on (4), adds control variables such as energy efficiency,

government intervention, enterprise scale, degree of openness, and

population density. The results show that industrial structure and

digital economy development have a significant positive impact on
FIGURE 2

Variables’ kernel density estimation.
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urban carbon emissions, with impact coefficients of 1.842 and 0.064,

respectively. Furthermore, the interaction term between the two has a

significant negative impact on urban carbon emissions, with an impact

coefficient of −0.162. This shows that the digital economy has played a

mitigating role in the process of increasing carbon emissions due to

industrial restructuring. This result is consistent with the research

conclusion of Hu (2023), who also found that the development of the

digital economy has a positive regulatory effect in the process of

exacerbating carbon emissions due to changes in industrial structures.

Among the control variables, government intervention has a

significant positive impact on urban carbon emissions, with a

coefficient of 0.760. Energy efficiency, enterprise scale, degree of

openness, and population density all have significant negative effects

on urban carbon emissions, with coefficients of −0.162, −0.115,

−0.019, and −0.107, respectively. The results in columns (4) and (5)

show that the digital economy has a significant moderating effect on

the process of industrial structure affecting carbon emissions, and this

effect is explained further in the threshold-effect analysis below.
4.3 Endogeneity discussion

There may be a specific endogenous relationship between

industrial structure upgrading and urban carbon emissions. On the

one hand, the transformation of the industrial structure from the

secondary industry to the tertiary industry has created a reduction in
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energy dependence and consumption, thereby reducing urban carbon

emissions. On the other hand, the constraints of urban carbon-

emission targets may lead to government intervention, which in turn

will promote the adjustment of industrial structure. Therefore, there

may be an endogenous problem of reverse causality between industrial

restructuring and carbon emissions. In the following, the instrumental

variable method is used to solve the endogeneity problem in the model.

We use the logarithm of the number of employees in the tertiary

industry and its lag one period as well as the logarithm of the green

coverage rate of prefecture-level cities and its lag one period as the

instrumental variables of the industrial structure. The regression results

for the instrumental variables are shown in Table 3.

The results show that the Durbin-Wu-Hausman (DWH) test

results of all models rejected the null hypothesis at the significance

level of 1%, indicating that the selected exogenous instrumental

variables were correlated with the endogenous explanatory variables

and could be identified. Among them, the Cragg-Donald Wald F

statistic values of the weak instrumental variables test were 132.788,

141.104, and 119.233 respectively. All these values were significantly

greater than the critical value of 16.85 at the significance level of 5%,

rejecting the null hypothesis of weak instrumental variables.

Simultaneously, in the regression results, the coefficient size, sign,

and significance of the core explanatory variable and each control

variable were also consistent with the benchmark regression. Based

on the above analysis, it is determined that there is no endogeneity

problem in the regression results statistically.
TABLE 2 Regression results of the impact of industrial structure on carbon emissions.

lnCI

Model (1) Model (2) Model (3) Model (4) Model (5)

LnStr 0.647***
(0.099)

0.643***
(0.060)

2.556***
(0.598)

1.842***
(0.565)

LnDigtial −0.017*
(0.009)

−0.015**
(0.006)

0.085***
(0.030)

0.064**
(0.030)

lnStr � lnDigtial −0.223***
(0.065)

−0.162**
(0.063)

LnCEE −0.162***
(0.063)

LnFi 0.760***
(0.182)

LnScale −0.115***
(0.018)

LnOpen −0.019*
(0.011)

LnPd −0.107**
(0.054)

City fixed effect Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes

_cons 0.990***
(0.043)

1.397***
(0.080)

1.113***
(0.087)

0.258
(0.275)

1.881***
(0.393)

N 2475 2475 2475 2475 2475

R2 0.439 0.411 0.441 0.447 0.553
Standard errors are in parentheses; * significant at 10%, ** significant at 5%, *** significant at 1%.
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4.4 Robustness check

The robustness of the model is tested by changing the control

variable, reducing the control variable, increasing the control
T
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variable, and changing the time span. The results are shown

in Table 4.

Model (9) uses the number of patent applications (lnTp) in

prefecture-level cities as the proxy variable of technological progress
ABLE 4 Robustness check.

lnCI

Model (5) Model (9) Model (10) Model (11) Model (12)

LnStr 1.842***
(0.565)

1.741***
(0.573)

1.292**
(0.514)

1.913***
(0.581)

1.258*
(0.715)

LnDigtial 0.064**
(0.030)

0.067**
(0.031)

0.051*
(0.028)

0.066**
(0.031)

0.025*
(0.039)

lnStr � lnDigtial −0.162**
(0.063)

−0.161***
(0.063)

−0.118**
(0.058)

−0.171***
(0.064)

−0.069**
(0.075)

lnCEE −0.162***
(0.063)

−0.127**
(0.059)

−0.229***
(0.065)

−0.288***
(0.092)

lnFi 0.760***
(0.182)

0.850***
(0.204)

0.423***
(0.129)

0.774***
(0.184)

0.594***
(0.170)

lnScale −0.115***
(0.018)

−0.119***
(0.019)

−0.054***
(0.018)

−0.120***
(0.018)

−0.092***
(0.023)

lnOpen −0.019*
(0.011)

−0.024**
(0.011)

−0.010
(0.009)

−0.017
(0.011)

−0.017
(0.012)

lnPd −0.107**
(0.054)

−0.126**
(0.056)

−0.195***
(0.053)

−0.073
(0.054)

lnTp −0.013
(0.008)

lnPgdp −0.274***
(0.041)

City fixed effect Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes

_cons 1.881***
(0.393)

5.030***
(0.611)

5.227***
(0.543)

1.273***
(0.298)

1.753***
(0.462)

N 2475 2475 2475 2475 1925

R2 0.553 0.542 0.604 0.551 0.377
Standard errors are in parentheses; * significant at 10%, ** significant at 5%, *** significant at 1%.
TABLE 3 Regression results of instrumental variable method.

lnCI

Model (6) Model (7) Model (8)

lnStr 0.980***
[0.178]

0.894***
[0.158]

0.566***
[0.190]

lnDigtial −0.076***
[0.008]

−0.057***
[0.009]

Control variable No No Yes

City fixed effect Yes Yes Yes

Year fixed effect Yes Yes Yes

RKF test 132.788 141.104 119.233

DWH
p-value

108.092
(0.000)

107.652
(0.000)

89.059
(0.000)
The t statistics are in square brackets; * significant at 10%, ** significant at 5%, and *** significant at 1%.
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to replace lnCEE in the original model. Model (10) adds the control

variable of economic development level based on the original model

(5) (per capita GDP of prefecture-level cities is used as the proxy

variable). Model (11) is based on the original model (5), and the

control variable of population density is eliminated. Model (12) is

based on the original model (5), and the sample years are shortened

to 2013–2019. In the transformed models (9)–(12), the industrial

structure, digital economy development, and their interaction terms

saw no significant changes in the direction of effect or the

magnitude of the coefficients, indicating that the original model

is robust.

In addition, this paper draws on the research of Tang and Yang

(2023), takes the “Broadband China” demonstration cities as quasi-

natural experiment conditions, and assigns values to cities

according to the 2016 “Broadband China” demonstration cities

list published by the Ministry of Industry and Information

Technology of China. We assign a value of 1 to the year and

subsequent years when a certain city conducts the construction of

the “Broadband China” demonstration city; otherwise, it will be 0.

Due to the announcement of the three batches of demonstration

city lists in the second half of the year, this article defines the year

following the release of the “Broadband China” demonstration city

list as the year of policy implementation and estimates the policy

effects. The analysis is conducted according to the following model:

Yit = a0 + bpolicyit + dXit + mi + vt + ϵit (4)

In the equation, Yit is the dependent variable, representing the

carbon-emission level of city i in year t. vt represents a fixed time

effect, mi represents the individual fixed effects of each city, and ϵit is
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a random error term. Xit is a series of variables that may have an

impact on the carbon emission levels of a region. policyit is the core

explanatory variable, representing the dummy variable of the

“Broadband China” demonstration city, and its coefficient b is

used to measure the impact of the construction of “Broadband

China” demonstration cities on carbon emissions. If b is negative

and significant, it indicates that the construction of “Broadband

China” demonstration cities can reduce carbon emissions levels.

The specific results are shown in Table 5.

The results in column (1) of Table 5 show that the estimated

coefficient of policyit is −0.041, which is significant at the 1%

significance level without adding control variables. This result

indicates that, compared to non-pilot cities, the implementation

of the “Broadband China” pilot policy has reduced the carbon-

emission intensity of pilot cities by 4.1%. The main reasons for this

are twofold. On the one hand, the implementation of the

“Broadband China” pilot policy has improved the level of internet

infrastructure and accelerated the digitization process. On the other

hand, the popularization of internet broadband has produced the

digital economy. The inclusiveness of the digital economy is

conducive to the surrender of funds from enterprises and

individual investors to environmentally friendly industries,

enabling widespread support for green technology and reducing

carbon-emission intensity. In columns (2) and (3) of the table,

industrial structure variables and other control variables were added

in sequence, and the regression results were still significantly

negative, in line with the expected assumptions.

The use of the Differences-in-Differences method for policy-

effect evaluation must satisfy the premise that the control group and
TABLE 5 Differences-in-Differences regression results.

lnCI

Model (13) Model (14) Model (15)

policyit −0.041***
(−3.971)

−0.039***
(−3.882)

−0.035***
(−3.491)

lnStr 0.918***
(0.215)

0.524***
(0.115)

lnCEE −0.385***
(0.076)

lnFi 0.553***
(0.148)

lnScale −0.158***
(0.018)

lnOpen −0.023
(0.012)

lnPd −0.013*
(−1.74)

City fixed effect Yes Yes Yes

Year fixed effect Yes Yes Yes

N 2475 2475 2475

R2 0.227 0.231 0.312
*, *** represent significance at the level of 10% and 1%, respectively.
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the experimental group have a common trend. Therefore, this

article uses the dynamic Differences-in-Differences method for

parallel trend testing, and the results are shown in Figure 3.

Meanwhile, although the regression in Table 5 controls for a

series of urban characteristic factors that affect carbon-emission

intensity, there may still be some unobservable factors that change

over time and location, which may affect the estimation results and

lead to estimation errors. Therefore, this article uses an indirect

placebo test to randomly select pilot cities for “Broadband China.”

According to the regression model in Table 5, 500 simulated

regressions were repeated, and the results are shown in Figure 4.

The results in Figure 3 show that before the implementation of

the “Broadband China” pilot policy, there was no systematic and

significant difference in carbon-emission intensity between pilot

cities and non-pilot cities. After the implementation of the policy,
Frontiers in Ecology and Evolution 11
the differences between the two were significant, meeting the

assumption of parallel trends, and the use of Differences-in-

Differences is reasonable and effective. Similarly, the results in

Figure 4 show that the P value distribution and the regression

coefficient kernel density distribution of 500 simulated regressions

essentially follow the normal distribution, which also indicates that

the regression results are robust.
4.5 Digital economy threshold estimation

Building on the research of Wang and Li (2022), this paper uses

the panel-threshold model to test the threshold effect of variables,

and the results are shown in Table 6. The results indicate that, with

the digital economy (lnDigtial) as the threshold variable, the single-

threshold test is passed at a significance level of 1%. Furthermore,

the double-threshold test is passed at a significance level of 5%, and

the triple-threshold test does not pass the significance test.

After the threshold effect self-sampling inspection, the

threshold value of the panel threshold model must be estimated

and tested, and the results are shown in Table 7 and Figure 5.

Table 7 illustrates the estimated values and confidence intervals of

the two thresholds of the digital economy. Combined with the

likelihood ratio function figure in Figure 5, the construction process

of the estimated values and confidence intervals of the two

thresholds of the digital economy can be understood more

intuitively and clearly. When the likelihood ratio statistic LR takes

a value of 0, the estimated values of the double thresholds

corresponding to the digital economy are 8.366 and 9.237,

respectively. The dotted line in Figure 5 indicates that, under the

95% confidence interval, all LR values of the two threshold estimates

of the digital economy are less than the critical value (7.350) at the

5% significance level. Therefore, the digital economy development
FIGURE 4

Placebo test results.
FIGURE 3

Parallel trend test results.
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of China’s 275 prefecture-level cities during the sample period can

be divided into three levels: areas with a low level of digital economy

development (lnDigtial < 8:366), areas with a medium level of

digital economy development (8:366 ≤ lnDigtial ≤ 9:237), and

areas with a high level of digital economy development

(9:237 < lnDigtial).

The impact of different types of regional industrial structures on

carbon-emission intensity is shown in Table 8. The results

demonstrate that the industrial structure of prefecture-level cities

in China had different impacts on carbon-emission intensity under

different development levels of the digital economy during the

sample period. In the low-level digital economy development

area, although the significance test is not passed, the industrial

structure has a positive impact on carbon-emission intensity, with a

coefficient of 0.025. In the middle level of the digital economy

development area, the impact of industrial structure on carbon-

emission intensity has changed from positive promotion to negative

inhibition, with a coefficient of −0.121, and the test is passed at a

significance level of 10%. At the high level of digital economy

development, the inhibitory effect of industrial structure on carbon-

emission intensity is further increased, with a coefficient of −0.307,

and the test is passed at a significant level of 1%.

The results demonstrate that the impact of industrial structure on

carbon-emission intensity, along with the development level of digital

economy, presents an inverted U-shaped action path of “first

promotion, then inhibition, and then strong inhibition.” This result

aligns with the findings of Liu and Zhang (2023), who empirically

examine the impact of the digital economy on carbon emissions as

well as the mediating and threshold effects of different innovation

modes. They found that the effect of the digital economy on carbon

emissions has a threshold feature, with an inverted U-shaped

relationship between the two, and that an increase in autonomous

innovation and imitation innovation can enhance the digital

economy’s carbon-reduction effect. This impact path emerges

because the increase in the proportion of the tertiary industry may

have a restraining effect on carbon-emission intensity, and the quality

of the tertiary industry is affected by the development of the digital

economy. More specifically, as online sales are favored by consumers,

the rapid development of the logistics industry is promoted. Without
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reaching a certain scale of the digital economy, the rapid development

of the logistics industry inevitably leads to a sharp increase in energy

consumption and thus carbon emissions. When the development of

the digital economy reaches an ideal scale, the technical attributes of

the digital economy will likely directly affect low-end industries,

reducing their energy dependence and moderately reducing carbon

emissions. When the digital economy reaches a larger scale, its

structural attributes will likely affect the proportion of industries

within the tertiary industry. The service objects of the industry are

expected to gradually change from being labor and capital intensive

to more advanced-technology intensive. Moreover, the energy

dependence of the tertiary industry will likely decrease rapidly,

thereby improving carbon-emission intensity significantly.

In summary, we have completed the empirical test of the three

hypotheses proposed in Section 2. We found that developing

tertiary industries does not reduce urban carbon emissions, and

only when the scale of the digital economy reaches a certain level

can the tertiary industry effectively reduce urban carbon emissions.

In the following discussion section, we will review the main

conclusions, research contributions, and limitations of this paper

in detail.

In addition, this article defined three intervals for the

development level of urban digital economy: lnDigtial < 8:366 is

the first interval, 8:366 ≤ lnDigtial ≤ 9:237 is the second interval,

and 9:237 < lnDigtial is the third interval. Subsequently, three years

of 2011, 2015, and 2019 were selected for cluster analysis of cities in

the eastern, central, and western regions of China in different years.

The specific results are shown in Figure 6.

The results in Figure 6 indicate that the eastern, central, and

western regions of China have converged over time in the three

levels of digital economy development. The number of cities in the

first region gradually decreased, while the number of cities in

the second and third regions constantly increased. However,

the proportion of cities suggests that the number of cities in the

central and western regions increased significantly in the second

and third intervals, especially in the third interval, compared to the

eastern region. This indicates that the digital economy has had a

more significant effect on regulating the carbon reduction effect of

industrial upgrading in the central and western regions of China.
TABLE 7 Threshold estimation results.

Threshold Estimated value 95% confidence interval

First threshold 8.366 [8.336, 8.371]

Second threshold 9.237 [9.206, 9.245]
TABLE 6 Threshold effect self-sampling test.

Threshold variable Explained variable Threshold F P BS times

LnDigtial lnCI 1 70.32*** 0.007 300

2 44.63** 0.050 300

3 18.46 0.900 300
*significant at 10%, **significant at 5%, ***significant at 1%.
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This also confirms that the digital economy mentioned above is

different from the traditional economy and has the characteristics of

“inclusive improvement” in carbon-emission reduction.
5 Discussion

This paper examines the current state of the digital economy,

industrial upgrading, and carbon emissions across 275 prefecture-

level cities in China from 2011 to 2019. It investigates the

moderating influence of digital economy development on the

effects of industrial upgrading on carbon emissions and employs

the digital economy as a threshold variable to analyze the

mechanisms and variations in the effects of industrial upgrading

on carbon emissions within different threshold ranges. While this

study focuses on prefecture-level cities in China, the methodology

can be applied to explore the moderating and threshold effects of

digital economy development on carbon emissions in other

countries worldwide. Furthermore, this study introduces a new

research paradigm for investigating energy conservation and

carbon-emission reduction in urban areas. The detailed

contributions of this paper are as follows.

First, this paper refines the scale of research on the impact of

industrial upgrading on urban carbon emissions from the

provincial to the prefecture level. Additionally, the spatiotemporal
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characteristics of the digital economy, industrial upgrading, and

urban carbon emissions at the prefecture level are explored using

kernel density estimation. The results demonstrate that the levels of

digital economy development, industrial upgrading, and carbon-

emission intensity in cities all exhibit a unimodal distribution

during the sample period. Furthermore, the kurtosis of industrial

upgrading and carbon-emission intensity exhibits a decreasing

trend each year, indicating that the gap between cities in

industrial upgrading and carbon-emission intensity is gradually

narrowing. However, the skewness of the level of digital economy

development shows an increasing trend each year, suggesting that

the gap between cities in the level of digital economy development is

widening. In terms of skewness, carbon-emission intensity and the

level of digital economy development show a right-skewed trend,

while industrial upgrading indicates a left-skewed trend. This

suggests that there are still high-emission areas and areas with

backward industrial upgrading in prefecture-level cities in China.

These findings are consistent with the research conclusions drawn

by Zhu Z et al. (2022).

Second, this paper uses a panel-data two-way fixed-effects

model, including interaction terms, to analyze the moderating

effect of the digital economy on the relationship between

industrial upgrading and urban carbon emissions. Endogeneity

exploration and robustness tests are conducted to ensure that the

analysis results are scientific and accurate. The findings show that
TABLE 8 Estimation results of the digital economy double-threshold parameters.

Variable lnCI

Coefficient t value 95% confidence
interval

lnStr lnDigtial < 8:366 0.025 0.37 [−0.110, 0.160]

8:366 ≤ lnDigtial ≤ 9:237 −0.121* −1.76 [−0.256, 0.014]

9:237 < lnDigtial −0.307*** −4.31 [−0.446, −0.167]

Control variable Yes – –

_cons 4.638*** 16.68 [4.093, 5.184]

R2 0.247 – –

N 2475 2475 2475
*Significant at 10%, ***significant at 1%.
FIGURE 5

Double threshold estimation results and confidence intervals.
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both industrial structure and digital economy development have a

significant positive impact on urban carbon emissions, with impact

coefficients of 1.842 and 0.064, respectively. However, the

interaction term between the two has a significant negative

impact on urban carbon emissions, with an impact coefficient of

−0.162. This indicates that the digital economy can mitigate the

negative impact of industrial structural adjustments on carbon

emissions. These results align with the findings of Zhang

et al. (2022).

Finally, this study constructs a panel threshold model to test the

threshold effect of the digital economy on the impact of industrial

upgrading on urban carbon emissions. This model aims to explore

the mechanisms and heterogeneity of the impact of industrial

upgrading on urban carbon emissions at different threshold levels

of digital economic development. The findings reveal a double-

threshold effect of the digital economy on the impact of industrial

upgrading on urban carbon emissions, with threshold values of

8.366 and 9.237. The results also demonstrate significant

heterogeneity in the mechanisms of industrial upgrading of urban

carbon emissions within different threshold ranges. More

specifically, when the level of digital economic development is

below the first threshold value, the industrial structure has a

positive effect on carbon-emission intensity, with a coefficient of

0.025. After surpassing the first threshold, the effect of the industrial

structure changes from a positive promotion to a negative

suppression, with a significant coefficient of −0.121 at the

statistical level of 10%. When the level of digital economic

development surpasses the second threshold, the suppression

effect of the industrial structure on carbon-emission intensity

further increases, with a significant coefficient of −0.307 at the

statistical level of 1%. Therefore, the authors conclude that the

impact of the industrial structure on carbon-emission intensity

follows a pathway of “first promotion, then suppression, and finally

strong suppression” with the increase in the level of digital

economic development.
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This study has several limitations that should be acknowledged.

First, the digital economy is a multifaceted concept, and the

evaluation indicators used in this paper, such as the inclusive

finance index, the number of people in the information

transmission computer service and software industry, the number

of internet broadband access users, the number of mobile phone

users, and the revenue of the telecommunications industry, may not

cover all aspects of the digital economy. Therefore, the indicator

system used in this study may require further refinement. Second,

the proxy variable used for industrial upgrading – the proportion of

the added value of the tertiary industry to GDP – may not fully

capture the direction of changes in the industrial structure. To

ensure consistency in variable calculation across different cities, this

proxy variable was used instead of more direct measures of

industrial upgrading. This limitation suggests the need for further

research to develop more comprehensive and accurate indicators of

industrial upgrading.
6 Conclusions

Building a digital powerhouse and achieving the goals of “carbon

peaking and carbon neutrality” are new consensusmeasures to promote

high-quality economic development in the new era. Fully tapping into

the energy-saving and emission-reduction “dividends” of the digital

economy under the “dual carbon” goal is crucial for breaking the

constraints of energy and environment while achieving the modern

development of harmonious coexistence between humans and nature.

To explore whether the digital economy is a “dividend” or a “negative

benefit” for urban energy conservation and emission reduction, this

paper used the panel data of 275 prefecture-level cities in China from

2011 to 2019. We adopted the static panel-data interaction-effect model

and panel-threshold model to verify the path and heterogeneity of the

digital economy to improve urban carbon emissions, which was based

on the research hypothesis that the development of the digital economy
FIGURE 6

Cluster analysis of cities in different years and intervals.
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reduces urban carbon emissions. The main research conclusions are as

follows. (1) Affected by the differences in industry characteristics within

the tertiary industry, simple industrial restructuring cannot achieve

urban carbon emission reduction. On the contrary, an increase in the

proportion of tertiary industries will likely further worsen urban carbon

emissions. As the object of this study is urban carbon emissions, this

conclusion is not completely consistent with the conclusions of existing

studies (Pao et al., 2011; Dong et al., 2018). This conclusion indicates

that merely increasing the proportion of tertiary industries does not

necessarily reduce carbon emissions and achieve green development in

urban economies. The key lies in whether the secondary industry with

high pollution is reduced and the proportion of high-tech,

environmental protection, and high-end tertiary industries is

increased (Han and Xie, 2017). (2) The digital economy has a

significant inverted U-shaped regulatory effect on the carbon-

emission-reduction effect of industrial structure adjustment, and the

integrated development of the digital economy and the tertiary industry

can achieve urban carbon emission reduction. Existing studies have

found that the digital economy and industrial structure upgrading have

a synergistic effect on carbon emission reduction (Zhu X et al., 2022;

Wang et al., 2022), but the specific effect is still unclear. This conclusion

explains why carbon emissions have increased in many places after the

development of the digital economy. In addition, this conclusion shows

that only when the digital economy develops to a certain extent and

fully empowers the upgrading of industrial structures can it play a role

in promoting carbon emission reduction. (3) The digital economy has a

double-threshold effect in the process of industrial structure adjustment

to promote carbon emission reduction, and the thresholds are 8.366

and 9.237, respectively. Based on how existing studies have recognized

that industrial digitalization has a positive impact on energy

conservation and emission reduction (Li and Huang, 2022; Zhang

and Li, 2022), this conclusion further clarifies that industrial

digitalization has a threshold effect in achieving carbon-emission

reduction. Only when the digital economy reaches a certain scale can

the adjustment of industrial structure exert its carbon-emission-

reduction effect. With the continuous expansion of the scale of the

digital economy, the carbon-emission-reduction effect of industrial

structure adjustment will likely continue to increase significantly.

Based on the research conclusions of this paper, the authors

offer the following policy recommendations. First, in the process of

upgrading industrial structures, all regions should not only increase

the proportion of the service industry but also encourage the

development of high-end service industries. In other words,

under the “dual carbon” goal and in the process of adjusting

industrial structures and transforming economic growth modes,

all regions should further increase the proportion and development

speed of high-end industries in the tertiary industry. These regions

should also promote the embedding of high-end industries in the

manufacturing value chain and the transformation of the

manufacturing industry from high energy dependence and high

emissions to low emissions and low energy dependence. This

suggestion can also provide a reference for other developing

countries. Second, drawing on the experience of developed

countries in Europe and America, local governments should

pay attention to the coordinated development of digital

industrialization and industrial digitalization. In other words,
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based on strengthening the innovation of digital technology, the

integration of big data, AI, cloud computing, block chain, and other

digital technologies with medium- and low-end industries in the

tertiary industry should be strengthened. This creates opportunities

regarding the technical-attribute dividends of the digital economy,

further saves energy consumption in medium and low-end

industries, and realizes energy conservation and emission

reduction. Third, the spillover effect of the digital economy on

carbon emissions reduction should be expanded. The digital

economy can achieve cross-spatial trade cooperation and

knowledge sharing, drive the joint development of upstream and

downstream enterprises in the industry, and promote the

dissemination and diffusion of green and low-carbon concepts. It

not only has a significant impact on local carbon emissions but also

significantly reduces the carbon-emission intensity of neighboring

countries or regions. Finally, it creates opportunities for the

synergistic effect of government and market in the low-carbon

development of the industrial economy. On the one hand, efforts

should be made to change the unbalanced distribution of digital

infrastructure among cities. On the other hand, digital technologies,

especially energy-saving and emission-reduction digital

technologies, should be shared among cities to break through the

“digital economic divide” between cities and realize the “inclusive

improvement” of overall carbon emissions in cities.
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