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Abstract

For any graph G, the spanning tree packing number of σ(G), is the maximum number of edge-disjoint
spanning trees contained in G. In this study, we determined the maximum number of edge-disjoint spanning
trees of the generalized petersen graph and cocktail graph.
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1 Introduction
The spanning-tree packing number, denoted as σ(G), of a graph G with n vertices represents the maximum count
of edge-disjoint spanning trees present in G. This metric is widely used to assess the reliability of communication
networks and has been extensively studied by researchers. For further exploration of this topic, comprehensive
surveys conducted by Palmer [1] and Ozeki and Yamashita [2] provide valuable insights. The determination of
the maximum number of edge-disjoint spanning trees in a given graph G can be achieved in polynomial time,
as discussed in [3].

Peng and Tay [4] conducted a study focusing on the spanning-tree packing numbers of Cartesian products formed
by combining different combinations of complete graphs, cycles, and complete multipartite graphs. Subsequently,
Ku, Wang, and Hung [5] established the following result: for two connected graphs G and H, the spanning-tree
packing number of their Cartesian product is equal to or greater than the sum of the spanning-tree packing
numbers of G and H, minus one. In [6], Li, H. et al. obtained a sharp lower bound for the spanning-tree packing
number of lexicographic product graphs.

In this paper, we determine the spanning tree packing number of the complement of the Generalized Petersen
Graphs, G(n, k), and the Cocktail party graphs, CPn.

2 Preliminary Notes
This section contains some of the fundamental concepts necessary for the understanding of the study. Definitions
that are not in this paper can be found on [7], [8], [9].

Definition 2.1. [10] The complement G of a graph G is the grpah with vertex set V (G) such that two verticesare
adjacent in G if and only if these vertices are not adjacent in G.

Definition 2.2. [10] An edge-connectivity λ(G) of a graph g is the minimum number of edges in graph G whose
deletion disconnects the graph.

Theorem 2.1. [11] The edge connectivity of G satisfies λ(G) ≥ 2k if and only if for any set Ek of k edges of
G, then the subgraph H = G− Ek has an edge disjoint trees.

Corollary 2.2. [11] If λ(G) ≥ 2k then G has k edge-disjoint spanning trees. The lower bound is⌊
λ(G)

2

⌋
≤ σ(G),

where the upper bound is

σ(G) ≤
⌊
|E(G)|
|V (G)− 1|

⌋
.

Remark 2.1. [12] For any complement of generalized petersen graph G(n, k) with n ≥ 3, 1 ≤ k ≤ bn−1
2
c,

|E(G(n.k))| = 2n(n− 2) and degG(n.k)(v) = 2(n− 2) for all v ∈ V (G(n.k)).

Remark 2.2. [13] For any Cocktail Party graph CPn with n ≥ 2,

|E(CPn)| = 2n(n− 1), and degCPn(v) = 2(n− 1) for all v ∈ V (CPn)

Remark 2.3. [10] For any regular graph G, δ(G) = degG(v).

Theorem 2.3. [14] Let G be a graph with order p, minimum degree δ(G), and edge connectivity λ(G). If
λ(G) ≥ 1

2
p, then λ(G) = δ(G).

Remark 2.4. [1] For any connected cubic graph G for which |V (G)| ≥ 6, σ(G) = 1.
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Definition 2.3. [10] A vertex-connectivity κ(G) of a graph G is the minimum number of nodes in a graph G
whose deletion disconnects G.

Definition 2.4. [10] A graph H is subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If V (H) = V (G),
then H is a sapnning subgraph of G.

Definition 2.5. [1] For any graph G, the spanning tree packing number (STP) denoted by σ(G), is the maximum
number of edge-disjoint spanning trees contained in G.

Definition 2.6. [12] Generalized petersen graph is connected cubic graph consisting of an inner star polygon
(n, k) and an outer regular polygon (n) with correspoding vertices in the inner and outer polygons connected
by the edges where n ≥ 3 and 1 ≤ k ≤ bn−1

2
c.

Definition 2.7. [15] Ladder rung graph is graph of order n denoted by nP2 the graph union of n copies of path
graph P2.

Definition 2.8. [13] Cocktail party graph (CPn) is a grpah consisting of two rows of paired nodes in which all
nodes except the paired ones are connected with straight lines. It is the graph complement of the ladder rung
graph nP2.

3 Main Results
Remark 3.1. For any Generalized petersen graph G(n, k) for n ≥ 3, 1 ≤ k ≤ bn−1

2
c, σ(G(n, k)) = 1.

Theorem 3.1. For a generalized petersen graph G(n, k), σG(n, k) = n− 2 for all n ≥ 3.

Proof: We consider the following cases:

Case 1: n− 2 ≤ σ(G(n, k)).

By Corollary 2.2,

⌊
λ(G)

2

⌋
≤ σ(G)

Now, by Remark 2.1, deg(n,k)(v) = 2(n − 2), for all v ∈ V ((G(n, k))). Since G(n, k) is also a regular graph, it
follows that δ(G(n, k)) = ∆(G(n, k)) = degG(n,k)(v) = 2(n− 2), λ(G(n, k)) = δ(G(n, k)). By Theorem 2.3

δ(G(n, k)) ≥ |V (G(n, k))|
2

2(n− 2) ≥ 2n

2

2n− 4 ≥ n
n ≥ 4.

This is true since |V G(n, k))| ≥ 6. Hence λG(n, k)) = 2(n− 2). Now we have

σG(n, k) ≥
⌊
λ(G(n, k))

2

⌋
=

⌊
2(n− 2)

2

⌋
= n− 2.

Case 2: σG(n, k) ≤ n− 2
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On the other hand, by 2.2, and Remark 2.1, we get

σG(n, k) ≤
⌊
|E((G(n, k))|
|V (G(n, k)| − 1

⌋
=

⌊
2n(n− 2)

2n− 1

⌋

Now, to show that
⌊

2n(n−2)
2n−1

⌋
= n−2 fro n ≥ 3 we use Remark ??, i.e., we need to show that n−2 ≤

⌊
2n(n−2)
2n−1

≤

(n− 2) + 1. Consider the following claims:

Claim 1: n− 2 ≤ 2n(n−2)
2n−1

Verifying algebraically,

(n− 2)(2n− 1) ≤ 2n(n− 2)

2n2 − 2− 4n+ 2 ≤ 2n2 − 4n

−n+ 2 ≤ 0

−n ≤ −2.

This shows that Claim 1 is true since n ≥ 3 by assumption.

Claim 2: 2n(n−2)
2n−1

≤ (n− 2) + 1
Verifying algebraically,

2n(n− 2) ≤ n− 1(2n− 1)

2n2 − 4n ≤ 2n2 − 2n− n+ 1

−4n ≤ −3n+ 1

−n ≤ −1

This shows that claim 2 is true since n ≥ 3 by assumption. Combining by claim 1 and claim 2, we get

σ(G(n, k)) ≤
⌊

2(n− 2)

2

⌋
= n− 2.

By case 1 and case2, this implies that

n− 2 ≤ σ(G(n, k)) ≤ n− 2.

Therefore, σ(G(n, k)) = n− 2. �

The following are consequence of Remark 3.1, and Theorem 3.1.

Remark 3.2. The absolute difference between σ(G(n, k)) and σ(G(n, k)) is increasing.

The next results shows the STP od Cocktail party graph denoted by CPn.

Theorem 3.2. For a Cocktail party graph denoted by (CPn) with n ≥ 2,

σ(CPn) = n− 1.

Proof:

We consider the following cases:
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Case 1: n− 1 ≤ σ(CPn)

By Corollary 2.2,
λ(G)

2
≤ σ(G).

Now, by Remark 2.2, degCPn(v) = 2(n− 1) for all v ∈ V (CPn). Since (CPn) is also a regular graph, it follows
that δ(CPn) = ∆(CPn) = degCPn = 2(n− 1). Now to show that σ(CPn) ≥ |V (CPn)|

2
so that λ(CPn) = σ(CPn).

By Theorem 2.3

2(n− 1) ≥ 2n

2

2n− 2 ≥ n
n− 2 ≥ 0

n ≥ 2.

Hence, λ(CPn) = degCPn(v) = 2(n− 1). Now, by Corollary 2.2, we have

σ(G(n, k)) ≥
⌊

2(n− 1)

2

⌋
σ(G(n, k)) = n− 1.

Case 2: σ(CPn) ≤ n− 1

On the other hand by Corollary 2.2 and Remark 2.2

σ(CPn) ≤
⌊
|E(CPn)|
|V (CPn)| − 1

⌋
=

⌊
2n(n− 2)

2n− 1

⌋
.

To show that
⌊

2n(n−2)
2n−1

⌋
= n − 1 for n ≥ 2, we used Remark 2.4,i.e., we need to show that n − 1 ≤ 2n(n−2)

2n−1
≤

(n− 1) + 1. Consider the follwing Claims below:

Claim 1: n− 1 ≤ 2n(n−2)
2n−1

.
Verifying algebraically,

(n− 1)(2n− 1) ≤ 2n(n− 1)

2n2 − n− 2n+ 1 ≤ 2n2 − 2n

−n+ 1 ≤ 0

−n ≤ −1.

Claim 2: 2n(n−2)
2n−1

≤ (n− 1) + 1.
Verifying algebraically,

2n(n− 1) ≤ n(2n− 1)

2n2 − 2n ≤ 2n2 − 2

−2n ≤ −n
−n ≤ 0

This shows that Claim 2 is true since n ≥ 2 by assumption. Thus

σ(CPn) ≤
⌊

2n(n− 1)

2n− 1

⌋
= n− 1.
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By case 1 and case 2 this implies that,

n− 1 ≤ σ(CPn) ≤ n− 1.

Therefore,
σ(CPn) = n− 1

�

Remark 3.3. The spanning tree packing number of CPn is 0.

Remark 3.4. The difference between σ(CPn) and σ(CPn) is increasing.

4 Conclusion
In this paper, we have successfully determined the spanning tree packing numbers for two specific graph families:
the complement of Generalized Petersen Graphs, denoted as G(n, k), and the Cocktail party graphs, denoted
as CPn. By analyzing these graph structures, we have obtained valuable insights into the properties and
characteristics of their spanning tree packing numbers.
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