

Asian Journal of Probability and Statistics

15(4): 97-110, 2021; Article no.AJPAS.77839 *ISSN: 2582-0230*

Gerber-Shiu Function in a Discrete-time Risk Model with Dividend Strategy

Junqing Huang a* and Zhenhua Bao ^a

^aSchool of Mathematics, Liaoning Normal University, Dalian, China.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors have equal contributions. Both authors have read and approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2021/v15i430367 *Editor(s):* (1) Dr. Manuel Alberto M. Ferreira, Lisbon University, Portugal. *Reviewers:* (1) Masomeh Aghamohamadi, Islamic Azad University, Iran. (2) Magalì Zuanon, University of Brescia, Italy. Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/77839

Original Research Article

Received 01 October 2021 Accepted 04 December 2021 Published 09 December 2021

Abstract

In this paper, a discrete-time risk model with dividend strategy and a general premium rate is considered. Under such a strategy, once the insurer's surplus hits a constant dividend barrier b , dividends are paid off to shareholders at α instantly. Using the roots of a generalization of Lundberg's fundamental equation and the general theory on difference equations, two difference equations for the Gerber-Shiu discounted penalty function are derived and solved. The analytic results obtained are utilized to derive the probability of ultimate ruin when the claim sizes is a mixture of two geometric distributions. Numerical examples are also given to illustrate the applicability of the results obtained.

__

Keywords: Compound binomial model; two-step premium; defective renewal equation; Gerber-Shiu discounted penalty function; dividend strategy.

1 Introduction

Risk theory has a long development time, Lundberg [1] and Gramer [2] established the connection of risk theory. The compound binomial model that was first proposed by Gerber [3] have received considerable attention. For

__ **Corresponding author: Email: hjqing1997@163.com;*

instance, Shiu [4], Willmot [5] and Dickson [6] have analyzed the compound binomial model. Markov chain is understood to be a stochastic process in discrete time possessing a certain conditional independence property. The state space may be finite, countably infinite or even more general. Cossette et al. [7] consider the so-called compound Markov binomial model which introduces dependency between claim occurrences. For an generalization of the classical risk model see Landriault [8]. Furthermore, in the discrete time risk model, the issue related to dividend is also widely considered.

Dividend strategies for insurance risk models were first proposed by DeFinetti [9] to reflect more realistically the surplus cash flows in an insurance portfolio. Because of the certainty of ruin for a risk model with a constant dividend barrier, the calculation of the Gerber-Shiu discounted penalty function is a major problem of interest in the context. Among the class of discrete-time risk models, Tan and Yang [10] derived a recursive algorithm to compute a particular class of Gerber-Shiu penalty functions in the framework of the compound binomial model with randomized dividend payments. Landriault [11] then generalized Tan and Yang's model to consider the compound binomial model with a multi-threshold dividend structure and randomized dividend payments. In the discrete time risk model, He and Yang [12] considered that dividends are paid randomly to shareholders and policyholders in the framework of the compound binomial model. In the framework of a discrete semi-Markov risk model, a randomized dividend policy is studied by Yuen et al. [13]. Zhang and Liu [14] consider a discretetime risk model with a mathematically tractable dependence structure between interclaim times and claim sizes in the presence of an impulsive dividend strategy.

The paper is structured as follows: a brief description of the discrete-time model and the introduction of the Gerber-Shiu discounted penalty function are considered in Section 2. In section 3, we obtain and solve a nonhomogeneous difference equation satisfied by the the Gerber-Shiu discounted penalty function *m*(*u*;*b*) . Closedform solutions for $m_b(u)$ are obtained when the claim sizes is a mixture of two geometric distributions and corresponding numerical examples are also provided in Section 4.

2 The model

Throughout, denote by N the set of natural numbers and $N^+ = N/\{0\}$. In the compound binomial model, the claim number process $\{N_k, k \in N\}$ is assumed to be a renewal process with independent and identically distributed (i.i.d.) interclaim times $\{W_j, j \in N^+\}$ having probability mass function (p.m.f.) $f_{w}(j) = q(1 - q)^{j-1}$ for $l \in N^{+}$. Equivalently, the probability of having a claim is $p(0 < p < 1)$ and the probability of no claim is $q=1-p$. The individual claim amount r.v.'s(random variables) $\{X_j, j \in N^+\}$ form a sequence of strictly positive, integer-valued and i.i.d. r.v.'s. We suppose that the r.v.'s $\{X_j, j \in N^+\}$ are distributed as a generic r.v. X with p.m.f. $f(x)$, probability generating function (p.g.f.) $\tilde{f}(x)$. Moreover, it is assumed that the r.v.'s W_1, W_2, \ldots and X_1, X_2, \ldots are mutually independent. Let $S_k = \sum_{i=1}^{N_k}$ $S_k = \sum_{i=1}^{N_k} X_i$ be the total amount of settled claims up the end of the kth time period with $S_0 = 0$.

Suppose that premiums are received at the beginning of each time period, and claims are paid out at the end of each time period. Denote $u \ge 0$ to be the initial surplus, $b > 0$ the constant barrier level, and $c_1 > 0$ the annual premium. Under such a strategy, let $\alpha(0 < \alpha \leq c_1)$ be the annual dividend rate, once the insurer's surplus at time k hits or exceeds a constant dividend barrier b , dividends are paid off to shareholders at α instantly. In this case, the net premium after dividend payments is $c_2 = c_1 - \alpha \ge 0$. The corresponding surplus of the insurer at the end of the kth time period is $U_b(k)$ for $k = 1, 2, \cdots$ can be described as

Huang and Bao; AJPAS, 15(4): 97-110, 2021; Article no.AJPAS.77839

$$
U_{b}(k) = \begin{cases} U_{b}(k-1) + c_{1} - \eta_{k} X_{k} , & U_{b}(k-1) \leq b \\ U_{b}(k-1) + c_{2} - \eta_{k} X_{k} , & U_{b}(k-1) > b \end{cases}
$$
 (1)

where $U_b(0) = u$, $\{\eta_k, k \in N\}$ is an independent and identically distributed Bernoulli sequence, we denote by $\eta_k = 1$ the event of having a claim at the time k and denote by $\eta_k = 0$ the event that no claim at the time *k*. We assume that $P(\eta_i = 1) = p$ and $P(\eta_i = 0) = 1 - p = q$ and surplus process $U_b(k)$ has a positive drift by letting $c_2 > pE[X]$ (known as the positive security loading condition in ruin theory).

Define $\tau_b = \min\{k : U_b(k) < 0\}$ to be the time of ultimate ruin. Let *v* be a constant annual discount rate for each period. When ruin occurs, $U_b(\tau-1)$ is the surplus one period prior to ruin and $|U_b(\tau)|$ is the deficit at ruin. For $v \in (0,1]$, the well-known Gerber-Shiu discounted penalty function is then defined as

$$
m(u;b) = E\Big\{v^{\tau_b}\omega(U_{\tau_b-1},\Big|U_{\tau_b}\Big|)I_{\{\tau_b<\infty\}}\Big|U_0=u\Big\},\tag{2}
$$

where $\omega: N \times N^+ \to R$ is a penalty function and $I_{(Q)}$ is the indicator function of an event Q. Also, we consider some special cases of (2) with successively simplified the penalty functions. If $\omega(n_1, n_2) = 1$ for $(n_1, n_2) \in N \times N^+$, we get the generating function of the time to ruin, i.e.

 $m_{b}(u) = E\left\{v^{\tau_{b}} I_{\{\tau_{b} < \infty\}}\middle| U_{0} = u\right\}.$ $\partial_b(u) = E\big\{\nu^{\tau_b}I_{\{\tau_b<\infty\}}\big|U_{\overline{0}} = 0\big\}$

3. The Gerber-Shiu discounted penalty function

In this section, we derive two difference equations for the Gerber-Shiu discounted penalty function: one for the initial surplus below the barrier level b and the other for the initial surplus above the barrier level b . Clearly, the Gerber-Shiu discounted penalty function $m(u; b)$ behaves differently, depending on whether its initial surplus u is below or above the barrier level b . Hence, we write

$$
m(u;b) = \begin{cases} m_1(u), & 0 \le u < b \\ m_2(u), & u \ge b \end{cases}.
$$

In order to identify the structural form of the solution for the Gerber-Shiu discounted penalty function, three cases will be considered separately.

3.1 For initial surpluses less than the barrier *b*

In the first scenario, the initial surplus below the barrier *b*, for
$$
u = 0,1,...,b-c_1-1
$$
, we have
\n
$$
m_1(u) = v q m_1(u+c_1) + v p \sum_{j=1}^{u+c_1} m_1(u+c_1-j) f(j) + v p \sum_{j=u+c_1+1}^{\infty} \omega(u+c_1; j-u-c_1) f(j)
$$
\n
$$
= v q m_1(u+c_1) + v p (m_1 * f)(u+c_1) + \gamma_1(u), \qquad (3)
$$

where

$$
\gamma_1(u) = v p \sum_{j=u+c_1+1}^{\infty} \omega(u+c_1; j-u-c_1) f(j).
$$

and $m_1 * f$ holds for the convolution product of m_1 and f .

To state that (3) is a non-homogeneous difference equation of order c_1 , we re-express (3) according to the forward difference operator Δ and its property (see Chapter 2 of Kelly & Peterson [15],

$$
m(u+c) = \sum_{j=0}^{c} \binom{c}{j} \Delta^j m(u),\tag{4}
$$

substituting (4) into (3) shows
\n
$$
m_1(u) = vq \sum_{j=0}^{c_1} {c_1 \choose j} \Delta^j m_1(u) + v p \sum_{j=0}^{c_1} {c_1 \choose j} \Delta^j (m_1 * f)(u) + \gamma_1(u),
$$
\n(5)

for $u = 0,1,...,b - c_1 - 1$, (5) can be simplified to

$$
\sum_{j=0}^{c_1} a_{1,j} \Delta^j m_1(u) = \sum_{j=0}^{c_1} b_{1,j} \Delta^j (m_1 * f)(u) + \gamma_1(u), \tag{6}
$$

where

$$
a_{1,j} = I_{\{j=0\}} - \nu q \binom{c_1}{j}, \ b_{1,j} = \nu p \binom{c_1}{j}.
$$

and $A_1(z)$, $B_1(z)$ are polynomials (in z) defined as

$$
A_1(z) = \sum_{j=0}^{c_1} a_{1,j} z^j, B_1(z) = \sum_{j=0}^{c_1} b_{1,j} z^j.
$$

becomes

$$
A_1(\Delta)m_1(u) = B_1(\Delta)(m_1 * f)(u) + \gamma_1(u), \qquad u = 0, 1, 2, \dots, b - c_1 - 1,\tag{7}
$$

We know from (7) that $m_1(u)$ satisfies a non-homogeneous difference equation of order c_1 . From the general theory on difference equations, every solution to a c_1 -th order difference equation can be expressed as a particular solution to this difference equation plus a linear combination of $c₁$ linearly independent solutions to the associated homogeneous difference equation (cf. Elaydi [16], Theorem 2.30). Therefore, for $u = 0,1,...,b-1$, the Gerber-Shiu discounted penalty function can be expressed as

$$
m_1(u) = \phi_1(u) + \sum_{j=0}^{c_1-1} \alpha_{1,j} y_{1,j}(u), \quad u = 0,1,2,...,b-1.
$$
 (8)

where $\{y_{1,j}(u)\}_{u=0}^{\infty}$ $(j = 0,1,...,c_1-1)$ $y_{1,j}(u)$ _{$u=0$} $(j=0,1,...,c_1-1)$ are c_1 fundamental solutions to the following homogeneous difference equation

$$
A_1(\Delta) y_1(u) = B_1(\Delta) (y_1 * f)(u) \qquad u \ge 0.
$$
 (9)

 $\{\phi_1(u)\}_{u=1}^{\infty}$ $\phi_1(u)$ _{$u=0$} is a particular solution to

$$
A_1(\Delta)\phi_1(u) = B_1(\Delta)(\phi_1 * f)(u) + \gamma_1(u) \qquad u \ge 0. \tag{10}
$$

Combining (3) and (9), we get

$$
y_1(u) = v q y_1(u + c_1) + v p (y_1 * f)(u + c_1).
$$
 (11)

Multiplying (11) by
$$
z^{u+c_1}
$$
 and then summing over *u* from 0 to ∞ lead to
\n
$$
\sum_{u=0}^{\infty} z^{u+c_1} y_1(u) = vq \sum_{u=0}^{\infty} z^{u+c_1} y_1(u+c_1) + v p \sum_{u=0}^{\infty} z^{u+c_1} (y_1 * f)(u+c_1),
$$
\n(12)

routine calculations lead to

calculations lead to
\n
$$
z^{c_1} \widetilde{y}_1(z) = v q \left[\widetilde{y}_1(z) - \sum_{u=0}^{c_1-1} z^u y_1(u) \right] + v p \left\{ \widetilde{y}_1(z) \widetilde{f}(z) - \sum_{u=0}^{c_1-1} z^u (y_1 * f)(u) \right\}.
$$

After some algebra, one could see that (12) can be written as

$$
\widetilde{y}_1(z) = \frac{-\nu \left\{ q \sum_{u=0}^{c_1-1} z^u y_1(u) + p \sum_{u=0}^{c_1-1} z^u (y_1 * f)(u) \right\}}{z^{c_1} - \nu q - \nu p \widetilde{f}(z)}.
$$
\n(13)

By choosing $y_{1,j}(u) = I_{\{j=u\}}$ for $j, u \in \{0,1,...,c_1-1\}$. According to (13), the generating function associated to the fundamental solution $\{y_{1,i}(u)\}\)$ $y_{1,j}(u)$ ^o $\int_{u=0}^{\infty}$ is

$$
\widetilde{y}_{1,j}(z) = \frac{-\nu \left\{ q z^j + p \sum_{u=j+1}^{c_1-1} z^u f(u-j) \right\}}{z^{c_1} - \nu q - \nu p \widetilde{f}(z)} = \frac{-R_{1,j}(z)}{\widetilde{h}_{1,1}(z) - \widetilde{h}_{1,2}(z)} \qquad u \ge 0,
$$
\n(14)

where

$$
\widetilde{h}_{1,1}(z) = z^{c_1}, \ \widetilde{h}_{1,2}(z) = vq + vp \widetilde{f}(z), R_{1,j}(z) = v \left\{ qz^{j} + p \sum_{u=j+1}^{c_1-1} z^{u} f(u-j) \right\}.
$$

Lemma 3.1: When $v \in (0,1)$, the denominator in (14) has exactly c_1 zeros, say $\{z_i\}_{i=1}^{c_1}$ *c* $z_i \big|_{i=1}^{c_1}$ inside the unit circle $C = \{ z : |z| = 1 \}.$

Lemma 3.2: When $v = 1$, the denominator in (14) has exactly $c_1 - 1$ zeros, say $\{z_i\}_{i=1}^{c_1-1}$ 1 $\frac{1}{1}$ $=$ *c* $z_i \big|_{i=1}^{c_1-1}$ inside the unit circle $C = \{ z : |z| = 1 \}$ and another trivial root $z_{c_1} = 1$.

For the rest of the paper, we assume that all $\{z_i\}_{i=1}^{c_1}$ *c* z_i $\bigg|_{i=1}^{c_1}$ are distinct, since the analysis of the multiple roots of Lundberg's generalized equation leads to tedious derivations.

Let
$$
\pi_i(z) = \prod_{j=1}^{c_i} (z - z_j)
$$
 and $\pi_i(z_k) = \prod_{l=1, l \neq k}^{c_i} (z_k - z_l)$, from Liu and Bao [17], we have
\n
$$
\frac{\widetilde{h}_{1,1}(z) - \widetilde{h}_{1,2}(z)}{\pi_1(z)} = 1 - \nu p T_z T_{z_1} \dots T_{z_2} T_{z_1} f(c_1),
$$
\n(15)

where T_z is an operator (see Li [18])defined as

$$
T_{z} y(c) = \sum_{u=0}^{\infty} z^{u} y(u+c) = \sum_{u=c}^{\infty} z^{u-c} y(u).
$$

(14) can be rewrote as

$$
\widetilde{y}_{1,j}(z) = \frac{\frac{-R_{1,j}(z)}{\pi_1(z)}}{\frac{\widetilde{h}_{1,1}(z) - \widetilde{h}_{1,2}(z)}{\pi_1(z)}}.
$$
\n(16)

Regarding the numerator in (16), partial fractions yield the equivalent representation

$$
\frac{-R_{1,j}(z)}{\pi_1(z)} = \sum_{k=1}^{c_1} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \cdot \frac{1}{z_k - z}.
$$
\n(17)

By inserting (15) and (17) into (16), we obtain

$$
\widetilde{y}_{1,j}(z) = v \, p \widetilde{y}_{1,j}(z) T_z T_{z_{c_1}} \dots T_{z_2} T_{z_1} f(c_1) + \sum_{k=1}^{c_1} \frac{R_{1,j}(z_k)}{\pi^{\prime}(z_k)} \frac{1}{z_k - z}.
$$
\n(18)

Theorem 3.1: For $j = 0, 1, \dots, c_1 - 1$, $y_{1, j}(u)$ satisfies the following defective renewal equation

$$
y_{1,j}(u) = \zeta_1 \sum_{n=0}^{u} y_{1,j}(u-n)\chi_1(n) + \zeta_1(u),
$$
\n(19)

where

$$
\varsigma_1 = \nu p T_1 T_{z_{c_1}} \dots T_{z_2} T_{z_1} f(c_1), \ \chi_1(n) = \frac{T_{z_{c_1}} \dots T_{z_2} T_{z_1} f(c_1 + n)}{T_1 T_{z_{c_1}} \dots T_{z_2} T_{z_1} f(c_1)}, \ \zeta_1(u) = \sum_{k=1}^{c_1} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \left(\frac{1}{z_k}\right)^{u+1}.
$$

Now, we turn our attention to the calculation of the particular solutions $\{\phi_1(u)\}_{u=1}^{\infty}$ $\phi_1(u)$ _{$u=0$}, combining (3) and (10), $\{\phi_1(u)\}_{u=1}^{\infty}$ $\phi_1(u)$ _{$u=0$} satisfies

$$
\phi_1(u) = v q \phi_1(u + c_1) + v p (\phi_1 * f)(u + c_1) + \gamma_1(u). \tag{20}
$$

We use a solution procedure analogous to the fundamental solutions, we get

$$
\widetilde{\phi}_1(z) = \frac{z^{c_1} \widetilde{\gamma}_1(z) - v \left\{ q \sum_{u=0}^{c_1 - 1} z^u \phi_1(u) + p \sum_{u=0}^{c_1 - 1} z^u (\phi_1 * f)(u) \right\}}{z^{c_1} - v q - v p \widetilde{f}(z)}
$$
\n
$$
= \frac{z^{c_1} T_z \gamma_1(0) - Q_{1,j}(z)}{z^{c_1} - v q - v p \widetilde{f}(z)}.
$$
\n(21)

where $Q_{1,i}(z) = v \left\{ q \sum z^u \phi_i(u) + p \sum z^u (\phi_i * f) \right\}$ J $\left\{ \right.$ \vert $\overline{\mathcal{L}}$ ┤ $= v \bigg\{ q \sum_{i=1}^{c_1-1} z^u \phi_1(u) + p \sum_{i=1}^{c_1-1} z^u (\phi_1 *$ = -= $(z) = v \left\{ q \sum z^u \phi_1(u) + p \sum z^u (\phi_1 * f)(u) \right\}$ 1 $\mathbf{0}$ 1 1 $\boldsymbol{0}$ 1, $Q_{1,i}(z) = v_1 \frac{q_1 - q_2}{q_1 - q_2} z^u \phi_1(u) + p \sum_{i=1}^{i-1} z^u (\phi_1 * f)(u_i)$ *c u* $\sum_{i=1}^{c_1-1} z^u \phi(u) + \sum_{i=1}^{c_1-1} z^u$ *u* $\mathcal{L}_j(z) = v \left\{ q \sum z^u \phi_1(u) + p \sum z^u (\phi_1 * f)(u) \right\}$ is a polynomial of degree $c_1 - 1$ (or less) in z. It is

known from (35) in Liu and Zhang [14] that

$$
\frac{z^{c_1}T_z\gamma_1(0) - Q_{1,j}(z)}{\pi_1(z)} = T_z T_{z_1} \dots T_{z_2} T_{z_1} \gamma_1(0).
$$
\n(22)

By substituting (15) and (22) into (21) , we get

$$
\widetilde{\phi}_1(z) = \frac{T_z T_{z_{\alpha_1}} \dots T_{z_2} T_{z_1} \gamma_1(0)}{1 - \nu p T_z T_{z_{\alpha_1}} \dots T_{z_2} T_{z_1} f(c_1)} = \frac{\widetilde{\phi}_1(z)}{1 - \nu p T_z T_{z_{\alpha_1}} \dots T_{z_2} T_{z_1} f(c_1)}.
$$
\n(23)

Theorem 3.2 : For $u \in N$, it holds that

$$
\phi_1(u) = \zeta_1 \sum_{n=0}^{u} \phi_1(u - n) \chi_1(n) + \mathcal{S}_1(u), \qquad (24)
$$

where $\mathcal{G}_1(u) = T_{z_{c_1}} \dots T_{z_2} T_{z_1} \gamma_1(u)$.

In the second scenario, for $u = b - c_1, \dots, b - 1$,

$$
m_1(u) = vqm_2(u+c_1) + vp(m*f)(u+c_1) + \gamma_1(u).
$$
 (25)

3.2 For initial surpluses equal to or more than the barrier *b*

The last scenario, for $u \ge b$,

$$
m_2(u) = vqm_2(u+c_2) + vp(m*f)(u+c_2) + \gamma_2(u),
$$
\n(26)

where
$$
\gamma_2(u) = vp \sum_{j=u+c_2+1}^{\infty} \omega(u + c_2; j - u - c_2) f(j).
$$

The structural form (8) for $m_1(u)$ is expressed in terms of the $\alpha_{1,j}$, and also depends on $m_2(u)$ in (26). In order to drive the solutions of $m(u)$, shifting the argument *u* in (26) by *b* units, for $u \ge 0$ (26) can be rewritten as

as
\n
$$
m_2(u+b) = vqm_2(u+b+c_2) + vp \sum_{j=b}^{u+b+c_2} m_2(j)f(u+b+c_2-j)
$$
\n
$$
+ vp \sum_{j=0}^{b-1} m_1(j)f(u+b+c_2-j) + \gamma_2(u+b),
$$

Let $\xi_2(u) \equiv m_2(u+b)$, (26) becomes

$$
\xi_2(u) = v q \xi_2(u + c_2) + v p (\xi_2 * f)(u + c_2) + \eta(u),
$$
\n(27)

where $\eta(u) = vp \sum m_1(j) f(u+b+c_2-j) + \gamma_2(u+b)$ u) = $vp \sum_{j=0}^{b-1} m_1(j) f(u+b+c_2-j) + \gamma_2(u+b)$ $=vp\sum_{j=0}^{b-1}m_1(j)f(u+b+c_2-j)+\gamma_2(u+b)$ $=$ $\eta(u) = vp \sum m_1(j) f(u+b+c_2-j) + \gamma_2(u+b)$.

We use a solution procedure analogous to that of Section 3.1, $\zeta_2(u)$ satisfies

$$
A_2(\Delta)\xi_2(u) = B_2(\Delta)(\xi_2 * f)(u) + \eta(u) \qquad u \ge 0, \tag{28}
$$

where

$$
A_2(z) = \sum_{j=0}^{c_2} a_{2,j} z^j, B_2(z) = \sum_{j=0}^{c_2} b_{2,j} z^j, a_{2,j} = I_{\{j=0\}} - \nu q \binom{c_2}{j}, b_{2,j} = \nu p \binom{c_2}{j}.
$$

From the general theory on difference equations, can be expressed as

$$
m_2(u+b) \equiv \xi_2(u) = \phi_2(u) \quad u = 0,1,...
$$

where $\{\phi_2(u)\}_{u=1}^{\infty}$ $\phi_2(u)$ _{$u=0$} satisfies

$$
A_2(\Delta)\phi_2(u) = B_2(\Delta)(\phi_2 * f)(u) + \eta(u) \qquad u \ge 0.
$$
 (29)

Some solution procedures are omitted, similar discussions can be find in Section 3.1.Generating function of the particular solution $\phi_2(u)$ is

$$
\tilde{\phi}_2(z) = \frac{z^{c_2} \tilde{\eta}(z) - v \left\{ q \sum_{u=0}^{c_2 - 1} z^u \phi_2(u) + p \sum_{u=0}^{c_2 - 1} z^u (\phi_2 * f)(u) \right\}}{z^{c_2} - vq - v p \tilde{f}(z)}
$$
\n
$$
= \frac{z^{c_2} T_z \eta(0) - R_{2,j}(z)}{\tilde{h}_{2,1}(z) - \tilde{h}_{2,2}(z)},
$$
\n(30)

104

Where

$$
\widetilde{h}_{2,1}(z) = z^{c_2}, \ \widetilde{h}_{2,2}(z) = vq + vp \widetilde{f}(z), R_{2,j}(z) = v \left\{ q \sum_{u=0}^{c_2-1} z^u \phi_2(u) + p \sum_{u=0}^{c_2-1} z^u (\phi_2 * f)(u) \right\}.
$$

Theorem 3.3: For $u \in N$, it holds that

$$
\phi_2(u) = \zeta_2 \sum_{n=0}^{u} \phi_2(u-n) \chi_2(n) + \mathcal{S}_2(u), \qquad (31)
$$

where

$$
\varsigma_2 = v p T_1 T_{z_{c_2}} \dots T_{z_2} T_{z_1} f(c_2), \ \ \chi_2(n) = \frac{T_{z_{c_2}} \dots T_{z_2} T_{z_1} f(c_2 + n)}{T_1 T_{z_{c_2}} \dots T_{z_2} T_{z_1} f(c_2)}, \ \ \mathcal{G}_2(n) = T_{z_{c_2}} \dots T_{z_2} T_{z_1} \eta(n).
$$

So for $u \ge b$,

$$
m_2(u) \equiv \xi_2(u - b) = \phi_2(u - b) \,. \tag{32}
$$

4 Numerical results

It is well-known that $f(x) = (1-\rho)\rho^{x-1}$ is a geometric distribution. In this section, it is further assumed that $f(x)$ is a mixture of two geometric distributions with $f(x) = \theta(1-\rho_1)\rho_1^{x-1} + (1-\theta)(1-\rho_2)\rho_2^{x-1}$ 2 μ_2 1 $f(x) = \theta(1-\rho_1)\rho_1^{x-1} + (1-\theta)(1-\rho_2)\rho_2^{x-1}$

Obviously, probability generating $|(1-\rho_1)(1-\rho_2)+\beta(1-z)|$ $(1 - \rho_1 z)(1 - \rho_2 z)$ $\widetilde{f}(x) = \frac{z[(1-\rho_1)(1-\rho_2)+\beta(1-z)]}{(1-\rho_1)(1-\rho_2)}$ μ_1 . μ_2 $1/\sqrt{1}$ μ_2 $z(1-\rho_2 z)$ $\widetilde{f}(x) = \frac{z[(1-\rho_1)(1-\rho_2)+\beta(1-z)]}{(1-\rho_1)(1-\rho_2)}$ $\rho_1 z$)(1 – ρ_1 $\rho_1(1-\rho_2)+\beta$ $-\rho_1 z(1 =\frac{z[(1-\rho_1)(1-\rho_2)+\beta(1-\rho_1)]}{(1-\rho_1)(1-\rho_2)}$ where $\beta = \theta \rho_2 (1 - \rho_1) + (1 - \theta) \rho_1 (1 - \rho_2)$, and mean is $\mu = \frac{\sigma}{1 - \rho_1} + \frac{1 - \sigma}{1 - \rho_2}$ 1 $1-\rho_1$ $1-\rho$ θ ρ θ $\mu = \frac{}{1-\rho_1} + \frac{}{1-\rho_2}$ $+\frac{1-}{1}$ \overline{a} $=\frac{b}{1} + \frac{1}{1}$, we rewrite (16) as (z) $(z)(1 - \rho_1 z)(1 - \rho_2 z)$ $\widetilde{y}_{1,i}(z)$ 1 $\mu_{1,j}$ (2) $(1 - \mu_1$ 2) $(1 - \mu_2)$ $\Lambda_1(z)$ $R_{1,i}(z)(1-\rho_1 z)(1-\rho_2 z)$ $\widetilde{y}_{1,i}(z) = \frac{-\mathbf{r}_{1,j}}{i}$ $j^{(\zeta)} = \frac{\Lambda}{\Lambda}$ $-R_{1/2}(z)(1-\rho_1 z)(1-\rho_2 z)$ $=\frac{-R_{1,j}(z)(1-\rho_1 z)(1-\rho_2 z)}{\Lambda_1(z)},$
 $\sum_{z}^{c_i}(1-\rho_1 z)(1-\rho_2 z)-\nu q(1-\rho_1 z)$ (33) (33)
 z) – $vp[z(1 - \rho_1)(1 - \rho_2) + \beta(1 - z)](i =$

where

$$
\Lambda_i(z) = z^{c_i} (1 - \rho_1 z)(1 - \rho_2 z) - vq(1 - \rho_1 z)(1 - \rho_2 z) - v p [z(1 - \rho_1)(1 - \rho_2) + \beta(1 - z)] (i = 1, 2)
$$

Since $\Lambda_i(z)$ is a polynomial of degree $c_i + 1$, with leading coefficient $\rho_1 \rho_2$, it can be expressed as

$$
\Lambda_i(z) = \rho_1 \rho_2 \pi_i(z) \prod_{j=1}^{\hbar} (z - \xi_j),
$$

where ξ are solutions of Λ _i(*z*) on the complex plane. It is notable that ξ have a module larger than 1, from performing partial fraction, we have

Huang and Bao; AJPAS, 15(4): 97-110, 2021; Article no.AJPAS.77839

$$
\frac{\pi_i(z)(1-\rho_1 z)(1-\rho_2 z)}{\Lambda_i(z)} = \frac{\pi_i(z)(1-\rho_1 z)(1-\rho_2 z)}{\rho_1 \rho_2 \pi_i(z) \prod_{j=1}^{\hbar} (z - \xi_j)} = 1 + \sum_{i=1}^{\hbar} \frac{\omega_i}{\xi_i - z},
$$
\n(34)

where

$$
\omega_i = \frac{\prod_{k=1}^h (\rho_k^{-1} - \xi_i)}{\prod_{k=1, k \neq i}^h (\xi_k - \xi_i)}.
$$

For $i = 1$, substituting (34) into (16) shows

$$
\widetilde{y}_{1,j}(z) = \frac{(1 - \rho_1 z)(1 - \rho_2 z)}{\Lambda_1(z)} \sum_{k=1}^{c_1} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \frac{\pi_1(z)}{z_k - z} = \sum_{k=1}^{c_1} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \left(1 + \sum_{i=1}^{h} \frac{\omega_i}{\xi_i - z}\right) \frac{1}{z_k - z}.
$$
 (35)

Upon inversion, we obtain from (35) that

$$
\frac{\alpha_1(z)(1-\mu_1 z)(1-\mu_2 z)}{\Lambda_1(z)} = \frac{\alpha_1(z)(1-\mu_1 z)(1-\mu_2 z)}{\rho_1 \rho_2 \pi_1(z) \prod_{j=1}^{k} (z - \xi_j)} = 1 + \sum_{i=1}^{\infty} \frac{\omega_i}{\xi_i - z},
$$
\n(34)
\n
$$
\omega_i = \frac{\prod_{i=1}^{k} (\rho_i^{-1} - \xi_i)}{\prod_{k=1, k \neq i}^{k} (\xi_k - \xi_i)}.
$$
\nsubstituting (34) into (16) shows
\n
$$
\tilde{y}_{1,j}(z) = \frac{(1-\rho_1 z)(1-\rho_2 z)}{\Lambda_1(z)} \sum_{k=1}^{\infty} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \frac{\pi_1(z)}{z_k - z} = \sum_{k=1}^{\infty} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \left(1 + \sum_{i=1}^{h} \frac{\omega_i}{\xi_i - z}\right) \frac{1}{z_k - z}. \quad (35)
$$
\n
$$
\text{ersion, we obtain from (35) that}
$$
\n
$$
y_{1,j}(u) = \sum_{k=1}^{\infty} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \left[z_k^{-(u+1)} + \sum_{i=1}^{h} \omega_i \sum_{i=0}^{u} \xi_i^{-(u+1)} z_k^{-(l+1)}\right]
$$
\n
$$
= \sum_{k=1}^{\infty} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \left(1 - \sum_{i=1}^{h} \frac{\omega_i}{z_k - \xi_i} \right) z_k^{-(u+1)} + \sum_{k=1}^{\infty} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \sum_{i=1}^{h} \frac{\omega_i}{z_k - \xi_i} e_i^{-(u+1)}.
$$
\n(36)
\n
$$
\sum_{k=1}^{\infty} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \left(1 - \sum_{i=1}^{h} \frac{\omega_i}{z_k - \xi_i} \right) z_i^{-(u+1)} + \sum_{k=1}^{\infty} \frac{R_{1,j}(z_k)}{\pi_1(z_k)} \sum_{i=1}^{h} \frac{\omega_i}{z_k - \xi_i}
$$

Use the same method, we obtain from (30) and (34) that,

$$
\widetilde{\phi}_i(z) = \frac{\pi_i(z)(1-\rho_1 z)(1-\rho_2 z)}{\Lambda_i(z)} \widetilde{\mathcal{G}}_i(z) = \left(1 + \sum_{j=1}^{\hbar} \frac{\omega_j}{\xi_j - z}\right) \widetilde{\mathcal{G}}_i(z),\tag{37}
$$

Upon the inversion of the generating functions, one obtains from (37) that

$$
\phi_i(u) = \mathcal{G}_i(u) + \sum_{j=1}^h \omega_j \sum_{l=0}^u \xi_j^{-(u+1-l)} \mathcal{G}_i(l) \,. \tag{38}
$$

Example: Suppose $c_1 = 2$, $c_2 = 1$, $p = 0.2$, $q = 0.8$, $v = 0.95$, $\rho_1 = 0.3$, $\rho_2 = 0.6$, from (33)

1e: Suppose
$$
c_1 = 2
$$
, $c_2 = 1$, $p = 0.2$, $q = 0.8$, $v = 0.95$, $\rho_1 = 0.3$, $\rho_2 = 0.6$, from (33)
\n
$$
\Lambda_1(z) = z^2 (1 - \rho_1 z)(1 - \rho_2 z) - vq(1 - \rho_1 z)(1 - \rho_2 z) - v p [z(1 - \rho_1)(1 - \rho_2) + \beta(1 - z)],
$$
\n
$$
\Lambda_2(z) = z(1 - \rho_1 z)(1 - \rho_2 z) - vq(1 - \rho_1 z)(1 - \rho_2 z) - v p [z(1 - \rho_1)(1 - \rho_2) + \beta(1 - z)].
$$

And the relatively safety loading condition $c_2 - p\mu > 0$ holds for all $\theta \in (0,1)$. Hence, θ is chosen to be 0.1,0.3, 0.5, 0.7,0.9, respectively. By solving Lundberg's equation $\Lambda_1(z) = 0$, we obtain the values of z_i 's and ζ_i 's, see Table 1. By solving Lundberg's equation $\Lambda_2(z) = 0$, we obtain the values of z_i 's and ζ_j 's, see Table 2.

	4.1	z_{2}		S2
0.1	-0.8738391540	0.9674521058	1.5385860914	3.3678009567
0.3	-0.8801119231	0.9682497475	1.5521641647	3.5969801084
0.5	-0.8863334780	0.9690110686	1.5658315556	3.3514908538
0.7	-0.8925049154	0.9697383777	1.5795907333	3.3431758044
0.9	-0.8986272938	0.9704338015	1.5934445298	3.3347489625

Table 1. Numerical results of z_i **'s and** ζ_j **'s, for** $c_1 = 2$ **.**

Table 2. Numerical results of z_1 **'s and** ζ_2 **'s, for** $c_2 = 1$ **.**

		וכי	52
0.1	0.916804131469313	1.37945341276706	3.46374245576363
0.3	0.921092162877287	1.40497341947108	3.43393441765163
0.5	0.925035115678722	1.43171692276687	3.4032479615544
0.7	0.928664417778473	1.45973526774272	3.37160031447881
0.9	0.932009119109698	1.48909606873408	3.33889481215622

Explicit expressions for $y_{1,j}(u)$ is determined by (36), so we obtain the values of $y_{1,j}(u)$ for $\theta = 0.5, c_1 = 2, c_2 = 1, p = 0.2, q = 0.8, \rho_1 = 0.3, \rho_2 = 0.6, v = 0.95, b = 10.$

For instance, one has for $\theta = 0.5$,

$$
y_0(u) = -0.42464 \times (-0.88633)^{-u} + 0.47519 \times 0.96901^{-u} - 0.05183 \times 1.56583^{-u} + 0.00129 \times 3.40325^{-u}
$$

$$
y_1(u) = 0.42071 \times (-0.88633)^{-u} + 0.55572 \times 0.96901^{-u} - 0.04023 \times 1.56583^{-u} + 0.00056 \times 3.40325^{-u}
$$

Then solve a system of linear equations with $\alpha_{1,i}$, Table 3 lists the values of $\alpha_{1,i}$'s.

Table 3. Numerical results of $\alpha_{1,j}$ **for** $b = 10$ **.**

Explicit expressions for $\phi_2(u)$ is determined by (38) so we get the values of $\phi_2(u)$ for $\theta = 0.5, c_1 = 2, c_2 = 1, p = 0.2, q = 0.8, \rho_1 = 0.3, \rho_2 = 0.6, \nu = 0.95, b = 10$, see Table 4.

$\phi_2(u)$	7.22942×10^{-4}	5.02029×10^{-4}	3.49790×10^{-4}	2.44063×10^{-4}	1.70395×10^{-4}
					19
$\phi_2(u)$	1.8993×10^{-4}	8.31054×10^{-5}	5.80441×10^{-5}	4.05411×10^{-5}	2.83162×10^{-5}

Table 4. Numerical results of $\phi_2(u)$ for $b = 10, \theta = 0.5$.

Especially, when $\omega(N_1, N_2) = 1, b = 10$. Fig. 1 and Fig. 2 depict the generating function of the time to ruin $m_b(u)$ as functions of *u*. Observing Fig. 1 and Fig. 2, for each fixed θ it is easy that a larger *u* corresponds to a smaller expected ruin time and $m_b(u)$ is a decreasing function of θ when u is fixed.

Fig. 1. Numerical results of $m_b(u)$ for $b = 10, u < b$

Fig. 2. Numerical results of $m_b(u)$ for $b = 10, u \ge b$

5. Conclusion

In this paper, we consider the compound binomial model with general premium rate and a constant dividend barrier.Using the roots of a generalization of Lundberg's fundamental equation and the general theory on difference equations, we derive an explicit expression for the Gerber-Shiu discounted penalty function up to the time of ruin. In particular, a numerical example is provided to show that the formulae are readily programmable in practice. From the numerical example given above, we can see that the barrier level has a negative effect on the total Gerber-Shiu discounted penalty function.

Acknowledgments

The authors are very grateful to the anonymous referee for his/her valuable comments and suggestions.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Lundberg FL. Approximerad Framstallning av SannolikehetsfunktionenⅡ: Aterforsakering av Kollektivrisker.Uppsala: Almqvist & Wiksell. 1903.
- [2] Gramer H. On the Mathematical Theory of Risk. Stockholm: Skandia Jubilee Volume. 1930;27-35.
- [3] Gerber HU. Mathematical fun with the compound binomial process. ASTIN Bulletin. 1988;18:161-168.
- [4] Shiu ESW. The probability of eventual ruin in a compound binomial model. ASTIN Bulletin. 1989; 19:179-190.
- [5] Willmot GE. Ruin probabilities in the compound binomial model. Insurance : Mathematics and Economics. 1993;2:133-142.
- [6] Dickson DCM. Some comments on the compound binomial model. ASTIN Bulletin. 1994;24:33-45.
- [7] Cossette H, Landriault D, Marceau É. Ruin probabilities in the compound Markov binomial model. Insurance: Scandinavian Actuarial Journal. 2003;4:301-323.
- [8] Landriault D. On a generalization of the expected discounted penalty function in a discrete-time insurance risk model. Applied Stochastic Models in Business and Industry. 2008;24(4):525-539.
- [9] Finetti DB. Su un'impostazione alternativa della teoria collettiva del rischio. Proceedings of the Transactions of the XV International Congress of Actuaries. 1957; 2:433–443.
- [10] Tan J, Yang X. The compound binomial model with randomized decisions on paying dividends. Insurance: Mathematics and Economics. 2006;39:1–18.
- [11] Landriault D. Randomized dividends in the compound binomial model with a general premium rate. Scandinavian Actuarial Journal. 2008;1–15.
- [12] Lei H, Yang X. The compound binomial model with randomly paying dividends to shareholders and policyholders. Insurance: Mathematics and Economics. 2010;46:443–49.
- [13] Yuen KC, Chen M, Kam, PW. On the expected penalty functions in a discrete semi-Markov risk model with randomized dividends. Journal of Computational and Applied Mathematics. 2017;311:239–51.
- [14] Zhang L, Liu H. On a discrete-time risk model with time-dependent claims and impulsive dividend payments. Scandinavian Actuarial Journal. 2020;2020(8).
- [15] Kelley WG, Peterson AC. Difference equations: An introduction with applications (1st ed). New York: Academic Press; 2001.
- [16] Elaydi S. An Introduction to Difference Equations, 2nd ed. New York: Springer-Verlag; 1999.

[17] Liu H, Bao Z. On a discrete-time risk model with general income and timedependent claims. Journal of Computational and Applied Mathematics. 2014;260:470–481.

[18] Li S. On a class of discrete time renewal risk models. Scandinavian Actuarial Journal. 2005;(4):241–260. __

© 2021 Huang and Bao; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) https://www.sdiarticle5.com/review-history/77839