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Abstract 

 
In this paper, a discrete-time risk model with dividend strategy and a general premium rate is considered. 

Under such a strategy, once the insurer’s surplus hits a constant dividend barrier b , dividends are paid off to 

shareholders at   instantly. Using the roots of a generalization of Lundberg’s fundamental equation and the 

general theory on difference equations, two difference equations for the Gerber-Shiu discounted penalty 

function are derived and solved. The analytic results obtained are utilized to derive the probability of ultimate 

ruin when the claim sizes is a mixture of two geometric distributions. Numerical examples are also given to 

illustrate the applicability of the results obtained. 

 

 

Keywords: Compound binomial model; two-step premium; defective renewal equation; Gerber-Shiu discounted 

penalty function; dividend strategy. 

 

1 Introduction  

 
Risk theory has a long development time, Lundberg [1] and Gramer [2] established the connection of risk theory. 

The compound binomial model that was first proposed by Gerber [3] have received considerable attention. For 

Original Research Article 



 

 
 

 

Huang and Bao; AJPAS, 15(4): 97-110, 2021; Article no.AJPAS.77839 
 

 

 
98 

 

instance, Shiu [4], Willmot [5] and Dickson [6] have analyzed the compound binomial model. Markov chain is 

understood to be a stochastic process in discrete time possessing a certain conditional independence property. 

The state space may be finite, countably infinite or even more general. Cossette et al. [7] consider the so-called 

compound Markov binomial model which introduces dependency between claim occurrences. For an 

generalization of the classical risk model see Landriault [8]. Furthermore, in the discrete time risk model, the 

issue related to dividend is also widely considered. 

 

Dividend strategies for insurance risk models were first proposed by DeFinetti [9] to reflect more realistically 

the surplus cash flows in an insurance portfolio. Because of the certainty of ruin for a risk model with a constant 

dividend barrier, the calculation of the Gerber-Shiu discounted penalty function is a major problem of interest in 

the context. Among the class of discrete-time risk models, Tan and Yang [10] derived a recursive algorithm to 

compute a particular class of Gerber-Shiu penalty functions in the framework of the compound binomial model 

with randomized dividend payments. Landriault [11] then generalized Tan and Yang’s model to consider the 

compound binomial model with a multi-threshold dividend structure and randomized dividend payments. In the 

discrete time risk model, He and Yang [12] considered that dividends are paid randomly to shareholders and 

policyholders in the framework of the compound binomial model. In the framework of a discrete semi-Markov 

risk model, a randomized dividend policy is studied by Yuen et al. [13]. Zhang and Liu [14] consider a discrete-

time risk model with a mathematically tractable dependence structure between interclaim times and claim sizes 

in the presence of an impulsive dividend strategy.  

 

The paper is structured as follows: a brief description of the discrete-time model and the introduction of the 

Gerber-Shiu discounted penalty function are considered in Section 2. In section 3, we obtain and solve a non-

homogeneous difference equation satisfied by the the Gerber-Shiu discounted penalty function );( bum . Closed-

form solutions for )(umb
 are obtained when the claim sizes is a mixture of two geometric distributions and 

corresponding numerical examples are also provided in Section 4. 

 

2 The model 

 

Throughout, denote by N  the set of natural numbers and }0/{NN 
. In the compound binomial model, 

the claim number process  NkNk ,  is assumed to be a renewal process with independent and identically 

distributed (i.i.d.) interclaim times  NjW j , having probability mass function (p.m.f.) 

1)1()(  j

W qqjf for 
Nl . Equivalently, the probability of having a claim is )10(  pp  and the 

probability of no claim is pq 1 . The individual claim amount r.v.’s(random variables)  NjX j ,  

form a sequence of strictly positive, integer-valued and i.i.d. r.v.’s. We suppose that the r.v.’s  NjX j ,  

are distributed as a generic r.v. X with p.m.f. )(xf , probability generating function (p.g.f.) )(
~

xf . Moreover, 

it is assumed that the r.v.’s ,, 21 WW and ,, 21 XX are mutually independent. Let  


kN

i ik XS
1

be the 

total amount of settled claims up the end of the kth time period with 00 S . 

 

Suppose that premiums are received at the beginning of each time period, and claims are paid out at the end of 

each time period. Denote 0u  to be the initial surplus, 0b  the constant barrier level, and 01 c  the 

annual premium . Under such a strategy, let )0( 1c  be the annual dividend rate, once the insurer’s 

surplus at time k  hits or exceeds a constant dividend barrier b , dividends are paid off to shareholders at 

instantly. In this case, the net premium after dividend payments is 012  cc . The corresponding surplus 

of the insurer at the end of the kth time period is )(kUb  for ,2,1k  can be described as 
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








bkUXckU

bkUXckU
kU

bkkb

bkkb

b
)1()1(

)1()1(
)(

2

1

，

，




,        (1) 

 

where uUb )0( ,  Nkk ,  is an independent and identically distributed Bernoulli sequence, we denote 

by 1k  the event of having a claim at the time k  and denote by 0k  the event that no claim at the time 

k . We assume that  pP i  )1(  and qpP i  1)0(  and surplus process )(kUb  has a positive 

drift by letting ][XpEc2   (known as the positive security loading condition in ruin theory). 

 

Define }0)(:min{  kUk bb  to be the time of ultimate ruin. Let v  be a constant annual discount rate for 

each period. When ruin occurs, )1( bU  is the surplus one period prior to ruin and )(bU  is the deficit at 

ruin. For ]1,0(v , the well-known Gerber-Shiu discounted penalty function is then defined as 

 

  uUIUUvEbum
bbb

b   01 ),();( 

  ,                              (2) 

 

where RNN  :  is a penalty function and 
}{QI  is the indicator function of an event Q . Also, we 

consider some special cases of (2) with successively simplified the penalty functions. If 1),( 21 nn  for 

 NNnn ),( 21 , we get the generating function of the time to ruin, i.e. 

 

  .)( 0 uUIvEum
b

b

b  


 

 

3. The Gerber-Shiu discounted penalty function 
 

In this section, we derive two difference equations for the Gerber-Shiu discounted penalty function: one for the 

initial surplus below the barrier level b  and the other for the initial surplus above the barrier level b . Clearly, 

the Gerber-Shiu discounted penalty function );( bum  behaves differently, depending on whether its initial 

surplus u  is below or above the barrier level b . Hence, we write 

 

.
),(

0),(
);(

2

1










buum

buum
bum

 

 

In order to identify the structural form of the solution for the Gerber-Shiu discounted penalty function, three 

cases will be considered separately. 

 

3.1 For initial surpluses less than the barrier b  

 

 In the first scenario, the initial surplus below the barrier b , for 1,...,1,0 1  cbu , we have 

 

  ),()()(

)();()()()()(

11111

1

11

1

11111

1

1

ucufmvpcuvqm

jfcujcuvpjfjcumvpcuvqmum
cuj

cu

j







 






      (3)  

 

where  
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)();()(
1

111

1

jfcujcuvpu
cuj






  . 

 

and fm 1  holds for the convolution product of 1m  and f . 

 

To state that (3) is a non-homogeneous difference equation of order 1c , we re-express (3) according to the 

forward difference operator   and its property (see Chapter 2 of Kelly & Peterson [15], 

 

),()(
0

um
j

c
cum

c

j

j










          (4) 

 

substituting (4) into (3) shows  

 

),())(()()( 11

0

1

1

0

1

1

11

uufm
j

c
vpum

j

c
vqum

c

j

j
c

j

j 
















 



          (5) 

 

for 1,...,1,0 1  cbu ，(5) can be simplified to  

 

 ),())(()( 11

0

,11

0

,1

11

uufmbuma
c

j

j

j

j
c

j

j  


                  (6)  

 

where 

  







 

j

c
vqIa jj

1

0,1 , 









j

c
vpb j

1

,1 . 

 

and )(1 zA , )(1 zB  are polynomials (in z ) defined as  

 





11

0

,11

0

,11 )(,)(
c

j

j

j

c

j

j

j zbzBzazA . 

becomes  

 

1,...,2,1,0),())()(()()( 111111  cbuuufmBumA  ,           (7)  

 

We know from (7) that )(1 um  satisfies a non-homogeneous difference equation of order 1c . From the general 

theory on difference equations, every solution to a 1c -th order difference equation can be expressed as a 

particular solution to this difference equation plus a linear combination of 1c  linearly independent solutions to 

the associated homogeneous difference equation (cf. Elaydi [16], Theorem 2.30). Therefore, for 

1,,1,0  bu  , the Gerber-Shiu discounted penalty function can be expressed as  

 

1,...,2,1,0),()()( ,1

1

0

,111

1

 




buuyuum j

c

j

j .             (8) 
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where   )1,...,1,0()( 10,1 



cjuy

uj are 1c fundamental solutions to the following homogeneous difference 

equation  

 

0))()(()()( 1111  uufyBuyA .     (9) 

 

 
01 )(

u
u  is a particular solution to 

 

0)())()(()()( 11111  uuufBuA  .                    (10) 

 

Combining (3) and (9), we get 

 

  )()()( 11111 cufyvpcuvqyuy  .                                        (11) 

 

Multiplying (11) by 1cu
z


 and then summing over u  from 0  to   lead to  

 

  )()()( 11

0

11

0

1

0

111 cufyzvpcuyzvquyz
u

cu

u

cu

u

cu
 
















,       (12) 

 

routine calculations lead to  

 

 
















 









)()(
~

)(~)()(~)(~
1

1

0

11

1

0

11

11

1 ufyzzfzyvpuyzzyvqzyz
c

u

u
c

u

uc
. 

 

After some algebra, one could see that (12) can be written as  

 

 

)(
~

)()(

)(~
1

11

1

1

0

1

1

0

1
zfvpvqz

ufyzpuyzqv

zy
c

c

u

u
c

u

u






















 .        (13) 

 

By choosing  ujj Iuy )(,1  for  1,...,1,0, 1  cuj . According to (13), the generating function associated 

to the fundamental solution 
ouj uy )(,1  is 

 

,0
)(

~
)(

~
)(

)(
~

)(

)(~

2,11,1

,1

1

1

,1
1

1

























u

zhzh

zR

zfvpvqz

jufzpqzv

zy
j

c

c

ju

uj

j            (14) 

 

where 

 









 




)()(,)(
~

)(
~

,)(
~ 1

1

,12,11,1

1

1 jufzpqzvzRzfvpvqzhzzh
c

ju

uj

j

c
. 

 

Lemma 3.1：When )1,0(v ，the denominator in (14) has exactly 1c  zeros, say   1

1

c

iiz


inside the unit circle 

 .1:  zzC  
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Lemma 3.2：When 1v ，the denominator in (14) has exactly 11 c  zeros, say   1

1

1



c

iiz  inside the unit 

circle  1:  zzC  and another trivial root 1
1
cz . 

 

For the rest of the paper, we assume that all   1

1

c

iiz


 are distinct, since the analysis of the multiple roots of 

Lundberg’s generalized equation leads to tedious derivations.  

 

Let  
 i

c

j ji zzz
1

)()(  and  


ic

kll lkki zzz
,1

'
)()( , from Liu and Bao [17], we have  

 

)(1
)(

)(
~

)(
~

1

1

2,11,1

121

cfTTTvpT
z

zhzh
zzzz c





,        (15) 

 

where zT  is an operator (see Li [18] )defined as 

 

.)()()(
0












cu

cu

u

u

z uyzcuyzcyT  

 

(14) can be rewrote as 

 

.

)(

)(
~

)(
~

)(

)(

)(~

1

2,11,1

1

,1

,1

z

zhzh

z

zR

zy

j

j









           (16) 

 

Regarding the numerator in (16), partial fractions yield the equivalent representation 

 

.
1

)(

)(

)(

)( 1

1
'

1

,1

1

,1

zzz

zR

z

zR

k

c

k k

kjj






 

              (17) 

 

By inserting (15) and (17) into (16), we obtain 

 

.
1

)(

)(
)()(~)(~

1

121
1

'

,1

1,1,1
zzz

zR
cfTTTTzypvzy

k

c

k k

kj

zzzzjj c 
 

 
        (18)  

 

Theorem 3.1：For 1,,1,0 1  cj  ， )(1 uy j， satisfies the following defective renewal equation 

 

),()()()( 11

0

,11,1 unnuyuy
u

n

jj   


                 (19) 

where 

 

)( 111 121

cfTTTvpT zzzc
 , 

)(

)(
)(

11

1

1
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cfTTTT

ncfTTT
n

zzz

zzz

c

c



 
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1

)(

)(
)(

1

1
'

1

,1

1

1













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u
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c
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Now, we turn our attention to the calculation of the particular solutions  
01 )(

u
u , combining (3) and (10), 

 
01 )(

u
u satisfies 

 

   ).()()()( 111111 ucufvpcuvqu                        (20) 

 

We use a solution procedure analogous to the fundamental solutions, we get  

 

 

.
)(

~
)()0(

)(
~

)()()(~

)(
~

1

1

1
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1

,11

1

1

0

1

1

0

1

1

zfvpvqz

zQTz

zfvpvqz

ufzpuzqvzz

z

c
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c

c

c

u

u
c

u
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
































           (21) 

 

where  








 








)()()( 1

1

0

1

1

0

,1

11

ufzpuzqvzQ
c

u

u
c

u

u

j   is a polynomial of degree 11 c  (or less) in z . It is 

known from (35) in Liu and Zhang [14] that  

 

)0(
)(

)()0(
1

1

,11

121

1





zzzz

jz

c

TTTT
z

zQTz

c



.                  (22) 

 

By substituting (15) and (22) into (21), we get 
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)(
~

)(1

)0(
)(
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cfTTTvpT
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
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Theorem 3.2：For Nu , it holds that 

 

)()()()( 11

0

111 unnuu
u

n

  


,                  (24) 

 

where )()( 11 121

uTTTu zzzc
  . 

 

In the second scenario, for 1,,1  bcbu  ， 

 

  )()()()( 11121 ucufmvpcuvqmum  .          (25) 

  

3.2 For initial surpluses equal to or more than the barrier b  
 

The last scenario, for bu  , 

 

  ),()()()( 22222 ucufmvpcuvqmum             (26) 
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where ).();()(
1

222

2

jfcujcuvpu
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




 

 
 

The structural form (8) for )(1 um  is expressed in terms of the 
j,1 , and also depends on )(2 um  in (26). In 

order to drive the solutions of )(um , shifting the argument u  in (26) by b  units, for 0u  (26) can be 

rewritten as 
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Let )()( 22 bumu  , (26) becomes 
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where )()()()( 22

1

0

1 bujcbufjmvpu
b

j

 




 . 

 

We use a solution procedure analogous to that of Section 3.1, )(2 u  satisfies 

 

0)())()(()()( 2222  uuufBuA  ,           (28) 

 

where 





22

0

,22

0

,22 )(,)(
c

j

j

j

c

j

j

j zbzBzazA ,   







 

j

c
vqIa jj

2

0,2 , 









j

c
vpb j

2

,2 . 

 

From the general theory on difference equations, can be expressed as 

 

,1,0)()()( 222  uuubum   

 

where  
02 )(

u
u  satisfies 

 

.0)())()(()()( 2222  uuufBuA                  (29) 

 

Some solution procedures are omitted, similar discussions can be find in Section 3.1.Generating function of the 

particular solution )(2 u  is 

 

 

,
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~
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~
)()0(
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~
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2,21,2

,2

2

1

0

2
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0

2

2

2

22

2

zhzh

zRTz

zfvpvqz

ufzpuzqvzz

z
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c

c

c

u

u
c

u

uc















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















    (30) 
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Where 

 

 








 








)()()(,)(
~

)(
~

,)(
~

2

1

0

2

1

0

,22,21,2

22

2 ufzpuzqvzRzfvpvqzhzzh
c

u

u
c

u

u

j

c  . 

 

Theorem 3.3：For Nu , it holds that 

 

)()()()( 22

0

222 unnuu
u

n

  


,         (31) 

 

where 

 

),( 212 122

cfTTTvpT zzzc
  ,

)(

)(
)(

21

2

2

122

122

cfTTTT

ncfTTT
n

zzz

zzz

c

c



 
  ).()(

122
2 uTTTu zzzc

   

 

So for bu  , 

 

)()()( 222 bubuum   .                           (32) 

   

4 Numerical results 

 
 It is well-known that 1)1()(  xxf   is a geometric distribution. In this section, it is further assumed that 

)(xf  is a mixture of two geometric distributions with
1

22

1

11 )1)(1()1()(



xx

xf 
. 

 

Obviously, probability generating function is 
 

)1)(1(

)1()1)(1(
)(

~

21

21

zz

zz
xf








  where 

)1()1()1( 2112   , and mean is 

21 1

1

1 














 , we rewrite (16) as 
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)1)(1)((
)(~

1

21,1

,1
z

zzzR
zy

j

j






,        (33) 

where 

 

  )2,1()1()1)(1()1)(1()1)(1()( 212121  izzvpzzvqzzzz ic

i 

 

Since )(zi  is a polynomial of degree 1ic , with leading coefficient 21 ，it can be expressed as 

 







1

21 )()()(
j

jii zzz  , 

 

where i  are solutions of )(zi  on the complex plane. It is notable that i  have a module larger than 1,from 

performing partial fraction, we have 

 



 

 
 

 

Huang and Bao; AJPAS, 15(4): 97-110, 2021; Article no.AJPAS.77839 
 

 

 
106 

 


 













 


1

1

21

2121 1

)()(

)1)(1)((

)(

)1)(1)((

i i

i

j

ji

i

i

i

z
zz

zzz

z

zzz








,               (34) 

 

where 
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For 1i , substituting (34) into (16) shows  
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Upon inversion, we obtain from (35) that 
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Use the same method, we obtain from (30) and (34) that, 
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Upon the inversion of the generating functions, one obtains from (37) that  

 









u

l

i

lu

j

j

jii luu
0

)1(

1

)()()( 


.               (38) 

 

Example：Suppose 6.0,3.0,95.0,8.0,2.0,1,2 2121  vqpcc ，from (33) 

 

 )1()1)(1()1)(1()1)(1()( 212121

2

1 zzvpzzvqzzzz   , 

 

 )1()1)(1()1)(1()1)(1()( 2121212 zzvpzzvqzzzz   . 

 

And the relatively safety loading condition 02  pc  holds for all )1,0( . Hence,   is chosen to be 

9.0,7.0,5.0,3.0,1.0 , respectively. By solving Lundberg’s equation 0)(1  z , we obtain the values of 

iz ’s and j ’s, see Table 1. By solving Lundberg’s equation 0)(2  z , we obtain the values of 1z ’s and 

j ’s, see Table 2. 
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Table 1. Numerical results of iz ’s and 
j ’s, for 21 c . 

 

  1z  2z  1  2  

0.1 -0.8738391540 0.9674521058 1.5385860914 3.3678009567 

0.3 -0.8801119231 0.9682497475 1.5521641647 3.5969801084 

0.5 -0.8863334780 0.9690110686 1.5658315556 3.3514908538 

0.7 -0.8925049154 0.9697383777 1.5795907333 3.3431758044 

0.9 -0.8986272938 0.9704338015 1.5934445298 3.3347489625 

 

Table 2. Numerical results of 1z ’s and 2 ’s, for 12 c .  

 

  1z  1  2  

0.1 0.916804131469313 1.37945341276706 3.46374245576363 

0.3 0.921092162877287 1.40497341947108 3.43393441765163 

0.5 0.925035115678722 1.43171692276687 3.4032479615544 

0.7 0.928664417778473 1.45973526774272 3.37160031447881 

0.9 0.932009119109698 1.48909606873408 3.33889481215622 

 

Explicit expressions for )(,1 uy j is determined by (36), so we obtain the values of )(,1 uy j  for 

10,95.0,6.0,3.0,8.0,2.0,1,2,5.0 2121  bvqpcc  .  

 

For instance, one has for 5.0 , 

 
uuuuuy   40325.300129.056583.105183.096901.047519.0)88633.0(42464.0)(0  

 
uuuuuy   40325.300056.056583.104023.096901.055572.0)88633.0(42071.0)(1  

 

Then solve a system of linear equations with j,1 , Table 3 lists the values of j,1 ’s. 

 

Table 3. Numerical results of j,1  for 10b . 

 

  0.1 0.3 0.5 0.7 0.9 

01，  0.001602 0.00103 0.00059 0.00027 5.109949 510  

11，  0.001703 0.00109 0.00063 0.00029 6.318151 510  

 

Explicit expressions for )(2 u  is determined by (38) so we get the values of )(2 u for 

10,95.0,6.0,3.0,8.0,2.0,1,2,5.0 2121  bvqpcc  , see Table 4. 

 

Table 4. Numerical results of )(2 u for 5.0,10  b . 

 
u  10 11 12 13 14 

)(2 u  410229427 .  
410020295 .  

410497903 .  
410440632 .  

410703951 .  
u  15 16 17 18 19 

)(2 u  41089931 .  
510310548 .  

510804415 .  
510054114 .  

510831622 .  
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Especially, when 10,1),( 21  bNN ，Fig. 1 and Fig. 2 depict the generating function of the time to ruin 

)(umb  as functions of u . Observing Fig. 1 and Fig. 2, for each fixed   it is easy that a larger u  corresponds 

to a smaller expected ruin time and )(umb  is a decreasing function of   when u  is fixed. 

 

 
 

Fig. 1. Numerical results of )(umb for bub  ,10
 

 

 
 

Fig. 2. Numerical results of )(umb  for bub  ,10  

 

5. Conclusion 

 
In this paper, we consider the compound binomial model with general premium rate and a constant dividend 

barrier.Using the roots of a generalization of Lundberg’s fundamental equation and the general theory on 

difference equations, we derive an explicit expression for the Gerber-Shiu discounted penalty function up to the 

time of ruin. In particular, a numerical example is provided to show that the formulae are readily programmable 

in practice. From the numerical example given above, we can see that the barrier level has a negative effect on 

the total Gerber-Shiu discounted penalty function. 
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