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ABSTRACT 
 

The trend for use of rooftop solar photovoltaics (PV) is rising due to their promising economic 
potential as a source of clean renewable energy. In general, a source of renewable solar energy 
consists of solar PV, an automatic charge controller, a battery pack, and an inverter. The reliability 
of a rooftop solar PV system is evaluated herein as that of a coherent threshold system (CTS). 
First, we utilize the unit-gap method and the fair-power method to verify that a given Boolean 
function is a threshold one and to identify its threshold and component weights. Both methods 
utilize specific features of the Karnaugh map (K-map). The unit-gap method uses the map to list all 
necessary inequalities by inspection, and then reduce them significantly by omitting dominated 
ones. The fair-power method uses the Karnaugh map to compute Banzhaf indices by appropriate 
map folding followed by XORing of true cells and false cells.  We evaluate the CTS reliability via a 
recursive algorithm based on the Boole-Shannon’s expansion in the switching domain, which is 
transformed via the real transform to the total probability law in the probability domain. 
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1. INTRODUCTION 
 

The term “Photovoltaics” (PV) denotes the 
conversion of sunlight or electromagnetic energy 
(in the frequency bands of visible and invisible 
light) into electrical energy using materials that 
exhibit the photovoltaic effect. The most familiar 
form of this effect uses solid-state semiconductor 
devices, mainly photodiodes. A solar photovoltaic 
system is considered a renewable energy source 
since its input (solar radiation or the radiation 
coming to earth from the sun) is not threatened 
by depletion within a human time scale. 
Currently, PV is one of the most effective 
alternative energy sources expected to meet 
electricity needs in high-temperature arid areas 
where intensive solar radiation might be optimally 
utilized. A solar PV system enjoys the prominent 
advantages of being low cost and pollution free. 
These advantages are causing an ongoing trend 
of a dramatic expansion of solar PV systems that 
is taking place at a rapid rate [1]. In the modern 
city, the positive trend of rooftop solar PV is 
rising due to the economic potential of solar 
energy [2-5]. The components of a rooftop solar 
PV system consist of solar PV, an automatic 
charge controller, a battery pack, and an inverter, 
with a configuration such as the one presented in 
Fig. 1. Solar PV panels installed on the roof of a 
house require an area around 10–12 m�  to 
produce a power of 1 kW at noon in a sunny day 
at a moderate latitude. The solar panels are 
connected to an automatic charge controller, 
which serves to regulate the charging of the 
multiple batteries. A battery stores the electrical 
energy produced by the solar PV, and if the main 

power source cannot meet the electricity needs, 
the battery will supply electricity through the 
inverter to convert the DC voltage into an AC 
voltage according to the specifications of the 
loads. The performance success or failure of a 
rooftop solar PV system, and hence its reliability, 
could be evaluated by modeling it as a coherent 
threshold system (CTS) [6]. 
 
This paper investigates the reliability of a rooftop 
solar PV system using the coherent threshold 
system (CTS) model. This model has been 
widely discussed and applied in several scientific 
fields [6-9]. The CTS model is also widely known 
in the open literature by the controversial name 
of a weighted k-out-of-n:G system [7], since it 
might be viewed as a non-symmetric extension 
of the partially-redundant system. The coherent 
threshold system is a coherent reliability system, 
whose success is a causal monotonically-
increasing threshold switching function, for which 
no component is dummy or irrelevant [6-10].A 
threshold switching function of  n variables is 
characterized by (n + 1)  real numbers: n 
weightsW �and a threshold T.  The success of the 
system is satisfied if the total sum of the products 
W �X�of a component successX� by its weight W � is 
equal to or larger than the threshold, and 
otherwise the system fails. Mathematically, this is 
stated as [6]. 
 

                  S(�)= 1  ���  � W iXi≥ T,   

n

i=1

 

and S(�)= 0 otherwise (1)
 

 
 

Fig. 1. Configuration of a solar PV system 
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2. METHODS AND RESULTS 
 

The system success of the solar PV system 
under consideration is investigated via two 
techniques to verify that it is indeed a threshold 
switching function, and consequently to 
determine a specific (non-unique) set of values 
for the weights and threshold of this function. The 
techniques used are the unit-gap method and the 
fair-power method, adapted from Rushdi and 
Alturki [7]. These two techniques seem quite 
suitable among the plethora of existing methods 
for the synthesis of threshold Boolean functions. 
Once the threshold nature of the proposed 
system success is established and 
characterized, recursive relations and a 
recursion-based algorithm are forwarded for the 
reliability analysis of the corresponding CTS 
model [6-8]. 
 

2.1 The Unit-Gap Method 
 

The unit-gap strategy is based on the 
construction of two forms or types of inequalities. 
The first type corresponds to the true vectors of 
the success function, in which the total sum of 
weighted successes of components is equal to or 

larger than the threshold (W���⃗ �X��⃗ ≥ T), and denoted 

to be such that ( S�X��⃗ � = 1). By contrast, the 

second type of inequalities corresponds to the 
false vectors of the success function, in which 
the total sum of weighted successes of 
components is strictly lower than the threshold 

(W���⃗ �X��⃗ < �), denoted as(S�X��⃗ � = 0). In the unit-gap 

method, both the former non-strict inequalities 
and the latter strict ones are converted into 
appropriate equations. In fact, the former 

inequalities(W���⃗ �X��⃗ ≥ T)  are satisfied exactly as 

equations (W���⃗ �X��⃗ = T). while the latter inequalities 

(W���⃗ �X��⃗ < �) are each subjected to a unit slack so 

as to be satisfied as equations (W���⃗ �X��⃗ = T − 1). 
The true vectors are identified as cells belonging 
to the prime-implicant loops of the success 
function on the Karnaugh map (K-map), while the 
false vectors are recognized as cells found within 
the prime-implicate loops of this function on the 
K-map (which are the prime-implicant loops of 
system failure) .  
 

The configuration of solar PV systems in Fig. 1 
can be transformed into Fig. 2, which involves 
five components (X�,X�,X�,X�,X�), whereX� is the 
success of the solar PV, X� is the success of the 
automatic charge controller, X�  and X� are 
successes of the two batteries, and X�  is the 
success of the inverter.  

Fig. 2 depicts the logical (rather than physical) 
structure of the solar PV system. It could be used 
to write system success as a sum-of-products 
function (using and OR logic only) as shown in 
Eq. 2. The function in Eq. 2 is partially symmetric 
in elements X� , X�,  and X� . Itis also partially 
symmetric in elements X�  and X� . Partially 
symmetric components can be interchanged with 
one another without affecting the success 
function 
 

S�X�,X�,X�,X�,X�� = X�X�X� (X� ∨ X�)= X�X�X�X� ∨

X�X�X�X�.    (2) 
 

The success function of Eq. 2is analyzed by the 
K-map to get its prime-implicants and its prime 
implicates (complements of the prime implicants 
of the function’s complement). We can find the 
prime implicants and prime implicates using 
properties of coherent functions, where a prime-
implicant loop extends to the farthest cell from 
the all-true (all-1) cell and a prime-implicate loop 
extends to the farthest cell from the all-false (all-
0) cells [7,11]. The prime implicants and the 
prime implicates of the system success are 
shown in Fig. 3 and Fig. 4, respectively. Based 
on Fig. 3 and Fig. 4, we can construct Fig 5,in 
which the yellow cells represent the farthest cells 
(from the all-1 cell) of the prime-implicant loops 
and the green cells represent the farthest cells 
(from the all-0 cell) of the prime-implicate loops. 
Rushdi and Alturki [7] have shown that 
inequalities corresponding to both types of 
colored cells dominate inequalities within the 
enclosing loops. 
 

The inequalities of weights and threshold of the 
five-variable CTS model of the rooftop solar PV 
system are shown in Fig. 6. They consist of 32 
inequalities (3 non-strict inequalities and 29 strict 
inequalities), and they involve 6 variables (5 
weights and the threshold). Now, these 32 
inequalities are reduced to just 6 dominating 
inequalities, which pertain to both types of 
colored cells in Fig. 5. Details of these 6 
dominating inequalities of the system are 
explained in Table 1. In Table 1, the partial 
symmetry in X� and X�mandates that (preferably) 
the parallel components 3 and 4 should have 
equal weightsW � = W �.There is another partial 
symmetry in X� , X�  and X� , which necessitates 
that (preferably) the series components 1, 2, 5 
should have the same weights. We will 
deliberately impose the first symmetry preferred 
requirement, but we will temporarily ignore the 
second. The last column of Table 1 shows that 
we now have 5 independent inequalities in 5 
unknowns.  



Based on Table 1, the non-strict inequalities are 
written as equalities shown in Eq. 3, and the 
strict inequalities are written as equalities (using 
a gap of unity) shown in Eq. 4 
 

W � + W � + W � + W � = T,                     

W � + W � + W � = W � + 2W � + W �

W � + 2W � = W � + 2W � + W � = T

We can get W � = 2 , W � = 2 , W
and  W � = 2  by subtraction of each of the 
equations (4) from equation (3). Substitution of 
these values in any of the equations (3) or (4) 
yields T = 7.  Finally, success in Eq. 1  
satisfied with a threshold T = 7  and a weight 

vector W����⃗ = [2 2 1 1 2]� . The fact that we ended 
with a solvable system of equations (3) and (4) 
verifies our underlying assumption that we are 
dealing with a threshold function, indeed.  
Though, we initially ignored the partial symmetry 
in components 1, 2, and 5, we were forced to 
recognize this symmetry by getting 
W � = 2. Had we recognized this symmetry from 
the outset, we would have imposed 
W � to replace (3) and (4) by 
 

3W � + W � = T ,                                     (5a)

3W � = 2W � + 2W � = 2W � + 2W � = 2W �

                                
 

Equations (5) constitute 3 independent equations 
in 3 unknowns, which readily produce the same 
solution as above. 
 

2.2 The Fair-Power Method 
 
The fair-power method uses the Banzhaf indices 
as fair weights of the components of the rooftop 
solar PV system, whether system success is a 
threshold function or not. If later, we can identify 
an appropriate threshold value, then the system 
is a threshold one, indeed. A Banzhaf index [12
19] is defined as the number of true vectors 
(called weight or non-normalized syndrome) of 
the Boolean derivative with respect to the 
pertinent variableX�. This derivative is obtained 
by XORing the two subfunctions/quotients/ratios 
obtained by restricting f  to X�= 0
respectively. 
 

�� = weight �
��

���
� = weight (�(�

0⨁�� | Xi=1)                             
 

The Banzhaf indices of the components of the 
rooftop solar PV are illustrated in detail in Fig. 7, 
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strict inequalities are 
written as equalities shown in Eq. 3, and the 
strict inequalities are written as equalities (using 

,                         (3) 
 

W � = W � +
T − 1.     (4) 

 
W � = W � = 1 , 

by subtraction of each of the 
equations (4) from equation (3). Substitution of 
these values in any of the equations (3) or (4) 

.  Finally, success in Eq. 1  can be 
and a weight 

. The fact that we ended 
with a solvable system of equations (3) and (4) 
verifies our underlying assumption that we are 
dealing with a threshold function, indeed.  

ignored the partial symmetry 
in components 1, 2, and 5, we were forced to 
recognize this symmetry by getting W � = W � =

. Had we recognized this symmetry from 
the outset, we would have imposed W � = W � =

,                                     (5a) 
 

+ 2W � = T − 1.  
                            (5b) 

Equations (5) constitute 3 independent equations 
in 3 unknowns, which readily produce the same 

power method uses the Banzhaf indices 
as fair weights of the components of the rooftop 
solar PV system, whether system success is a 
threshold function or not. If later, we can identify 
an appropriate threshold value, then the system 

hreshold one, indeed. A Banzhaf index [12-
19] is defined as the number of true vectors 

normalized syndrome) of 
the Boolean derivative with respect to the 

. This derivative is obtained 
/quotients/ratios 
0  and X�= 1 , 

(�| X�=

                            (6) 

The Banzhaf indices of the components of the 
rooftop solar PV are illustrated in detail in Fig. 7, 

where B� , B� , B� , B� , B�  indicate the proposed 
weights of the components X�, X�, 
 
Fig. 7 shows the complete Banzhaf indexes of 
the components with weights of W
W � = 1, W � = 1, W � = 3. So far, we are not sure 
whether the success functionis threshold or not. 
We can assert that the function is a threshold 
one if we find a value� that fits as a threshold for 
it.We now construct a map for the pseudo
Boolean function 
 

F��X��⃗ � = 3 X� + 3 X� + X� + X� +

in which we weight every component success by 
the proposed weight or Banzhaf index in Fig. 8.In 
Fig. 8, we identify the 3 cells that must be
vectors (according to Fig. 3). Entries in these 
cells should be greater than or equal to 
other words  T  is lower than or equal to the 
minimum entry in these cells, which is 10.  
Likewise, we identify the 29 cells that must be 
false vectors (according to Fig. 3). Entries in 
these cells should be strictly lower than 
other words T  is strictly greater than the 
maximum entry in these cells, which is 9.  Any 
value in the semi-closed interval 
acceptable for  T , to render the system a 
threshold one. We choose T = 10
unit gap. 
 

2.3 Recursive relations and algorithm
 
The Boole-Shannon expansion [6
useful to derive expressions for system success 
in the switching domain (two-valued Boolean 
domain), and expressions for system
the probability domain. The reliability of the 
rooftop solar PV is obtained by the forthcoming 
Eq. 8, which is proposed in [6, 7], as an 
application of the Boole-Shannon to a threshold 
switching function, transformed to the probability 
domain.  
 

R (n; p�⃗ ; W���⃗ ; T)= q�R�n − 1; p�⃗ /p�; W���⃗ /W �;

1; p�⃗ /p�; W���⃗ /W �; T − W �),            (8)

  
The recursive relation in Eq. 8 must be 
supplemented by the boundary condition in Eq. 

9.Here, the symbol R (n; p�⃗ ; W���⃗ ; T
reliability (expectation of success) for a threshold 
system of n  components with component 

reliabilities p�⃗ , and with weights W���⃗  and a threshold 

 
 
 
 

; Article no.JERR.64840 
 
 

indicate the proposed 
, X�, X� and X�. 

7 shows the complete Banzhaf indexes of 
W � = 3, W � = 3, 

. So far, we are not sure 
whether the success functionis threshold or not. 
We can assert that the function is a threshold 

as a threshold for 
it.We now construct a map for the pseudo-

+ 3 X�,       (7) 

 
in which we weight every component success by 
the proposed weight or Banzhaf index in Fig. 8.In 
Fig. 8, we identify the 3 cells that must be true 
vectors (according to Fig. 3). Entries in these 
cells should be greater than or equal to T . In 

is lower than or equal to the 
minimum entry in these cells, which is 10.  
Likewise, we identify the 29 cells that must be 

rding to Fig. 3). Entries in 
these cells should be strictly lower than T . In 

is strictly greater than the 
maximum entry in these cells, which is 9.  Any 

closed interval (9,10]   is 
, to render the system a 

10 to secure a 

Recursive relations and algorithm 

Shannon expansion [6-9, 20-24] is 
useful to derive expressions for system success 

valued Boolean 
domain), and expressions for system reliability in 
the probability domain. The reliability of the 
rooftop solar PV is obtained by the forthcoming 

in [6, 7], as an 
Shannon to a threshold 

switching function, transformed to the probability 

; T� + p�R(n −

(8) 

 

The recursive relation in Eq. 8 must be 
supplemented by the boundary condition in Eq. 

T) denotes the 
reliability (expectation of success) for a threshold 

components with component 

and a threshold 
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T. Based on Eq. 8 and Eq. 9, we can draw the 
signal flow graphs (SFGs) shown in Figs. 9-12. 
The black nodes in these figures are the sources 
of unit values, while the white nodes are fictitious 
or annihilating “sources” of zero values. Every 
non-source node has two arrows incident on it 
according to Eq. 8.  
 

The signal flow graph is constructed with four 
different scenarios in Fig. 9-12. Fig. 9 and 11 use 
the worst policy (smallest weights first), while Fig. 
10 and 12 employ the best policy (largest 
weights first). Fig. 9 and 10 employ the set of 
weights [2 2 1 1 2]

T 
and the threshold T=7, while 

Figs. 11 and 12  employ the set of weights [3 3 1 
1 3]T and the threshold T=10. 
 

In the first scenario, components with the 
smallest weights are first used to decompose the 
success of the system. In the second scenario, 

components with the largest weights are first 
used to decompose the success of the system. 
The reliability according to the four scenarios in 
Figs. 9-12 are respectively  

 
R(5; p�⃗ ; 2,2,1,1,2; 7)= p�p�p�p�p� + p�p�q�p�p� +

p�p�p�q�p�,                                               (10) 

 
R(5; p�⃗ ; 2,2,1,1,1,2; 7)= p�p�p�p� + p�p�p�q�p�,    (11) 

 
R(5; p�⃗ ; 3,3,1,1,3;10)= p�p�p�p�p� + p�p�q�p�p� +

p�p�p�q�p�                                                 (12) 

 
R(5; p�⃗ ; 3,3,1,1,3;10)= p�p�p�p� + p�p�p�q�p� .     (13) 

 
 The results in Eqs. 10 and 12 are identical and 
are shown on the Karnaugh map of Fig. 13, and 
the results in Eqs. 11 and 13 are identical               
and are shown on the Karnaugh map of Fig. 14.

 

 
 

Fig. 2. Logical (rather than physical) structure of the solar PV system 
 

   
 

Fig. 3. Prime implicants for the success function in Eq. 1. These are the minimal paths of the 
logical configuration in Fig. 2 
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Fig. 4. Prime implicates for Eq. 1, denoted indirectly by their complementary values as the 
prime implicants of the complement of Eq. 1, i.e., of system failure. These latter entities 

(shown in figure) are the minimal cutsets of the logical configuration in Fig. 2 
 

 
 

Fig. 5. Yellow cells represent prime-implicant locations (and green cells represent prime-
implicates location) of the respective dominating inequalities 

 

 
 

Fig. 6. The inequalities for the weights and threshold for Eq. 1 
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Table 1. Dominating inequalities 
 

Dominating inequality  Exhausts Symmetry of �� and �� only 
True (On) cells   
�� + �� + �� + �� ≥ � A prime implicant  W � + W � + W � + W � ≥ T 
�� + �� + �� + �� ≥ � A prime implicant  W � + W � + W � + W � ≥ T 
False (Off) cells   
�� + �� + �� < � A prime implicate  W � + W � + W � < T 
�� + �� + �� + �� < � A prime implicate  W � + 2W � + W � < T 
�� + �� + �� + �� < � A prime implicate  W � + W � + 2W � < T 
�� + �� + �� + �� < � A prime implicate  W � + 2W � + W � < T 

 

 
 

B� = weight�
��

���
� = 3.B� = weight�

��

���
� = 3.B� = weight�

��

���
� = 1. 

 

 
 

B� = weight�
��

���
� = 1.B� = weight�

��

���
� = 3. 

 
Fig. 7. Banzhaf indices for the function in Eq. 1 

 

 
 

Fig. 8. Pseudo-Boolean function ������⃗ � = � �� + � �� + �� + �� + � ��, suggesting the feasibility 

of a threshold-function solution for the threshold� = �� 
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Fig. 9. Signal flow graph for worst-policy evaluation of system reliability with the set of weights 
[2 2 1 1 2]T and the threshold T=7 

 

 
 

Fig. 10. Signal flow graph for best-policy evaluation of system reliability with the set of weights 
[2 2 1 1 2]T and the threshold T=7 
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Fig. 11. Signal flow graph for worst-policy evaluation of system reliability with the set of 
weights [3 3 1 1 3]T and the threshold T=10 

 

 
 

Fig. 12. Signal flow graph for best-policy evaluation of system reliability with the set of weights 
[3 3 1 1 3]

T 
and the threshold T=10 
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Fig. 13. The worst scenario for system  Fig. 14. The best scenario for system reliability in 
Figs.9 and 11. reliabilityin Figs. 10 and 12. 

 

3. DISCUSSION 
 
The reliability of rooftop solar PV systems are 
evaluated herein by the CTS technique. The 
weights and thresholds of the system success 
are defined via two methods. The first method is 
called the unit-gap method, while the second 
method is referred to as the fair-power method. 
The unit-gap method reduces the number of 
pertinent linear inequalities using domination 
among inequalities and symmetry of 
components. The fair-power method obtains the 
weights as Banzhaf indexes, and then fits an 
appropriate threshold with them. Subsequently, a 
recursive technique is used to derive a symbolic 
expression for the reliability of the pertinent CTS. 
The technique is illustrated by a probability map 
and an acyclic signal flow graph that resembles a 
reduced ordered binary decision diagram 
(ROBDD) [7, 8, 24-27]. Similar ROBDD-like 
SFGs were earlier employed for handling related 
systems [28-32]. The recursive algorithm has two 
different implementations that stand for two 
distinct strategies. It is a straightforward 
generalization of a recursive algorithm for 
computing the reliability of partially-redundant or 
k-out-of-n systems [33-36].The reliability results 
obtained herein are the same, despite the non-
uniqueness for the threshold and weight values. 
 
In passing, we note that there are many methods 
for the identification and synthesis of threshold 
Boolean functions [37-46], i.e., for determining 
whether a given Boolean (switching) function is 
threshold or not, and, if it is such, selecting 
appropriate (albeit non-unique) values for its 
weights and threshold. The two methods 
reported herein are just two representative 
methods that seem to be suitable for reliability 
applications pertaining to coherent threshold 
systems. We reiterate that threshold Boolean 

functions and coherent Boolean functions are 
two proper distinct subsets of unate Boolean 
functions [6].  Threshold Boolean functions might 
be coherent or non-coherent [6,30], and coherent 
Boolean functions might be threshold or non-
threshold [7, 30]. The reader is referred to [30] 
for a taxonomy of CTS-related systems. 
  
We have deliberately chosen the coherent-
threshold model to address the general problem 
of reliability of photovoltaic systems. In 
retrospect, we note that this model is too 
powerful for the small example we elected to 
consider in this paper. Our example turned out to 
be a simple series-parallel system. It can be 
shown that a series-parallel system is a proper 
subset of the coherent threshold system [6]. In 
fact, it is shown in [6] that series systems and 
parallel systems are both threshold (and they are 
naturally coherent). Moreover, compositions of 
threshold and coherent systems are also 
threshold and coherent, respectively. Reliability 
analysis of series-parallel system is addressed 
by methods that are simpler and more efficient 
than those needed for more general systems [9, 
20-22, 28, 47-53]. In fact, the main task in 
Boolean-based system reliability is to construct a 
probability-ready expression (PRE) [28]. The 
analyst is relieved of this major task when 
dealing with series-parallel systems since PREs 
are obtained for them merely by inspection [9, 
28, 52, 53]. 
 

4. CONCLUSIONS 
 

This paper investigated techniques for computing 
the reliability of a rooftop solar PV system using 
the coherent threshold system (CTS) model. 
Details for handling this model were given and its 
relation to other system models was briefly 
discussed. 
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