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ABSTRACT 
 

Aims: To discover an alternative chemical that could potentially be used in combination with 
antibiotics to inhibit the growth of Staphylococcus epidermidis RP62A.  
Study Design: The studies of the growth inhibition in both the biofilm forming strain of S. 
epidermidis RP62A and the wild-type strain ATCC 12228, were conducted with different 
concentrations of rifampicin and D-limonene using the measurement of the optical density.  
Place and Duration of Study: All experiments were conducted in the Department of Biology at 
Manhattanville College between September 2015 and December 2019. 
Methodology: Different concentrations of rifampicin (0.0025 µg/mL, 0.005 µg/mL, 0.01 µg/mL and 
0.02 µg/mL) and D-limonene (152.8 µg/mL, 305.6 µg/mL, 611.2 µg/mL and 1222.4 µg/mL) were 
used in the study. The minimal inhibitory concentrations (MIC) of rifampicin and D-limonene on 
RP62A and ATCC 12228 were obtained. The combination of rifampicin and D-limonene on the 
inhibition of the growth of RP62A and ATCC 12228 was conducted using a microtiter plate by 
measuring optical density. The alamarBlue

® 
assay was further used to evaluate the viability of 

RP62A and ATCC 12228 with the combination treatment. The biofilm assay was then conducted 
on RP62A with the combination treatment of rifampicin and D-limonene. 
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Results: The MIC of the combination treatment of rifampicin and D-limonene on RP62A was found 
to be 0.01 µg/mL and 1222.4 µg/mL respectively. A combination treatment of 0.005 µg/mL of 
rifampicin with 611.2 µg/mL of D-limonene significantly inhibited the growth and biofilm formation of 
RP62A than the same concentration of rifampicin.  
Conclusion: The addition of the D-limonene to the rifampicin was found to be effective in inhibiting 
the growth and biofilm formation of RP62A. This indicates that the combination of alternative 
mineral oil may have the potential to lower the antibiotic concentration in the inhibition of the growth 
of the bacteria S. epidermidis. 

 

 
Keywords: Rifampicin; D-limonene; Staphylococcus epidermidis; biofilm; combination treatment; 

growth inhibition. 
 

1. INTRODUCTION  
 
Staphylococcus epidermidis is a Gram-positive, 
coagulase-negative staphylococci (CoNS) 
bacterium that colonizes the human skin and 
poses a threat to the health of individuals [1,2]. It 
is considered an opportunistic pathogen that 
facilitates nosocomial infections through 
adherence on medical devices, such as 
intravascular catheters, contributing to 60-70% of 
nosocomial infections [2,3,4]. However, S. 
epidermidis flora can be beneficial by providing 
minimal skin irritation, increasing the lysate size 
against other bacteria, and the production of T-
cells in the spleen and lymph nodes [5,6,7]. 
Infections caused by CoNS bacteria, like 
Staphylococcus, have become difficult to treat 
due to the ability of the bacteria to form a biofilm 
[8]. The infection transmission risk is thus 
increased by the presence of S. epidermidis in 
hospitals, causing CoNS sepsis in neonates and 
immunocompromised patients [3,9].  
 

Biofilms are clusters of bacterial cells that adhere 
to each other and often to a surface, contributing 
to the cause of persistent infections [10]. The 
biofilm extracellular matrix of S. epidermidis can 
adhere onto other surfaces through its 
polysaccharide intercellular adhesin (PIA) [11]. 
The biofilm of the mutant strain S. epidermidis 
RP62A provides antibiotic resistance, causing a 
difficulty when treating infections [12]. The 
icaABCD gene operon has encoded proteins 
responsible for PIA biosynthesis associated in 
the biofilm formation of S. epidermidis [13]. The 
biofilm formation of S. epidermidis RP62A 
depends on a specific accumulation-associated 
protein (Aap) [14]. The aggregation of the Aap 
protein in the zinc dependent G5 domains of the 
LPXTG motif in S. epidermidis forms fibrils. The 
zinc ions and proteolytic cleavage of Aap are 
responsible for the accumulation of biofilm cells 
and the biofilm effect [2,14]. A study conducted 
by Wojtyczka et al. showed that antibiotic 

resistance against the CoNS bacteria biofilm 
increased the number of nosocomial infections, 
consequently posing a threat to human health 
[8].  
 
Staphylococcus infections are routinely treated 
by antibiotics. About 75-90% of S. epidermidis 
isolates are resistant against methicillin, which is 
one of the most used antibiotics for 
staphylococcal infections in hospitals [15]. S. 
epidermidis can also be resistant to rifamycin, 
tetracycline, clindamycin, and gentamycin [16]. 
Although different antibiotics are constantly being 
developed, microbial resistance keeps emerging 
among different types of bacteria [17]. The 
antibiotic resistance of microbes originated 
through their adaptation to different antibiotics, 
their overuse, and the degree to which resistance 
occurs [17]. Rifampicin is one of the most widely 
used antibiotics to treat nosocomial infections 
[18]. Rifampicin targets the rpoB gene of the 
sigma factor of DNA-dependent RNA polymerase 
in the mRNA synthesis of the bacterium, causing 
a change in its promoter site [18]. However, after 
hours of exposure, rifampicin is unable to fully 
inhibit the growth of the biofilm of RP62A, despite 
its ability to penetrate it [19].  
 

The increase of antibiotic resistance has 
facilitated the search for other alternatives to 
treat microbial infections [17]. Essential oils have 
been widely studied as antimicrobial agents in 
the last decades. A study conducted by Di 
Pasqua et al. showed that the addition of 
essential oils disrupted the structure of the cell 
envelope of a variety of bacteria, they also 
decreased their amount of unsaturated fatty 
acids, and proved the antimicrobial properties 
through their membrane toxicity [20]. One of the 
essential oils used in that study was D-limonene, 
which is a monoterpene composed of citrus oils, 
has low toxicity, and lacks any mutagenic or 
carcinogenic properties [20,21]. A D-limonene 
dose less than 1,650 mg/kg a day is considered 
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safe to ingest [21]. Another study showed that a 
high D-limonene intake increased the survival in 
lymphoma-bearing mice [22]. The preliminary 
study of the effectiveness of D-limonene in 
combination with rifampicin on the biofilm-
forming S. epidermidis RP62A strain was done in 
our laboratory, however, no minimum inhibitory 
concentrations of D-limonene and rifampicin 
were achieved [23]. Individual constituents of 
essential oils, like D-limonene, have some 
nonspecific antimicrobial influence that can 
postpone the “assembly-disassembly” cycle of 
biofilm formation during the incubation period of 
a similar Staphylococcal strain, S. aureus [24]. 
This shows the significance of measuring the 
dependence and inhibitory effects of limonene on 
biofilm formation at different growth phases             
[24].  

 
In the current study, the minimal inhibitory 
concentration (MIC) of the combination of D-
limonene and rifampicin was evaluated on S. 
epidermidis RP62A. Additionally, an alamarBlue

® 

assay was used to test the cell viability with the 
combination treatment. Further application of this 
study is to reduce the unaccompanied, high 
concentration use of the antibiotic rifampicin 
alone, and to provide an alternate treatment to 
the biofilm forming S. epidermidis strain. 
 

2. MATERIALS AND METHODS  
 

2.1 Strains and Growth Conditions 
 
S. epidermidis strains wild type ATCC 12228 and 
biofilm-forming RP62A were purchased 
(American Type Culture Collection, VA) and 
stored at -80°C. Both strains were grown in 
aerobic conditions in Trypticase Soy Agar (TSA) 
and Trypticase Soy Broth (TSB) (Sigma-Aldrich, 
MO) in the Excella E24 Incubator Shaker (New 
Brunswick Scientific, CT) at 100 RPM at 37°C for 
20 hours. The bacterial concentration of these 
two strains was measured using a DU

 
Series 700 

UV/Vis Spectrophotometer (Beckman Coulter, 
CA). Based on the growth curve computed in our 
previous study, the bacterial concentrations of 
the strains at Optical Density OD600 =1 were 7.5 x 
10

8 
CFU/mL for ATCC 12228 and 4.5 x 10

8 

CFU/mL for RP62A [23]. 
 

2.2 Minimal Inhibitory Concentration of 
Rifampicin and D-limonene on S. 
epidermidis ATCC 12228 and RP62A  

 
Both strains were grown on Mueller-Hinton agar 
(MHA) (BD Difco, MD) with 2% sodium chloride 

(Sigma-Aldrich, MO) for 20 hours at 37°C. 
Bacterial colonies from each strain were 
transferred onto sterile 1X phosphate buffer 
saline (PBS) (Wards Science, NY), and the 
growth was analyzed at OD600. Both strains were 
then diluted to a final concentration of 10

6 

CFU/mL. Two flat-bottom 96-well plates 
(Corning, NY) were used to inoculate each strain 
with treatments in a total volume of 200 µL. The 
highest concentration of each treatment was 
added into the first well of each row. Two-fold 
dilutions were then performed with the addition of 
Mueller-Hinton broth (MHB) (Sigma-Aldrich, MO) 
containing 2% sodium chloride and bacterial 
suspension at a final concentration of 5 x 10

4 

CFU/mL along with the addition of either 
rifampicin (Sigma-Aldrich, MO) (0.0025 µg/mL, 
0.005 µg/mL, 0.01 µg/mL and 0.02 µg/mL) or D-
limonene (Sigma-Aldrich, MO) dissolved in 
dimethyl sulfoxide (DMSO) (Sigma-Aldrich, MO) 
(152.8 µg/mL, 305.6 µg/mL, 611.2 µg/mL and 
1222.4 µg/mL). Wells containing MHB alone, and 
MHB with bacteria served as control. Each 
microtiter plate was incubated in the incubator 
shaker at 100 RPM at 37°C for 20 hours. The 
same volume of DMSO was also added to MHB 
to grow the same concentration of bacteria as an 
additional control. The growth was measured at 
OD570 after 20 hours using a Thermo Fisher 
Scientific accuSkan GO UV/Vis Microplate 
Spectrophotometer (Hampton, NH). Each 
treatment condition was run in triplicate with a 
minimum of three trials per condition. The pH of 
all treatments was measured using an Orion  
Star A111 pH meter (Thermo Fisher Scientific, 
MA). 
 

2.3 Combination Treatment of Rifampicin 
and D-limonene on the Growth of S. 
epidermidis ATCC 12228 and RP62A 
in Microtiter Plate  

 

After the initial results, two different 
concentrations of D-limonene (611.2 µg/mL and 
1222.4 µg/mL) were selected for further analysis 
in the inhibition of the growth of both strains in 
combination with four concentrations of 
rifampicin (0.0025 µg/mL, 0.005 µg/mL, 0.01 
µg/mL and 0.02 µg/mL). The same amount of 
final bacteria concentration of 5 x 10

4 
CFU/mL 

were added to each well, forming a total volume 
of 200 µL. Each treatment condition was run in 
triplicate with a minimum of three trials 
completed. Wells containing MHB alone, MHB 
with bacteria, MHB and different concentrations 
of D-limonene or rifampicin served as controls. 
Each microtiter plate was incubated in the 
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incubator shaker at 100 RPM at 37°C                       
and the growth was measured at OD570 after 20 
hours.  
 

2.4 The Inhibition of the Growth Analysis 
on the Combination Treatment on 
ATCC 12228 and RP62A after 6 Hours 
and 20 Hours in Conical Tubes 

 

As a result of the microtiter plate experiment, the 
concentration of 0.005 µg/mL of rifampicin, 611.2 
µg/mL of D-limonene and their combination were 
further evaluated on the growth inhibition on both 
ATCC 12228 and RP62A in 15 mL conical tubes. 
Both strains were grown in 2 mL of MHB with 2% 
sodium chloride in plastic conical tubes (Thermo 
Fisher Scientific, MA). All combination treatments 
along with the control of either rifampicin or D-
limonene were added to the tubes, mixed, 
incubated overnight in the incubator shaker at 
100 RPM for 37°C. Bacterial concentration at 
OD570 was measured after 20 hours. The 
treatments were run in triplicates and at least five 
trials were performed. Further, nine additional 
tubes that contained MHB and bacteria only were 
incubated for 6 hours under the same condition. 
The OD570 was measured after 6 hours of 
incubation and the same concentration of 
rifampicin, D-limonene, and combination of 
rifampicin and D-limonene was added to these 
nine tubes. These tubes were then incubated for 
an additional 14 hours and the OD570 was 
measured again. 
 

2.5 The alamarBlue
® 

assay 
 
A 96-well plate set up for the alamarBlue

® 
assay 

using 100 µL of both bacteria with 0.005 µg/mL 
of rifampicin, 611.2 µg/mL of D-limonene and 
their combination along with the control were 
performed. Half the plate contained RP62A, and 
the other half contained ATCC 12228. Following 
the assay protocol, 10 µL of alamarBlue

®
(AB) 

reagent (Thermo Fisher Scientific, MA) were 
added to the well for both the 6-hour and 20-hour 
trials as described before. The plate was placed 
in the incubator at 37°C and the optical density 
was read twice after 1 and 2 hours. A Multiskan 
FC Microplate Spectrophotometer (Thermo 
Fisher Scientific, MA) was used to measure the 
absorbance, OD570 and OD600. All samples were 
run in triplicates, and a minimum of three trials 
were done.  
 
The alamarBlue

® 
assay formula (Formula 1) [25] 

was used to determine the percentage of cell 
reduction in each well. 

 

 
Formula 1: alamarBlue

® 
assay cell reduction 

percentage equation [25] 
 

2.6 Biofilm Assay of the Combination 
Treatment on RP62A 

 
The biofilm assay was performed on the 96 well 
plate on RP62A only with the 0.005 µg/mL of 
rifampicin, 611.2 µg/mL of D-limonene and the 
combination treatment along with the control 
using the protocol from Stephanovic’ et al. [26]. 
Bacteria were grown as previously described on 
a microtiter plate for 20 hours at 37°C. The 
biofilm assay was then performed and OD570 was 
measured. All samples were run in triplicates 
with a minimum of three trials were done.  
 

2.7 Statistical Analysis 
 

A One-way ANOVA and Tukey’s Honest 
Significant Difference (HSD) tests were used 
when comparing the growth of both strains on 
different concentrations of rifampicin, D-
limonene, and the combination with the control. 
The biofilm formation of RP62A after the 
treatment was added from the beginning or after 
6 hours of growth were compared with the 
control in both the microtiter plate assay and the 
alamarBlue

® 
assay. The significance value was 

set at P < .05. Statistical analyses and other 
measurements presented (average of the 
bacterial growth, standard error of mean (SEM) 
and figures) were performed using SPSS version 
26 or Excel. 
 

3. RESULTS  
 

3.1 Growth Analysis of Rifampicin and D-
limonene Treatment on ATCC 12228 
and RP62A 

 

The growth of ATCC 12228 was significantly 
inhibited with all concentrations tested of 
rifampicin. After 20 hours, there was a significant 
difference in the growth inhibition using 0.0025 
µg/mL, 0.005 µg/mL, 0.01 µg/mL and 0.02 µg/mL 
of rifampicin when compared to the control of the 
bacteria alone without any treatment, P < .05 
(Fig. 1). However, there was a significant 
difference in the growth inhibition on RP62A with 
0.01 µg/mL and 0.02 µg/mL of rifampicin when 
compared to the control, P < .05 (Fig. 1). The 
lower concentrations of rifampicin of 0.005 µg/mL 
and 0.0025 µg/mL could only inhibit the growth of 
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RP62A but not the ATCC 12228. In addition, 
there was a significant difference in growth 
inhibition after 20 hours with the concentration of 
1222.4 µg/mL of D-limonene when compared to 
the control in both ATCC 12228 and RP62A (P < 
.05) (Fig. 2). All lower concentrations of limonene 
(152.8 µg/mL, 305.6 µg/mL and 611.2 µg/mL) did 
not inhibit the growth of both bacteria. Thus, the 
MIC of the rifampicin and D-limonene on RP62A 
was found to be 0.01 µg/mL and 1222.4 µg/mL 

respectively. For either rifampicin or D-limonene 
treatment, growth inhibition was more prevalent 
against ATCC 12228 than RP62A. DMSO did not 
inhibit the growth of both bacteria (data not 
shown). The pH of D-limonene alone was 4.2 
and compared to a 7.1 when added to MHB.          
The rifampicin alone or when added to MHB        
and the combination of rifampicin and D-
limonene were found to have a neutral pH of 
about 7.2. 

 
 

 
Fig. 1. The effect of different concentrations of rifampicin on the growth (OD570 + SEM) of S. 

epidermidis RP62A and ATCC 12228, (*The significance of P <.05 for the treatment when 
compared to the control), SEM: standard error of mean 

 
 

 
Fig. 2. The effect of different concentrations of D-limonene on the growth (OD570 + SEM) of S. 

epidermidis RP62A and ATCC 12228, (*The significance of P <.05 for the treatment when 
compared to the control), SEM: standard error of mean 
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3.2 Growth Analysis on the Combination 
Treatment on ATCC 12228 and RP62A 
in Microtiter Plate 

 
Two different concentrations of D-limonene 
(611.2 µg/mL and 1222.4 µg/mL) were used in 
combination with four different concentrations of 
rifampicin (0.0025 µg/mL, 0.005 µg/mL, 0.01 
µg/mL and 0.02 µg/mL) to study the growth 
inhibition on ATCC 12228 and RP62A. When 
1222.4 µg/mL of D-limonene concentration were 

combined to all different concentrations of 
rifampicin, the inhibition of the growth of both 
strains was significant when compared to the 
control (P < .05) (Fig. 3). However, when 611.2 
µg/mL of D-limonene was used in combination 
with the four different concentrations of 
rifampicin, all treatments showed significant 
growth inhibition on RP62A except the 
combination with 0.025 µg/mL of rifampicin had 
shown no significant effect on the growth on 
ATCC 12228 (Fig. 4). 

 
 

 
Fig. 3. The effect of different concentrations of the rifampicin with 1222.4 µg/mL of D-limonene 
on the growth (OD570 + SEM) of S. epidermidis RP62A and ATCC 12228, (*The significance of P 

<.05 for the treatment when compared to the control), SEM: standard error of mean 
 

 

 
Fig. 4. The effect of different concentrations of the rifampicin with 611.2 µg/mL of D-limonene 
on the growth (OD570 + SEM) of S. epidermidis RP62A and ATCC 12228, (*The significance of P 

<.05 for the treatment when compared to the control), SEM: standard error of mean 
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3.3 Inhibition of Growth on the 
Combination Treatment on ATCC 
12228 and RP62A in the Conical Vials 

 

In the following experiments, a concentration of 
0.005 µg/mL of rifampicin was chosen due to its 
inability to inhibit the bacterial growth completely. 
A concentration of 611.2 µg/mL of D-limonene 
was also chosen as the next lower concentration 
than the MIC in the combination treatment. After 
20 hours of incubation, the growth of ATCC 
12228 and RP62A in conical tubes was 
significantly inhibited when treated with 0.005 
µg/mL of rifampicin, 611.2 µg/mL of D-limonene 
and the combination of both rifampicin and D-
limonene when compared to the control of 
bacteria alone without treatment (P<.05) (Fig. 5). 
However, the effect of the combination treatment 
resulted in almost no growth with zero 
absorbance in both strains (Fig. 5). In another 
experiment, after both bacteria were grown for 6 
hours, all treatment conditions were tested and 
incubated for 14 hours. Significant results were 
also shown with the inhibition of the growth of 
ATCC 12228 and RP62A with the treatments 

when compared to the control for all conditions 
(P<.05) (data not shown). 

 
3.4 The alamarBlue

®
 assay of the 

Combination Treatment on Cell 
Reduction of ATCC 12228 and RP62A 

 
The results of the alamarBlue

® 
assay after the 20 

hours incubation of 0.005 µg/mL of rifampicin 
treatment on ATCC 12228 had an average of 
89.9% of cell reduction when compared to 36.1% 
of cell reduction on RP62A (Fig. 6). When the 
611.2 µg/mL of D-limonene alone was added, 
there was a 15.9 % cell reduction on RP62A and 
a 32.1% cell reduction on ATCC 12228 (Fig. 6). 
Meanwhile, the combination treatment of 0.005 
µg/mL of rifampicin and 611.2 µg/mL of D-
limonene had an average of 96.2% cell reduction 
on RP62A and a 100% cell reduction on ATCC 
12228 (Fig. 6). However, after 6 hours of the 
growth of the bacteria, treatments were added to 
the bacteria to continue to grow for the next 14 
hours, the result of the alamarBlue

® 
assay was 

inconclusive (data not shown). 

 
 

 
Fig. 5. The effect of the growth (OD570 + SEM) of S. epidermidis RP62A and ATCC 12228 in the 

plastic conical vials with 0.005 µg/mL of rifampicin, 611.2 µg/mL of D-limonene and the 
combination after 20 hours of incubation, (*The significance of P <.05 for the treatment when 

compared to the control), SEM: standard error of mean 
 
  

0

0.2

0.4

0.6

0.8

1

1.2

 0.005 Rifampicin 611.2 D-limonene 0.005 Rifampicin + 611.2

D-limonene

Control

O
D

 5
7
0
 a

t 
2

0
 h

o
u
rs

Treatment  (μg/mL)  

RP62A

ATCC12228

*



 
 
 
 

Yeung-Cheung et al.; MRJI, 31(10): 1-13, 2021; Article no.MRJI.82266 
 

 

 
8 
 

 

 
Fig. 6. The percentage (+SEM) of cell reduction after the treatment of 0.005 µg/mL of rifampicin, 

611.2 µg/mL of D-limonene and the combination using the alamarBlue 
assay. The reduction 

potential at OD570 and OD600 of S. epidermidis RP62A and ATCC 12228 was measured and 
calculated, (*The significance of P <.05 for the treatment when compared to the control), SEM: 

standard error of mean 
 

 

 
Fig. 7. The biofilm assay (OD570 + SEM) of S. epidermidis RP62A with the treatment of 0.005 

µg/mL of rifampicin, 611.2 µg/mL of D-limonene and the combination, (*The significance of P 
<.05 for the treatment when compared to the control), SEM: standard error of mean 
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3.5 The Biofilm Assay Analysis on the 
Combination Treatment of RP62A 

 
The biofilm assay of RP62A was performed in a 
96-well plate, result showed the combination 
treatment of 0.005 µg/mL of rifampicin and 611.2 
µg/mL of D-limonene had significantly inhibited 
the biofilm formation of RP62A when compared 
to the control of bacteria alone (P<.05) (Fig. 7). 
The broth was used as an additional control and 
had a slight background OD570 absorbance of 
0.05 in the biofilm assay. 

 
4. DISCUSSION 
 
The goal of this study was to determine the 
effective combination of the concentrations of 
rifampicin and D-limonene on the inhibition of the 
growth and biofilm formation of S. epidermidis 
RP62A compared to the same concentration of 
rifampicin alone. A combination of 0.005 µg/mL 
of rifampicin and 611.2 µg/mL of D-limonene was 
found to inhibit the growth of both RP62A and 
ATCC 12228 and limit the biofilm formation of 
RP62A, rather than when using the same 
concentration of 0.005 µg/mL rifampicin alone. 
The results of this study showed that there was 
only a reduction of 9.15 % in growth of RP62A 
with the treatment of 0.0025 µg/mL of rifampicin, 
however, there was a 74.08%. reduction in 
growth of ATCC 12228 with the same 
concentration of rifampicin. In contrast, the 
growth of RP62A was greatly reduced by 81.12% 
and 81.82% respectively when compared to the 
control when treated with 0.01 and 0.02 µg/mL of 
rifampicin. The 0.005 µg/mL of rifampicin with a 
46% reduction in the growth of RP62A was then 
chosen in this study due to its inability to inhibit 
the bacterial growth completely.  
 
Previous research showed that the resistance of 
rifampicin on RP62A can be due to several 
mutations on the rpoB gene, the beta subunit of 
the RNA polymerase in the bacteria [27]. The 
capabilities of D-limonene of manipulating the 
phospholipid bilayer membrane were shown in E. 
coli [28]. In a recent study on the effects of the 
limonene on the Gram-positive Listeria 
monocytogenes, results showed that limonene 
can increase the cell membrane permeability 
with the leakage of nucleic acids and proteins 
and can hinder the ATP synthesis [29]. This 
means that D-limonene may provide an additive 
effect in manipulating the bilayer membrane and 
providing an easy access for rifampicin to cross it 
and alter the growth of the bacteria despite the 
presence of the biofilm.  

In another study using 0.1 µg/mL of rifampicin in 
assessing the inhibition of the growth of RP62A, 
the results showed that the slow growth of the 
bacteria and biofilm formation may prevent the 
bactericidal effect of the antibiotic [19]. An in vitro 
study by Fazly Bazzaz et al. showed that the MIC 
of rifampicin for S. epidermidis DSMZ3270 
biofilm-forming strain was 0.03 mg/mL in its free 
form and solid lipid nanoparticles loaded with 
rifampicin can reduce the production of the 
biofilm as opposed to the free form [30]. The use 
of 0.005 µg/mL of rifampicin in this study seems 
lower, however, with the combination use with D-
limonene, the additional inhibitory effect was 
found. We also found that rifampicin had a 
profound reduction in bacterial growth in 
reference to wild-type ATCC 12228 when 
compared to the biofilm formation in RP62A. 
 
The D-limonene is a generally recognized as 
safe (GRAS) product and was found to be able to 
be used in food preservation alone or in 
combination with lethal heat treatments [21,28]. 
This essential oil is known for its antimicrobial 
properties and was able to inhibit the growth of 
E. coli O157:H7 and the biofilm production of 
multi-drug resistant S. aureus [21,24,31]. The 
MIC of D-limonene for RP62A and ATCC 12228 
strains was found to be 1222.4 µg/mL in our 
current study. We decided to use the next lower 
concentration of 611.2 µg/mL of D-limonene with 
different combinations of rifampicin in the latter 
growth inhibition studies. Our results indicate that 
the combination of 611.2 µg/mL of D-limonene 
with 0.005 µg/mL of rifampicin could achieve the 
cell reduction of RP62A to 96.2%, when 
compared to only using the 611.2 µg/mL of D-
limonene alone producing a 15.9% cell reduction. 
 
From the first set of combination treatment trials 
using microtiter plates, the bacterial growth 
reflected by the measurement of optical density 
readings was found to be lower than using the 
conical vials. We believe the volume of the 
conical tubes of 2 mL versus the 0.2 mL tubes 
may create a difference to achieve a better 
growth of the bacteria and resulted in higher 
optical density measurement. A study by               
Nicolau Korres et al. showed Klebsiella 
pneumoniae Subsp. pneumoniae and the 
positive control of RP62A formed biofilm on glass 
and polystyrene plastic [32]. It is important to 
note that the 96-well plate used is made up of 
polystyrene while the conical vial tubes are made 
up of polypropylene which may explain the 
absence of biofilm ring observed in the conical 
vial tubes. In another study with the use of 
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essential oil on different biofilm-forming 
coagulase-negative staphylococci, the inhibition 
of the growth of S. warneri by Polytoxinol

TM
 was 

found to be at the initial phase of the bacterial 
cell adherence to the polystyrene surface [33]. 
Thus, the optical density readings were found to 
be lower in the combination treatment trials using 
the 96-well plates than the conical tubes. The 
OD570 was used throughout the growth studies 
and the results were comparable and better than 
the OD600, this may be due to the biofilm 
formation of RP62A and the nature of the 96-well 
plates.  
 

When we studied the combination treatment 
used on a different growth phase of the bacteria, 
our results indicated that the combination 
treatment was effective in the inhibition of the 
bacterial growth from the beginning and the start 
of the log phase in both RP62A and ATCC 
12228. In our previous study, both bacteria 
started to grow in the log phase after 6 hours of 
incubation [23]. Further, the alamarBlue

® 
assay is 

widely used to study cell viability and metabolic 
function [34]. In our study of assessing the 
alamarBlue

® 
assay, the results showed that there 

was almost a total of 100% of cell viability 
reduction using the combination treatment on 
RP62A and ATCC 12228. However, a more 
significant result was found when treatment was 
added in earlier on, as biofilm may start to form 
after 6 hours of incubation. A previous study 
found the biofilm production of S. epidermidis 
strain occurs in 2-stages; first with the adhesion 
to the surface and later with the formation of the 
multilayer cell clusters [35]. Thus, we believe that 
once the biofilm is formed in RP62A, the 
combination treatment may not be effective.  
 

Lastly, the microtiter biofilm assay confirmed the 
ability of the combination treatment of rifampicin 
and D-limonene to inhibit the biofilm formation of 
RP62A. However, the control well of broth alone 
produced a residual color and thus, an optical 
density reading. Other modified biofilm assay 
methods may be used in the future to obtain 
better results [36]. The pH of D-limonene alone 
had an acidic pH of 4.0, while D-limonene and 
rifampicin and the combination in the MHB were 
found to be neutral. The acidic property of D-
limonene can cause the inhibition of the growth 
of bacteria. Further, the essential oil extract of 
Citrus limon of the pericarp contains about 69.9% 
of limonene and is different from the pure 
chemical form we used in the study [37]. The 
97% pure form of the D-limonene was used 
throughout our studies and for the future 

experiment, the pure oil extract of limonene can 
be used for the evaluation of the inhibition of the 
biofilm-forming S. epidermidis.  

 
5. CONCLUSION 
 
A combination of 0.005 µg/mL of rifampicin with 
611.2 µg/mL of D-limonene inhibited the growth 
of the biofilm-forming S. epidermidis RP62A. The 
alamarBlue

® 
assay confirmed the effect of the 

combination treatment on the inhibition of the 
growth and the biofilm formation of RP62A. The 
results of this study hold a promising future in 
using alternative combination treatments to treat 
Staphylococcus infections in hospital settings 
and to further decrease the dosage and usage of 
prescribed antibiotics. 
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