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Abstract

Aeromonas hydrophila is one of the major pathogenic bacteria responsible for causing

severe outbreaks at fish farms and is also a major global public health concern. This bacte-

rium harbors many virulence genes. The current study was designed to evaluate the anti-

drug and virulence potential of A. hydrophila by amplifying its antimicrobial resistance and

virulence genes using PCR and examining their effects on fish tissues and organs. A total of

960 fish samples of Channa marulius and Sperata sarwari were collected from four sites of

the rivers of the Punjab, Pakistan. A. hydrophila isolates were subjected to biochemical

identification and detection of virulence and antimicrobial resistance (AMR) genes by PCR.

We retrieved 181 (6.46%) A. hydrophila isolates from C. marulius and 177 (6.25%) isolates

from S. sarwari. Amplification through PCR revealed the incidence of virulence genes in

95.7% of isolates in C. marulius and 94.4% in S. sarwari. Similarly, amplification through

PCR also revealed occurrence of AMR genes in 87.1% of isolates in C. marulius and 83.9%

in S. sarwari. Histopathological examination revealed congestion (5.2%) and hepatocyte

necrosis (4.6%) in liver, lamellar fusion (3.3%) and the presence of bacterial colonies (3.7%)

in gills, fin erosion (6%), and the presence of biofilms (3.5%) in tail fins of infected fish. Phy-

logenetic tree analysis of 16S rRNA and gyrB gene of A. hydrophila revealed 100% and

97% similarity, respectively, with 16S rRNA gene and gyrB of A. hydrophila isolated in previ-

ous studies. The results of antimicrobial susceptibility testing showed that all isolates dem-

onstrated resistance to sulfamethoxazole, ampicillin, neomycin, and norfloxacin, while

susceptibility to gentamicin, chloramphenicol, and tetracycline, and intermediate resistance

was observed against cefotaxime. The results concluded that examined fish samples were

markedly contaminated with virulent and multidrug strains of A. hydrophila which may be of

a potential health risk. The study emphasizes the responsible antimicrobial use in aquacul-

ture and the urgent need for effective strategies to control the spread of virulence and antimi-

crobial resistance genes in A. hydrophila.
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Introduction

The fast-growing aquaculture industry plays a vital role in global food security, offering high-

quality protein, economic benefits, and jobs opportunities [1,2]. It also provides essential

nutrients and a variety of food products [3,4]. In 2020, aquaculture contributed 122.6 million

metric tons of aquatic products valued at USD 281.5 billion, with an annual growth rate of

6.7%. The current worldwide per capita fish consumption is 20.5 kg. Fish, in particular, is a

cost-effective protein source, ranking second globally and accounting for 60% of protein intake

[5]. It plays a crucial role in ensuring food security for the growing global population [6]. To

meet demand, there has been a substantial increase in freshwater and marine fish production

[7]. However, this expansion has intensified aquaculture systems, leading to water resource

challenges and increased bacterial infections among cultivated aquatic organisms [8]. Despite

these challenges, aquaculture remains a sustainable solution for global food security, helping

mitigate food shortages driven by population growth [9].

Freshwater fish farming has been vital to the aquaculture industry’s growth, especially in

Asia, providing food security, jobs, and economic benefits [10]. Various freshwater fish species

like Labeo rohita, Cirrhinus mrigala, Cyprinus carpio, Channa marulius, Sperata sarwari, Catla
catla, and Pangasianodon hypophthalmus have contributed to significant global commercial

production [11]. These fish are prime candidates for aquaculture and have been widely culti-

vated [12,13]. However, it’s important to note that freshwater bodies, their primary habitat, also

host the zoonotic pathogen Aeromonas hydrophila, which can infect fish, bivalves, amphibians,

reptiles, and humans [14–16]. Two successful candidates in freshwater aquaculture are Sperata
sarwari and Channa marulius, cultivated commercially in various regions, including Pakistan,

India, Bangladesh, China, and Indonesia, where they are top producers [17].

Channa marulius, commonly known as the "Sole," thrives in diverse aquatic habitats like

marshes, ponds, rivers, and rice fields, found in countries like China, India, Pakistan, Cambo-

dia, and Thailand [18]. Belonging to the Channidae family, C. marulius is well-suited for inten-

sive rearing systems due to its survival rate and rapid growth [19]. In Pakistan, it’s been

introduced for commercial farming, standing out for its potential size of up to 30 kg [20,21].

In the Indus River, Sperata sarwari dominates the Bagridae catfishes, prized for its large size,

valuable flesh, and low intramuscular bones [22]. Advances in aquaculture have enabled cap-

tive breeding for S. sarwari [23]. While most production relies on capturing, young S. sarwari
occasionally enters the ornamental fish trade, easily distinguishable from other Bagridae cat-

fish [24].

Aeromonas hydrophila is an emerging Gram-negative pathogen found in nature, belonging

to the Aeromonadaceae family [25,26]. It is prevalent in aquatic environments, food sources,

and mineral water bottles. This bacterium poses threats to both aquatic organisms, mainly

fish, causing conditions like motile Aeromonas septicemia (MAS), ulcerative disease, and hem-

orrhagic septicemia [27], as well as humans, leading to wound infections, septicemia, and gas-

troenteritis. Factors contributing to its virulence include host susceptibility, environmental

stressors, and virulence genes [28,29]. A. hydrophila is also a significant public health concern

due to its potential for transferring virulence genes to humans. It can be found in various

sources such as food, groundwater, wastewater, aquatic, and terrestrial animals [30,31]. Identi-

fication of A. hydrophila involves phenotypic methods and characterizing its 16S rRNA gene

and virulence genes [32,33]. Typically, its identification relies on the presence of virulence

genes like the aerolysin gene (aer), enterotoxin gene (ast), hemolysin A gene (hylA), and
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cytotoxic enterotoxin gene (act) [33]. These virulence factors cause histopathological effects in

fish [34]. The potential pathogens are associated with serious zoonotic infections [35].

The close interaction between naturally resistant bacteria in terrestrial and aquatic environ-

ments facilitates the rapid transfer of antimicrobial resistance (AMR) genes to pathogenic fish

bacteria [36,37], making fish a vehicle for AMR bacteria and genes dissemination [38]. This

results from fish farmers frequently using multiple antimicrobials to combat AMR bacteria

[39], which, unfortunately, leads to an increase in antimicrobial-resistant (AMR) bacteria and

their genes in aquaculture [40,41]. Addressing antimicrobial resistance within the One Health

framework is crucial due to its interconnected impact on human, animal, and environmental

health, requiring collaborative efforts for comprehensive solutions [42]. The emergence of

AMR bacteria poses a significant challenge to public health [43,44], as they employ genetic

strategies to resist antimicrobials [45]. Meanwhile, pathogenic bacterial diseases are a major

cause of mass fish mortality in both cultured and farmed species [46], driven by virulence

genes controlling factors like enzyme production [47], biofilm formation [48], immune system

suppression, bloodstream infections [49], host-pathogen interactions [50], adaptation to vari-

ous conditions [51], specificity to hosts [52], and epithelial cell lesions [53]. These factors

directly impact nutrition, oxygen levels [54], growth phases [55], temperature [56], and pH in

fish environments [57]. Regular monitoring and investigation of physicochemical parameters

play a crucial role in controlling the prevalence of pathogenic bacteria [34,58].

The current study was designed to evaluate the antidrug and virulence potential of A.
hydrophila by amplifying its antimicrobial resistance and virulence genes using PCR and

examining their effects on fish tissues and organs.

Materials and methods

Ethical approval and, fish sampling

All protocols and procedures were approved by the Guidelines for the Care and Use of Labora-

tory Animals Committee of the University of Veterinary and Animal Sciences, Lahore, Paki-

stan (DAS/358, 02-03-2023). A total of 960 fish samples (480 from each of C. marulius and S.
sarwari) were collected using a nylon drag net from four selected sites: Head Baloki (BL-H),

Head Taunsa (TA-H), Head Chashma (CH-H), and Head Trimmu (TR-H) of the riverine sys-

tem of Punjab, Pakistan. Sampling was conducted from April 2022 to December 2022, catego-

rized seasonally as 280 in summer, 120 in autumn, and 80 in winter. 120 fish samples of each

species were collected from each sampling site. Soon after netting, the fish samples were mea-

sured for weight and length parameters outdoors. Water temperature of BL-H was measured

as 25.42˚C, 26.62˚C at TR-H, 24.79˚C at TA-H, and 22.98˚C at CH-H. The sampling sites for

the current study are depicted in Fig 1. The fish samples were placed in plastic containers with

ice packs and transported directly (within 24 hours) to the laboratory of the Department of

Zoology, University of Education, Faisalabad Campus, Pakistan.

Isolation, phenotypic, morphological, and biochemical characterization of

Aeromonas hydrophila
The collected fish was disinfected by rinsing with clean water and sodium hypochlorite follow-

ing regulations and guidelines a recommended by Noga, [59]. The internal organs (skin, stom-

ach, kidney, liver, intestine, spleen, and gills) of the collected fish were subjected to

bacteriological examination. Swabs were randomly collected from suspected organs and were

inoculated onto Trypticase soy agar (TSA LAB, UK) media by plate streaking method and

were incubated at 37˚C overnight according to the method described by Lima, and Muratori,
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[60,61]. A single colony from freshly obtained bacterial culture was inoculated onto Trypticase

soy agar (TSA LAB, UK) media plates to obtain a pure culture of A. hydrophila, which was

then incubated at 37˚C for 24 h following the method recommended by Muratori, [61]. Pure

culture of A. hydrophila was subjected to Gram-staining and viewed microscopically (Euro-

mex, 100X). Colony morphology, culture, and microscopic characteristics of A. hydrophila
were observed according to the protocol recommended by Muratori, and Xiao, [61,62]. The

isolates of A. hydrophila were characterized by biochemical tests like indole, motility, oxidase,

H2S production, catalase, and urease tests as for identification as previously performed by

Fang, [63].

DNA extraction

DNA was isolated using a Genomic DNA Purification Kit (Thermo Scientific, GeneJET, USA)

and DNA samples were evaluated by gel electrophoresis on 1% agarose gel stained with ethid-

ium bromide (Sigma-Aldrich E7637, USA) and utilizing a standard-sized molecular marker

[1Kb DNA Ladder RTU (Ready-to-Use) GeneDireX, Taiwan]. Isolated DNA was stored at

-20˚C for further use.

Fig 1. The sampling sites for the current study are depicted on the map.

https://doi.org/10.1371/journal.pone.0297979.g001
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Amplification, sequencing, and phylogenetic tree analysis of 16S rRNA and

gyrB gene of A. hydrophila
One microliter of template DNA was added into a total of 25 μl reaction solution for PCR con-

taining two primers of 16S rRNA; 1 μl forward primer (27F): AGAGTTTGATCCTGGCTCAG,

1 μl reverse primer (1492R): GGTTACCTTGTTACGACTT, 10 μl PCR-grade water, and 12 μl

GoTaq Green Master Mix (Promega, USA) (Table 1). Similarly, gyrB gene was also amplified by

species-specific primers. PCR products were electrophoresed in 1% agarose gel stained with

ethidium bromide (Sigma-Aldrich E7637, USA) and utilizing a standard-sized molecular

marker (1Kb DNA Ladder RTU, GeneDireX). PCR products revealing the thickest bands were

sequenced by Sanger’s method at BGI Hong Kong Co. Ltd. China. The obtained sequences were

analyzed and compared for taxonomic identification using National Centre for Biotechnology

Information-Basic Local Alignment Search Tool (NCBI-BLAST), and subsequently, submitted

to the GenBank1 database. To determine the phylogenetic relationship of A. hydrophila, a phy-

logenetic tree analysis was conducted on the 16S rRNA and gyrB genes of A. hydrophila. This

analysis employed the bootstrap method with 1,000 bootstrap replications, and it was carried

out using MEGA 11.0 (Molecular Evolutionary Genetic Analysis), as described by Chen, [64].

Molecular identification of virulence and antimicrobial resistance (AMR)

genes of A. hydrophila
Virulence genes of A. hydrophila (including hemolysin (hylA), aerolysin (aerA), and cytotoxic
enterotoxin (act)) and antimicrobial resistance genes (such as sul1, sul3, qnrA, qnrB, blaTEM,

Table 1. Conditions for amplification of 16S rRNA, gyrB, virulence, and AMR genes of A. hydrophila.

Gene Class Gene Name Primer sequence (5–3) Target bp size Annealing Temperature Accession Number References

rrs gene 16S rRNA F-AGAGTTTGATCCTGGCTCAG 1503 52˚C for 1min OR509789; OR509790

OR509791; OR509792

OR509793; OR509794

[65]

R-ACGGCTACCTTGTTACGACTT

A
nt
im
ic
ro
bi
al
R
es
is
ta
nc
e
ge
ne
s
(A
M
R
) gyrB F-GAGGACTACAGCAAGAAGGCCA 1124 55˚C for 90 s OQ699127 [66]

R-GACTTGGCCTTCTTGCTGTAGTC

tetA F-GCTACATCCTGCTTGCCTTC 813 55˚C for 1min OR061081 [67]

R-CATAGATCGCCGTGAAGAGG

blaTEM F-CATTTCCGTGTCGCCCTTATTC 873 55˚C for 90 s OQ726106

R-CGTTCATCCATAGTTGCCTGAC

qnrA F-ATTTCTCACGCCAGGATTTG 654 60˚C for 1 min OQ729990 [68]

R-GATCGGCAAAGGTTAGGTCA

qnrB F-GGMATHGAAATTCGCCACTG 642 53˚C for 30 s OR515644 [69]

R-TTTGCYGYYCGCCAGTCGAAC

sul1 F-CGGCGTGGGCTACCTGAACG 444 55˚C for 30 s OR515645 [70]

R-GCCGATCGCGTGAAGTTCCG

sul3 F-AGATGTGATTGATTTGGGAGC 444 54.2˚C for 30 s OR061080 [68]

R-TAGTTGTTTCTGGATTAGAGCCT

V
ir
ul
en
ce
ge
ne hylA F-GGCAAACAGCGAAACAAATACC 585 55.5˚C for 30 s OR515643 [71]

R-CTCAGCGGGCTAATACGGTTTA

aerA F-GTCACCTTCTCGCTCAGGC 417 55˚C for 30 s OR515642 [72]

R-TGATTCCCGAAGGCACTCCC

act F-GAGAAGGTGACCACCAAGAACA 675 58˚C for 30 s OR515641

R-AACTGACATCGGCCTTGAACTC

https://doi.org/10.1371/journal.pone.0297979.t001

PLOS ONE Molecular Analysis of Aeromonas hydrophila in Punjab River

PLOS ONE | https://doi.org/10.1371/journal.pone.0297979 March 29, 2024 5 / 20

https://doi.org/10.1371/journal.pone.0297979.t001
https://doi.org/10.1371/journal.pone.0297979


and tetA) of A. hydrophila were identified through PCR analysis using species-specific primers

(Macrogen, Korea) and were compared with a standard-sized molecular marker DNA ladder

(Table 1). A total of 25 μl of PCR reaction solution, comprising 1 μl of template DNA, 1 μl for-

ward primer, 1 μl reverse primer, 10 μl PCR-grade water, and 12 μl GoTaq Green Master Mix

(Promega, USA), was utilized for the detection of the AMR genes in A. hydrophila (Table 1).

Amplified PCR products were analyzed on 1% agarose gel stained with ethidium bromide

(Sigma-Aldrich E7637, USA) and utilizing a standard-sized molecular marker (1Kb DNA Lad-

der RTU, GeneDireX). PCR products revealing the thickest bands were sequenced by Sanger’s

method at BGI Hong Kong Co. Ltd., China as previously analyzed by Wang, [73].

Minimal inhibitory concentration (MIC) and antimicrobial susceptibility

testing of A. hydrophila
A. hydrophila isolates were subjected to microtiter plates and Kirby Bauer disc diffusion

method for antimicrobial sensitivity testing on Mueller-Hinton agar plates according to the

method carried out by Bauer, [74] using antimicrobials norfloxacin, streptomycin, gentamicin,

chloramphenicol, ciprofloxacin, doxycycline, ampicillin, flumequine, neomycin, tetracycline,

sulfamethoxazole, and cefotaxime. The plates were incubated for twenty-four hours at 37˚C.

Diameter of the inhibition zone were measured and interpreted to classify bacteria as resistant,

moderately susceptible, and susceptible according to clinical and laboratory standards institute

(CLSI), [75].

Histopathological effect of A. hydrophila
Tissue samples were collected from the liver, stomach, spleen, and small intestine of infected

C. marulius and S. sarwari. These collected tissue specimens were disinfected and preserved in

a 10% neutral buffered formalin solution with a 1:10 ratio (formalin and distilled water, respec-

tively) in plastic sample containers, labeled against each respective tissue specimen. The pre-

served tissue samples were submitted to the laboratory of the Department of Pathology, City

Campus, University of Veterinary and Animal Sciences (UVAS) Lahore, and examined for his-

topathological changes due to A. hydrophila infection, specifically motile Aeromonas septice-

mia (MAS). The obtained slides were viewed under a light microscope (Euromex 100X,

Netherlands) to observe histopathological changes caused by A. hydrophila and stored for

future use.

Statistical analysis

Chi-square test of independence was applied in comparing the prevalence/occurrence of A.
hydrophila with respect to sampling site, fish sex, season, and organs. Descriptive statistics

such as proportions and frequency were employed in summarizing the data.

Results

Physicochemical parameters, analysis of weight and length of C. marulius
and S. sarwari
Maximum and minimum temperature was recorded as 26.62˚C (TR-H) and 22.98˚C (CH-H)

respectively. Maximum and minimum pH was recorded as 8.23 (CH-H) and 7.18 (TR-H)

respectively. Samples of S. sarwari collected from CH-H showed maximum weight (307 g) and

minimum by fish collected from TR-H (303.8 g) while maximum length (27.4 cm) was shown

by samples of S. sarwari collected from TR-H and minimum length (25.6 cm) by fish collected

from BL-H. Similarly, samples of C. marulius collected from CH-H showed maximum weight
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(175 g) and minimum by fish collected from BL-H (151.2 g) while maximum length (34.2 cm)

was shown by samples of C. marulius collected from CH-H and minimum length (27.4 cm) by

fish collected from BL-H. Results of physicochemical parameters, weight and length of C. mar-
ulius and S. sarwari are shown in S1 Table.

Isolation, phenotypic and biochemical characterization

We collected swabs from the organs of 480 fish samples of each of S. sarwari and C. marulius.
We isolated A. hydrophila by direct plating on TSA plates. We recovered A. hydrophila in 31

fish samples of C. marulius and 30 of S. sarwari collected from all sampling sites. Phenotypic

characterization of A. hydrophila showed rod-shaped, round, smooth, and grayish-white col-

ored colonies on TSA media plates. Biochemical characterization of A. hydrophila isolates

revealed it as motile, Gram-negative, rod-shaped, and facultatively anaerobic bacterium bear-

ing Peritrichous flagella, by biochemical tests. All the isolates of A. hydrophila were found posi-

tive against catalase, oxidase, glucose, sucrose, lactose, urease, indole, and H2S production tests

represented in S2 Table.

Prevalence of A. hydrophila
Overall prevalence of A. hydrophila was recorded as 6.35% in fish samples of both fish species.

The maximum prevalence of A. hydrophila, 6.46% was observed in the intestine of infected C.
marulius while, the minimum prevalence, 4.17% was noted in gills of infected S. sarwari
(Table 2). Overall A. hydrophila infected 15 fish samples (12.5%) of S. sarwari collected from

BL-H while, the minimum infection rate, 1.67% was observed in C. marulius collected from

CH-H. Among the fish, A. hydrophila infected 9.78% of males in C. marulius and 4.7% of

females in S. sarwari. Furthermore, A. hydrophila infected 6.43% and 5.71% of fish samples of

S. sarwari and C. marulius respectively during the summer while 5% and 6.25% of S. sarwari
and C. marulius respectively during the winter Table 3.

Occurrence of virulence and antimicrobial resistance genes of A.
hydrophila
Virulence genes (aerA, hylA, and act) and antimicrobial resistance genes (sul1, sul3, qnrA,

qnrB, tetA, and blaTEM) of A. hydrophila were amplified by PCR. Among all the AMR genes,

maximum occurrence, 6.04% of tetA gene was recorded in A. hydrophila isolates isolated from

C. marulius (Table 4). Similarly, among all the virulence genes, maximum occurrence, 6.46%

of aerA gene was recorded in A. hydrophila isolates isolated from C. marulius. The chi-square

test of independence showed insignificant difference (P>0.05) in occurrence of antimicrobial

resistance (AMR) genes Table 5.

Multiple-drug resistance (MDR) and antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed on a total of 30 S. sarwari and 31 C. maru-
lius isolates of A. hydrophila. All the isolates of A. hydrophila demonstrated resistance to

Table 2. Prevalence of A. hydrophila with respect to fish organs.

Fish Species Fish Organs

Skin Liver Intestine Stomach Gills Kidney Spleen

S. sarwari 21 (4.37%) 26 (5.42%) 28 (5.83%) 30 (6.25%) 20 (4.17%) 29 (6.04%) 23 (4.79%)

C. marulius 24

(5%)

25 (5.21%) 31 (6.46%) 29 (6.04%) 23 (4.79%) 27 (5.62%) 22 (4.58%)

https://doi.org/10.1371/journal.pone.0297979.t002
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amoxicillin, ampicillin, sulfamethoxazole, erythromycin, flumequine, ciprofloxacin, neomycin,

and norfloxacin. In contrast, A. hydrophila isolates demonstrated susceptible to gentamicin,

doxycycline, chloramphenicol, and tetracycline, with intermediate resistance observed against

cefotaxime and streptomycin shown in Tables 6–8.

Phylogenetic tree analysis

Phylogenetic tree of 16S rRNA gene A. hydrophila revealed 100% similarity among all the A.
hydrophila strains isolated in the current study, as well as with strains isolated in earlier studies

(Fig 2). Furthermore, phylogenetic tree analysis of gyrB gene of A. hydrophila revealed 97%

similarity among all the A. hydrophila strains isolated in the current study, as well as with

strains previously isolated (Fig 3).

Histopathological effect of A. hydrophila
Histopathological examination revealed various abnormalities in the infected fish. In the liver,

findings included congestion (5.2%), hepatocyte necrosis (4.6%), granuloma formation (4.3%),

and inflammation (5%). The gills exhibited epithelial hyperplasia (3.5%), lamellar fusion

(3.3%), edema (3%), and the presence of A. hydrophila colonies (3.7%). Tail fins displayed

issues such as fin erosion (6%), hemorrhage (6.2%), loss of fin rays (4.8%), and the presence of

biofilms (3.5%). A. hydrophila infection also led to fibrosis (4%), abscess formation (3.7%),

fatty degeneration (3.5%), and the infiltration of inflammatory cells (4.7%) in spleen (Fig 4).

Discussion

Fish is one of the most important sources of food that provides easy digestion, high palatabil-

ity, and high nutritional value. However, it is also considered an important vehicle for many

types of pathogens, raising public health concerns. The prevalence of A. hydrophila is directly

proportional to an increase in temperature, but there is no association between its prevalence

and the weight and length of the fish. In the current study, overall 61 A. hydrophila (6.3%)

were recovered in both fish species, C. marulius and S. sarwari. The intestine and stomach

were reported as the organs with a high prevalence of A. hydrophila, as 31 isolates of intestine

(6.5%) from C. marulius and 30 isolates of stomach (6.2%) from S. sarwari showed the maxi-

mum prevalence. An increase in temperature during the summer also favors a higher

Table 3. Prevalence of A. hydrophila with respect to sampling sites, sex, seasons and overall prevalence.

Fish Species Sampling sites SEX SEASONS Overall prevalence

Head Baloki

(BL-H)

Head Trimmu

(TR-H)

Head Taunsa

(TA-H)

Head Chashma

(CH-H)

Male Female Summer Autumn Winter

S. sarwari 15

(12.5%)

8

(6.67%)

4 (3.33%) 3 (2.5%) 18 (8%) 12 (4.7%) 18 (6.43%) 8 (6.67%) 4

(5%)

30

(6.25%)

C. marulius 13

(10.83%)

11

(9.17%)

5 (4.17%) 2 (1.67%) 22 (9.78%) 9 (3.53%) 16 (5.71%) 10 (8.33%) 5 (6.25%) 31

(6.40%)

https://doi.org/10.1371/journal.pone.0297979.t003

Table 4. Occurrence of antimicrobial resistance (AMR) genes, gyrB, and 16S rRNA gene of A. hydrophila.

Fish Species tetA blaTEM qnrA qnrB sul1 sul3 aerA hylA act gyrB 16S rRNA
S. sarwari 22

(4.58%)

25

(5.21%)

28

(5.83%)

23

(4.79%)

28

(5.83%)

24

(5%)

30

(6.25%)

28

(5.83%)

27

(5.62%)

27

(5.62%)

30

(6.25%)

C. marulius 29

(6.04%)

19

(3.96%)

27

(5.62%)

21

(4.37%)

26

(5.42%)

21

(4.37%)

31

(6.46%)

30

(6.25%)

28

(5.83%)

31

(6.46%)

31

(6.46%)

https://doi.org/10.1371/journal.pone.0297979.t004

PLOS ONE Molecular Analysis of Aeromonas hydrophila in Punjab River

PLOS ONE | https://doi.org/10.1371/journal.pone.0297979 March 29, 2024 8 / 20

https://doi.org/10.1371/journal.pone.0297979.t003
https://doi.org/10.1371/journal.pone.0297979.t004
https://doi.org/10.1371/journal.pone.0297979


prevalence, as 34 isolates were recorded during this season (3.5%). A. hydrophila affects males

more than females, as the maximum prevalence was recorded in 40 (4.2%) male fish samples

from both species. Additionally, the highest prevalence was found in 28 fish samples (2.9%) at

Head Baloki (BL-H) in Kasur.

Phenotypic characterization in the current study confirmed A. hydrophila isolates as circu-

lar, smooth, Gram-negative, rod-shaped, motile, and facultatively anaerobic bacteria bearing

peritrichous flagella. Biochemical tests showed that all A. hydrophila isolates were positive for

catalase, oxidase, glucose, sucrose, lactose, urease, indole, and H2S production tests. In a previ-

ous study, Wamala, [76] identified A. hydrophila isolates as Gram-negative, motile, and posi-

tive in catalase, oxidase, and indole production tests in Uganda. However, they observed

negative results in urease and H2S production tests, which contradicted our findings. Li, [77]

in a study conducted in China, observed positive results in glucose and H2S production tests

but negative results in the urease test, again differing from our findings.

In the current study, we detected three virulence genes, namely aerolysin (aerA), hemolysin
(hylA), and cytotoxic enterotoxin (act) genes, in A. hydrophila isolates recovered from a total of

Table 5. The results of the chi-square test of independence show the X2-value and P-value in relation to the parameters.

Parameter S. sarwari C. marulius
Chi-squared value p-value Chi-squared value p-value

Organs 35.00 0.243 ns 108.5 0.628ns

Bacterial Species 20.00 0.220 ns 88.3 0.158ns

Sampling Sites 12.00 0.213 ns 37.3 0.408ns

Fish Sex 2.00 0.157 ns 8.0 0.433ns

Seasons 6.00 0.199 ns 30.0 0.268ns

Occurrence of AMR Genes 8.00 2.38 ns 36.0 0.607ns

Note; ns indicate Non-significant.

https://doi.org/10.1371/journal.pone.0297979.t005

Table 6. Results of antimicrobial susceptibility of A. hydrophila.

Antibiotics Concentration

(μg)

Class of Antimicrobial

Susceptible

Intermediate

Resistant

MIC90

(μg /ml)

MIC50

(μg /ml)

AMX 25 Penicillin 0 0 100% >128 >64

AMP 10 Penicillin 0 0 100% >64 >32

CTX 5 Cephalosporin 0 50% 0 <32 <16

C 30 Miscellaneous Antibiotics 100% 0 0 1 0.5

CIP 5 Fluoroquinolones 25% 0 75% >32 >16

DO 30 Tetracycline 100% 0 0 1 0.5

E 15 Miscellaneous Antibiotics 0 0 100% 16 8

FLU 30 Quinolones 0% 0 100% >128 >64

GM 10 Aminoglycosides 100% 0 0 4 2

N 30 Aminoglycosides 0 0 100% >128 >64

NOR 10 Fluoroquinolones 0 0 100% >64 >32

S 10 Aminoglycosides 0 50% 0 4 2

SXT 25 Sulfonamides 0 0 100% >64 >32

T 10 Tetracycline 100% 0 0 <4 <2

Note: AMX indicates Amoxicillin, AMP Ampicillin, CTX Cefotaxime, C Chloramphenicol, CIP Ciprofloxacin, DO Doxycycline, E Erythromycin, FLU Flumequine, GM

Gentamicin, N Neomycin, NOR Norfloxacin, S Streptomycin, SXT Sulfamethoxazole and, T Tetracycline.

https://doi.org/10.1371/journal.pone.0297979.t006
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31 samples (6.25%) of C. marulius and 30 samples (6.46%) of S. sarwari. Specifically, we

observed aerA gene in 31 isolates (6.45%), hylA gene in 30 isolates (6.25%), and act gene in 28

isolates (5.83%) of infected C. marulius. Similarly, we recorded aerA gene in 30 isolates

(6.25%), hylA gene in 28 isolates (5.8%), and act gene in 27 isolates (5.6%) of infected S. sar-
wari. In a recent study, Morshdy, [78] recovered A. hydrophila in 20% of catfish samples in

Egypt. They also detected aerolysin and hemolysin genes in 25% and 75% of retail fish samples,

respectively. The main reason behind the high prevalence of A. hydrophila was contamination

caused by marketing and transportation. Similarly, El-Hossary, [79] detected aerolysin (aerA)

and hemolysin (hylA) genes in A. hydrophila isolated from infected Nile tilapia (Oreochromis
niloticus) collected from local fish markets in Egypt. They found A. hydrophila in 28.8% of

market fish samples. The variations in the prevalence of A. hydrophila could be attributed to

various factors, including sampling conditions (such as location and time), post-capture con-

tamination, fish species, handling, water type, geographic location, manipulations during

Table 7. MDR profile for A. hydrophila isolated from indus riverine fish Punjab-Pakistan.

Antibiotic Combination No of Isolates No of Antibiotic Resistance %age

AMY 1 1 1.6

AMP, E 1 2 11.5

FLU, N 1 2

N, NOR 2 2

AMY, SXT 3 2

AMY, AMP, E 1 3 8.2

FLU, N, NOR 1 3

SXT, E, AMP 1 3

AMY, NOR, N 2 3

AMY, AMP, E, FLU 1 4 14.8

N, NOR, SXT, AMY 2 4

AMP, E, FLU, N 4 4

NOR, SXT, AMY, E 2 4

AMY, AMP, E, FLU, N 1 5 18

AMP, E, FLU, N, NOR 2 5

E, FLU, N, NOR, SXT 1 5

FLU, N, NOR, SXT, AMY 1 5

N, NOR, SXT, AMY, AMP 3 5

NOR, SXT, AMY, AMP, E 2 5

SXT, E, AMP, AMY, FLU 1 5

AMY, AMP, E, FLU, N, NOR 2 6 36

AMY, AMP, E, FLU, N, SXT 1 6

AMY, AMP, E, FLU, NOR, SXT 1 6

AMY, AMP, E, N, NOR, SXT 6 6

AMY, AMP, FLU, N, NOR, SXT 1 6

AMY, E, FLU, N, NOR, SXT 8 6

AMP, E, FLU, N, NOR, SXT 3 6

AMY, AMP, E, FLU, N, NOR, SXT 6 7 9.8

TOTAL 61 121 100%

Note. AMX indicates Amoxicillin, AMP Ampicillin, CTX Cefotaxime, C Chloramphenicol, CIP Ciprofloxacin, DO

Doxycycline, E Erythromycin, FLU Flumequine, GM Gentamicin, N Neomycin, NOR Norfloxacin, S Streptomycin,

SXT Sulfamethoxazole and, T Tetracycline.

https://doi.org/10.1371/journal.pone.0297979.t007
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Table 8. Resistance genes profile for A. hydrophila isolated from indus riverine fish Punjab-Pakistan.

Resistance gene No of Isolates No of Resistance genes %age

tetA, blaTEM, qnrA, qnrB 1 4 24.6

blaTEM, qnrA, qnrB, Sul1 1 4

qnrA, qnrB, Sul1, Sul3 6 4

qnrB, Sul1, Sul3, tetA 1 4

Sul1, Sul3, tetA, blaTEM 4 4

Sul3, tetA, blaTEM, qnrA 2 4

tetA, blaTEM, qnrA, qnrB, Sul1 2 5 60.7

blaTEM, qnrA, qnrB, Sul1,sul3 8 5

qnrA, qnrB, Sul1, Sul3, tetA 5 5

qnrB, Sul1, Sul3, tetA, blaTEM 6 5

Sul1, Sul3, tetA, blaTEM, qnrA 6 5

Sul3, tetA, blaTEM, qnrA, qnrB 10 5

tetA, blaTEM, qnrA, qnrB, Sul1, sul3 9 6 14.7

Total 61 60 100%

Note; tetA indicate tetracycline, β-lactamase blaTEM, Quinolones qnrA, qnrB and sulfonamide resistance gene Sul1,

sul3.

https://doi.org/10.1371/journal.pone.0297979.t008

Fig 2. Phylogenetic tree analysis of 16S rRNA gene of A. hydrophila.

https://doi.org/10.1371/journal.pone.0297979.g002
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Fig 3. Phylogenetic tree analysis of gyrB gene of A. hydrophila.

https://doi.org/10.1371/journal.pone.0297979.g003

Fig 4. Histopathological impact of A. hydrophila on tissues of infected fish samples.

https://doi.org/10.1371/journal.pone.0297979.g004
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capture, storage, marketing, and transportation. Moreover, Thaotumpitak, [80] recovered 15

isolates (5.39%) of A. hydrophila in hybrid tilapia collected from cage culture in Thailand.

They also detected aerolysin (aerA) and hemolysin (hylA) genes in A. hydrophila in infected

hybrid tilapia. Additionally, Suresh and Pillai, [29] recovered A. hydrophila from 27% of sam-

ples of Indian major carps (Cirrhinus mrigala, Labeo rohita, and Catla catla) in India. They

identified ten virulence genes, including aerolysin (aerA), hemolysin (hylA), and cytotoxic
enterotoxin (act) genes, in the infected fish. The variation in the prevalence of A. hydrophila
could be attributed to stress, which allows the opportunistic pathogen A. hydrophila to cause

infections.

As an opportunistic pathogen, A. hydrophila infects fish under conditions of stress, high

temperature, low water quality, high organic content, and stocking density. In a recent study,

Abdella, [28] detected 312 virulence genes in A. hydrophila strains, including aerA, hylA, and

act genes in Egypt. In another study, by Nhinh, [81] 46.4% of A. hydrophila isolates were

recovered from 506 diseased (moribund) tilapia, carps (common carp and grass carp), and

channel catfish of Vietnam. They also detected the aerA gene in 80.1% of cases and the act
gene in 80.5% of cases. Similarly, Saleh, [82] recovered 53.4% (187/350) of A. hydrophila iso-

lates from infected Nile tilapia in Egypt. They detected the act and aerA genes in virulent A.
hydrophila strains. In a similar study, Ahmed, [83] found A. hydrophila in 34 isolates (7.1%)

isolated from Nile tilapia (O. niloticus) and Mugil cephalus in Egypt. They also identified four

virulence genes, including hly, aer, and act genes, in infected fish samples. Additionally,

Azzam-Sayuti, [84] recovered 20% of A. hydrophila isolated from 270 healthy cultured Clarias
batrachus, P. hypophthalmus, and O. niloticus in Malaysia. They detected eight virulence

genes, including aerA, hylA, and act genes. Moreover, Abu-Elala, [85] recovered 20 out of 24

(83.3%) A. hydrophila isolates from infected fish in Egypt. They detected 45.45% of virulence

genes in A. hydrophila isolates, including the aer and act genes. Similarly, Roges, [86] reported

a 92.7% occurrence of virulence genes in 110 A. hydrophila isolates isolated from fish, animals,

and humans, including the act, aer, and hyl genes in Brazil. The major reasons behind these

significant variations in results may include contaminated water, severe environmental condi-

tions, bacterial strains, and low water quality parameters.

A. hydrophila is a multiple antimicrobial-resistant bacterium and one of the most signifi-

cant pathogens in fish, causing Aeromonas septicemia (MAS) in various freshwater fish spe-

cies. Its antimicrobial resistance against multiple drugs has made it a global health risk. In the

current study, we identified the presence of blaTEM, sul1, sul3, qnrA, qnrB, and tetA genes in

A. hydrophila isolated from both C. marulius and S. sarwari. Specifically, we recorded a 6.46%

prevalence of the tetA gene, 6.25% for blaTEM, 5.83% for sul1, 5.42% for sul3, 5% for qnrA,

and 4.17% for qnrB gene in 31, 30, 28, 26, 24, and 20 samples of infected C. marulius, respec-

tively. Similarly, in S. sarwari, we recorded a 6.25% prevalence of the tetA gene, 6.04% for bla-
TEM, 5.21% for sul1, 4.79% for sul3, 4.58% for qnrA, and 4.37% for qnrB gene in 30, 29, 25, 23,

22, and 21 samples of infected fish, respectively.

We observed that all A. hydrophila isolates were resistant to amoxicillin, ampicillin, sulfa-

methoxazole, neomycin, and norfloxacin, while they were susceptible to gentamicin, chloram-

phenicol, and tetracycline. Additionally, they showed intermediate resistance to cefotaxime. In

a recent study, Eid, [87] reported a 53.85% prevalence of A. hydrophila collected from Mediter-

ranean seawater in Egypt. They identified sul1, blaTEM, and tetA genes in A. hydrophila iso-

lated from M. cephalus (striped mullet) in Egypt and also detected the act gene in

antimicrobial-resistant A. hydrophila. These isolates were resistant to β-lactams and sulfon-

amides (100%), oxytetracycline (90%), and streptomycin (62.22%), but completely susceptible

to cefotaxime. In a recent study, Thaotumpitak, [80] identified six antimicrobial resistance

genes in A. hydrophila isolated from hybrid red tilapia cultured in cages in Thailand, including
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blaTEM, sul1, sul3, qnrA, qnrB, and tetA. All A. hydrophila isolates were resistant to ampicillin,

oxytetracycline, tetracycline, trimethoprim, and oxolinic acid. Similarly, Fauzi, [88] reported

the presence of drug resistance genes in A. hydrophila isolated from freshwater fish in Malay-

sia. They identified sul1, blaTEM, and tetA genes in A. hydrophila. These isolates were resistant

to ampicillin, kanamycin, nalidixic acid, neomycin, oxytetracycline, streptomycin, tetracycline,

and sulfamethoxazole. Additionally, they showed intermediate resistance to gentamicin, cipro-

floxacin, norfloxacin, and doxycycline, while they were susceptible to chloramphenicol and

nitrofurantoin.

Regular exposure to antimicrobials facilitates the spread of slowly curable infections caused

by A. hydrophila. In a previous study, Elkenany, [89] recovered 14.3% of A. hydrophila isolated

from aquatic seafood organisms such as shrimp, crab, squid, and octopus in Egypt. They

detected the aer and hylA genes in A. hydrophila. Additionally, they observed that A. hydro-
phila was resistant to amoxicillin, ceftriaxone, chloramphenicol, trimethoprim-sulfamethoxa-

zole, and tetracycline. In a recent study, Lee, [90] detected antimicrobial resistance (AMR)

genes such as sul1, in A. hydrophila in Norway. They also found A. hydrophila isolates resistant

to erythromycin and florfenicol, with reduced susceptibility to oxolinic acid. Another study by

Gharieb, [91] reported an overall 40.67% prevalence of A. hydrophila from Tilapia nilotica and

M. cephalus in Egypt. They observed that A. hydrophila was resistant to carbenicillin and ampi-

cillin, but susceptible to chloramphenicol, amikacin, ciprofloxacin, cefoxitin, cefotaxime, tri-

methoprim/sulfamethoxazole, and tetracycline. Moreover, Roges, [86] observed that A.
hydrophila was highly resistant to cefoxitin, nalidixic acid, and tetracycline, with intermediate

resistance to cefotaxime, imipenem, and ceftazidime. However, it was least resistant to amika-

cin, gentamicin, sulfamethoxazole-trimethoprim, ciprofloxacin, and nitrofurantoin. Similarly,

Saleh, [82] observed that A. hydrophila was resistant to chloramphenicol, amikacin, and genta-

micin, while highly susceptible to meropenem, ciprofloxacin, amoxicillin-clavulanic acid, and

trimethoprim-sulfamethoxazole.

Virulence genes of pathogenic A. hydrophila cause serious histopathological effects in

infected fish. In the current study, congestion (5.2%), hepatocyte necrosis (4.6%), granuloma

formation (4.3%), and inflammation (5%) were observed in liver of infected fish. Epithelial

hyperplasia (3.5%), lamellar fusion (3.3%), edema (3%), and the presence of A. hydrophila col-

onies (3.7%) in the gills. Fin erosion (6%), hemorrhage (6.2%), loss of fin rays (4.8%), and the

presence of biofilms (3.5%) were observed in tail fins. Fibrosis (4%), abscess formation (3.7%),

fatty degeneration (3.5%), and the infiltration of inflammatory cells (4.7%) were observed in

spleen of infected fish. Histopathological effects of A. hydrophila infection were not studied in

any previous study.

In the current study, we observed 100% and 97% similarity in the phylogenetic relationships

of the 16S rRNA and gyrB genes of A. hydrophila, respectively, among all the A. hydrophila
strains isolated in this study, as well as with strains isolated in earlier studies. In a previous

study, Wamala, [76] also analyzed the phylogenetic relationships through tree analysis of the

16S rRNA and gyrB genes, revealing 100% and 99% similarity, respectively. Similarly, Esteve,

[92] compared the phylogenetic relationships in Spain using the phylogenetic tree of the 16S
rRNA and gyrB genes of A. hydrophila, showing 100% similarity, consistent with our findings.

Likewise, Li, [77] found 100% similarity in the phylogenetic relationships of the 16S rRNA
gene of A. hydrophila in China. In a recent study, Sani, [93] also observed 100% similarity in

the phylogenetic relationships of the 16S rRNA gene of A. hydrophila in Malaysia, which cor-

roborated our results.
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Conclusion

Our examination of fish samples unveiled a concerning level of contamination with virulent

and multidrug-resistant strains of A. hydrophila, highlighting the potential health risks associ-

ated with this contamination. The presence of pathogenic A. hydrophila results in significant

histological changes in infected fish. The study underscores the importance of responsible

antimicrobial use in aquaculture and the pressing need for effective strategies to curb the

spread of virulence and antimicrobial resistance genes in A. hydrophila. Further research is

imperative to delve into the mechanisms of virulence and resistance of A. hydrophila in fish.
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