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Effective service parts management and demand forecasting are crucial for
optimizing operations in the automotive industry. However, existing literature
lacks a comprehensive framework tailored to the specific context of the Thai
automotive sector. This study addresses this gap by proposing a strategic
approach to service parts management and demand forecasting in the Thai
automotive industry. Drawing on a diverse set of methodologies, including
classical time series models and advanced machine learning techniques,
various forecasting models were assessed to identify the most effective
approach for predicting service parts demand. Categorization of service parts
based on demand criteria was conducted, and decision rules were developed to
guide stocking strategies, balancing the need tominimize service disruptions with
cost optimization. This analysis reveals substantial cost savings potential through
strategic stocking guided by the developed decision rules. Furthermore,
evaluation of the performance of different forecasting models recommends
the adoption of Support Vector Regressor (SVR) as the most accurate model
for forecasting service parts demand in this context. This research contributes to
the automotive service industry by providing a nuanced framework for service
parts management and demand forecasting, leading to cost-effective operations
and enhanced service quality. The findings offer valuable insights for practitioners
and policymakers seeking to improve efficiency and sustainability in the Thai
automotive sector.
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1 Introduction

1.1 Automotive service parts management

The automotive industry faces a critical challenge in managing
service parts effectively. Beyond being a logistical puzzle, it stands as
a strategic necessity (Kato and Manchidi, 2022). With vehicles
becoming more complex and customer expectations reaching
new heights, the seamless flow of service parts from
manufacturers to end-users is paramount (Jiao et al., 2021). This
paper meticulously navigates the complexities of service parts
management and demand forecasting within the unique context
of the Thai automotive industry. It introduces innovative strategies
and methodologies aimed at reshaping manufacturers’ approaches
to this critical operational facet.

Within the intricate dynamics of the automotive sector,
maintaining optimal stock levels for service parts is a
multifaceted challenge (Cardeal et al., 2023). Excessive inventory
risks bloated holding costs and parts obsolescence, while insufficient
stocking may lead to prolonged vehicle downtimes and reputational
damage (Ding and Li, 2021). In the distinctive landscape of the Thai
automotive industry, marked by unique market dynamics,
consumer preferences, and intricate supply chain nuances, a
nuanced and data-driven approach to service parts management
becomes imperative (Aunyawong et al., 2020).

Figure 1 visually encapsulates the intricacies of the automotive
supply chain, portraying the diverse stakeholders involved, ranging
from manufacturers and suppliers to distributors, retailers, and end
customers. This high-level overview underscores the
interdependence of these entities, emphasizing the need for a
holistic approach to service parts management that encompasses
the entire supply chain ecosystem (Min et al., 2019). The figure
serves as a prelude to an in-depth exploration of the proposed
methodology, highlighting the importance of aligning service parts
management strategies with broader supply chain dynamics.

At the heart of this paper lies a systematic methodology,
integrating historical sales data, well-defined part classifications,

and strategic decision rules. These components collectively forge
a framework guiding stocking decisions for service parts. Tailored to
address the unique challenges posed by the Thai automotive
industry, the methodology furnishes manufacturers with a
blueprint to navigate the intricacies of the market.

Traversing the ensuing sections, the paper delves into the
intricacies of part classification, the formulation of stocking
decision rules, and the application of data analysis techniques.
The ultimate objective is to empower automotive manufacturers
with insights that not only optimize costs and streamline supply
chain operations but also elevate customer service and satisfaction.
The findings and recommendations stemming from this
methodology aspire to make a substantial contribution to the
ongoing narrative of enhancing the efficiency and sustainability
of the automotive industry in Thailand.

1.2 Literature review

The literature review explores recent research contributions
related to quality management practices and their impact on
various organizational outcomes. (Faraj et al., 2021). investigate
the relationship between total quality management (TQM) and
employee creative performance in the hotel industry, highlighting
the mediating role of job embeddedness. (Sun et al., 2023). presents a
mathematical model aimed at reducing delays in construction
projects by considering quality management criteria under
uncertainty conditions. Additionally, (Apornak et al., 2023),
propose a model for new service development in healthcare
units, integrating Kano, Quality Function Deployment (QFD),
and mathematical programming techniques. (Mousavi et al.,
2023). focus on improving supply chain network productivity
through a robust optimization model under uncertainty. (Patwary
et al., 2022). explores the influence of knowledge management
practices on innovation performance in the hotel industry,
emphasizing the mediating effects of organizational learning and
creativity. Furthermore, (Vihari et al., 2022), examines the impact of

FIGURE 1
A high-level overview of the various stakeholders in the supply chain.
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soft Total Quality Management (TQM) practices on employee work
role performance, considering innovative work behavior and
initiative climate. (Khalili-Damghani et al., 2022). address
resource allocation problems in data envelopment analysis,
specifically focusing on simultaneous shared costs and common
revenue. (Cheah et al., 2023). investigate the effect of quality
management practices on academics’ innovative performance in
Malaysian higher education institutions. Shin and (Shin and Perdue,
2022) explore the development of creative service ideas through
hotel customer engagement, particularly focusing on empowerment
and motivation processes. (Keramati et al., 2020). optimize nursing
employees in a hospital emergency department using linear
programming techniques. (Ghasemi et al., 2023). examines
whether cost and quality management-oriented innovation can
enhance patient satisfaction in medical tourist destinations.
Overall, these studies contribute to a comprehensive
understanding of the role of quality management practices in
various organizational contexts and their implications for
performance and innovation.

1.3 Research gap

In reviewing the existing literature, a notable gap emerges
regarding the integration of service parts classification, stocking
decision rules, and forecasting model performance evaluation within
the context of the automotive industry, particularly in Thailand.
While prior studies have explored individual aspects of service parts
management or focused on specific industries, there remains a lack
of comprehensive research that synthesizes these elements into a
unified framework tailored to the automotive sector in Thailand.
Our study bridges this gap by providing a holistic approach that
incorporates demand-based categorization, strategic stocking
decision rules, and rigorous evaluation of forecasting models.
By addressing this gap, our research not only contributes to the
theoretical understanding of service parts management but
also offers practical insights that can inform decision-making
and improve operational efficiency in the automotive
service industry.

2 Materials and methods

2.1 Data collection and pre-processing

The data utilised in this study pertains to the automotive service
parts sector in Thailand. The data set encompasses detailed
information on part counts, new model parts, sales records, lead
times, and vehicle volumes. Specifically, the data encompasses
9 months of sales data from January 2022 to September 2022,
and forecasts for October 2022 to February 2023. For the
purposes of this research, the domestic market sales data,
excluding export transactions, were analysed, as these were
deemed most pertinent.

The initial data set was subjected to a comprehensive cleansing
process to ensure its suitability for analysis. Records reflecting
negative stock levels were excluded, and any missing values were
replaced with zeros. In addition, parts that could be categorized as

Periodic Maintenance Service Parts and Accessories were excluded
from the data set to focus solely on core service parts. The final data
set was set at 1806 Service Parts under six different commodity
groups like Accessories, Collision, Light Repair, Maintenance,
Powertrain and Others as shown in Table 1. The data is a live
data of an automotive parts distributor operating globally.

2.2 Data categorization

A demand based and order frequency-based classification was
introduced. In alignment with the newly established demand criteria

TABLE 1 Description of the data set used in the study, including the total
counts for different commodity categories.

Commodity Total pieces sold Part count

Accessories 872 68

Collision 20426 922

Light Repair 3623 520

Maintenance 5643 54

Other 353 54

Powertrain 1912 188

Grand Total 32829 1806

TABLE 2 Categorization rules based on demand criteria and order
frequency.

Category Demand class Criteria

Bronze Low-Low Demand ≤ 2

Low-Medium 3 ≤ Demand ≤ 5 And Ord Freq <3

Silver Medium-High 6 ≤ Demand ≤ 10, 3 ≤ Ord Freq ≤ 10

Medium-Low 6 ≤ Demand ≤ 10, Ord Freq< 3

Low-High 3 ≤ Demand ≤ 5 And Ord Freq ≥ 3

Gold High-High 11 ≤ Demand ≤ 20, 4 ≤ Ord Freq ≤ 20

High-Low 11 ≤ Demand ≤ 20, Ord Freq ≤ 3

Diamond Very High 21 ≤ Demand ≤ 50

Platinum Critical Demand >50

TABLE 3 Demand categorization including counts and percentages.

Category Count %

Platinum 128 7.1

Diamond 165 9.1

Gold 176 9.7

Silver 530 29.3

Bronze 807 44.7

Total 1806 100
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rules, the parts were categorized into various categories as
per Table 2.

In Table 3, we observe the number of service parts falling within
each demand category and their corresponding percentages. It
becomes evident that the majority of service parts are distributed
across the slow to medium moving categories “Silver” and “Bronze”,
with 29.3% and 44.7% representation, respectively. Notably, the
“Platinum” category contains a comparatively smaller share at 7.1%,
while the “Diamond” and “Gold” categories are at 9.1% and 9.7%,
respectively. The total number of service parts considered for this
analysis is 1806.

This distribution has significant implications for strategic
decision-making. The differentiation between these categories
allows for tailored resource allocation and focus. High-demand
service parts categorized as “Platinum” and “Diamond” are prime
candidates for heightened inventory management efforts, ensuring
their availability to minimize service disruptions. On the other hand,
the “Bronze” category, comprising low-demand parts, offers
opportunities for alternative, cost-effective solutions.

2.3 Decision rules for stocking

In the intricate landscape of service parts management, the
decision on which parts to stock involves a judicious evaluation of
various factors. The criteria for stocking service parts are not
arbitrary; instead, they are meticulously derived from key
parameters such as purchase cost (CST), annual demand (Q),
and backorder cost (B). These factors play a crucial role in the
development of a structured and efficient decision-making
framework (Yang et al., 2021).

2.3.1 Decision rules formulation
The decision to stock or not to stock is determined based on a

rule that compares the Inventory Holding Cost and the Backorder
Cost which is the cost associated with no stock on hand.

The computation of holding cost is a challenge. In consultation
with the finance department, it was determined that a 15% holding
cost rate shall be applied for Thailandmarket. The inventory holding
costs would be 15% of Purchase Cost (CST).

Inventory Holding Cost = 0.15 x CST.
The total backorder cost is another challenging parameter to

estimate. The following variables are considered.

a) Loaner car cost—1200 THB per car per day
b) Air Freight cost if part is from an overseas source—8% of

Purchase Cost (CST). For local source, freight cost is ignored.
c) Overheads—1% of Purchase Cost (this includes the additional

efforts by various stakeholders to get the part when we are
backordered)

d) Lead Time L in days to receive the part from source. The
assumption is source holds stock on hand and can
dispatch right away.

Backorder Cost B = 1200 x L + 0.08 x CST +0.01 x CST.
Simplifying, B = 1200 x L + 0.09 CST if overseas source.
Else B = 1200 x L + 0.01 CST if local source.

The decision to stock service parts is contingent on a set of
indices, each carefully formulated to capture specific aspects of the
stocking decision:

• Cost Index (CSTi): This index (CSTi) is calculated using the
formula CSTi = - log2(CST/3000). It quantifies the cost
efficiency of stocking a particular service part, considering
the purchase cost.

• Demand Index (Qi): The demand index (Qi) is formulated as
Qi = - log2 (Q/10), where Q represents the annual demand for
a service part. This index provides insights into the demand
dynamics, emphasizing the significance of considering the
annual demand in the decision-making process.

• Backorder Index (Bi): The backorder index (Bi) is determined
by the formula Bi = log2(B/18000), with B representing the
backorder cost. This index focuses on the cost implications
associated with potential backorders, contributing a crucial
dimension to the decision rules.

TABLE 4 Cost.

Cost range Cost index

>40000 −4

20000–40000 −3

10000–20000 −2

5500–10000 −1

1500–5500 0

750–1500 1

375–750 2

200–375 3

100–200 4

50–100 5

<50 6

TABLE 5 Demand.

Demand range Demand index qi

>500 6

300–500 5

150–300 4

75–150 3

40–75 2

20–40 1

6–20 0

4–6 −1

2–4 −2

<2 −3
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The decision rule is framed as: Stock the part if.
Inventory holding cost < Backorder Cost

0.15 x CST < QxB

By applying log, the rule can be reduced to a summation. A final
simplified rule is obtained by defining pre-defined ranges. Above
indices are associated to each range.

CSTi + Qi + Bi > 0

The index values for the decision rule are as per Table 4,
Table 5, Table 6.

To provide a comprehensive overview of the decision rules,
Table 7 outlines the decision rules applied to determine whether
specific service parts should be stocked or not. The formulation of
these decision rules involved a meticulous consideration of various
factors, including Lead Time (LT), Purchase Cost (CST),
Classification Criteria, and Backorder Cost. The objective was to
establish a systematic approach that optimally balances the costs
associated with stocking and the potential backorder expenses.

Table 7 outlines a few samples where the Sum Index is <0. Parts
with high cost, low to medium demand criteria combined with lower
lead time fall under the Do not stock category. The table presents
specific decision rules for individual service parts, including
information such as Service Part Number (SPN), Commodity,
Lead Time (LT), Purchase Cost (CST), criteria, Backorder Cost,
and the final decision (Stock or Do Not Stock). The columns provide
detailed information on key parameters:

• Index: An index assigned to each service part for reference in
the decision-making process.

• Decision: Indicates whether the service part should be stocked
or not based on the decision rules.

• LT (Lead Time): The time it takes for the delivery of the service
part after placing an order.

• CST (Purchase Cost): The cost associated with acquiring the
service part.

• Criteria: The classification criteria used in the decision-
making process, such as “Critical,” “low-high,” or
“medium-high.”

• Backorder Cost: The cost incurred if the service part is not
stocked and needs to be backordered.

• Sum: A cumulative value derived from specific calculations,
providing an overall assessment of the decision-
making criteria.

The decision rules were derived through a combination of
historical data analysis and strategic considerations to ensure the
efficient allocation of resources and minimize costs. The “Decision”

TABLE 6 Backorder cost.

Backorder cost B Index

<25000 0

25000–100000 2

100000–200000 3

>200000 4

TABLE 7 Decision rules for stocking service parts.

SPN Commodity LT CST Criteria Backorder cost Sum index Decision

SPN_00105 LIGHT REPAIR 78 409.829 Critical 93636.88 6 Stock

SPN_00476 LIGHT REPAIR 135 371,513 medium-high 162033.44 6 Stock

SPN_00502 LIGHT REPAIR 66 110.223 medium-high 79209.92 6 Stock

SPN_00562 LIGHT REPAIR 180 445,659 medium-high 216040.11 6 Stock

SPN_00606 LIGHT REPAIR 15 7191.13 medium-high 18071.91 −1 Do Not Stock

SPN 00634 LIGHT REPAIR 90 227.22 medium-high 108020.45 6 Stock

SPN_00719 LIGHT REPAIR 66 10470.75 low-high 80142.37 −1 Do Not Stock

FIGURE 2
Decision-making process for stocking service parts.
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column reflects the outcome of this comprehensive evaluation,
guiding the stocking strategy for each service part. The “Sum”

column serves as a consolidated indicator, aggregating relevant
criteria for a holistic decision-making perspective. This table
serves as a valuable reference for understanding the nuanced
decision-making process involved in optimizing service parts
management within the automotive industry.

2.3.2 Visualisation
To enhance the clarity of the decision-making process, a visual

representation in the form of a diagram or flowchart has been
incorporated in Figure 2. This visualisation serves as a guide,
illustrating the sequential steps involved in determining whether
a service part should be stocked or not. It encapsulates the logic and
criteria embedded in the decision rules, providing a comprehensive
overview of the stocking process. The flowchart (Figure 2) visually
represents the decision-making process for stocking service parts. It
likely outlines the steps involved in evaluating different criteria and
making the final decision on whether to stock a particular service
part or not.

This visualisation not only aids in understanding the intricate
decision rules but also serves as a valuable reference for stakeholders
involved in service parts management. It streamlines the decision-
making process, making it more transparent and accessible for
effective implementation (Yang et al., 2021). The subsequent
sections will delve into the specifics of these decision rules,
providing a deeper insight into how each criterion contributes to
the overall stocking strategy.

2.4 Forecasting models

In the pursuit of identifying an effective forecasting model for
service parts demand, a diverse set of approaches was explored. This
section outlines the application of various models, ranging from
classical time series methods to advanced machine learning
techniques.

2.4.1 Model selection and implementation
The selection of forecasting models involved a comprehensive

consideration of different approaches. Classical time series models,
including Moving Average (MA), Weighted Moving Average
(WMA), and Exponential Smoothing, were among the initial
methodologies applied (Alex and Rahmawati, 2023). These
traditional models provided a baseline for comparison against
more sophisticated techniques (ArunKumar et al., 2021).

In addition to classical methods, machine learning models were
introduced to harness the power of data-driven insights. Support
Vector Regressor (SVR) (Huang et al., 2022) with Long Short-Term
Memory (LSTM) (Weng et al., 2020) networks, known for their
ability to capture complex patterns, were employed for demand
forecasting. To ensure a comprehensive evaluation, Prophet, Auto
ARIMA and Histogram-based Gradient Boosting Regressor models
were also incorporated.

2.4.2 Performance evaluation
Quantifying the performance of each forecasting model is

critical for selecting the most reliable approach. The evaluation

criteria primarily revolved around the Mean Absolute Percentage
Error (MAPE) (Kilimci et al., 2019). This metric provides a measure
of the accuracy of each model by assessing the percentage difference
between predicted and actual values.

Table 8, summarizes the results obtained from the application of
different forecasting models, presenting their respective Mean
Absolute Percentage Error (MAPE). This table serves as a quick
reference to compare the performance of each model, with lower
MAPE values indicating higher accuracy. MAPE is arrived by
calculating the average of absolute errors (difference of Actual
value and Forecast value) divided by actual value. Formula is
as below:

MAPE � ∑Abs A – F( )/A) x 100
N

A—Actual Value.
F—Forecast as per respective model.
N—Total number of observations.
The subsequent analysis and decision-making will be guided by

these initial insights, aiming to identify the most effective forecasting
model for service parts demand.

3 Results and discussion

3.1 Service parts classification based on
demand criteria

3.1.1 Demand-based categories
In line with the proposed criteria, the service parts were

successfully categorized into five distinct groups: “Platinum,”
“Diamond,” “Gold,” “Silver,” and “Bronze.” The Distribution of
parts across these categories along with demand class is presented in
Table 9. This classification provides a structured foundation for
making informed decisions about stocking service parts.

Figure 3 illustrates a histogram plot providing insights into the
distribution of service parts based on demand class. The x-axis
represents the criteria, while the y-axis indicates the number of
service parts. Notably, this plot highlights a significant number of
parts with low demand, with approximately 75% of service parts
recording sales of fewer than five pieces in the initial 8 months post-
launch. This observation is crucial for understanding the demand
life cycle of service parts, emphasizing the challenges posed by
overestimating demand in the initial phase. By depicting the
distribution of demand across various categories, this
representation aids in devising optimal stocking strategies.

Figure 4 presents a violin plot focusing on the distribution of
service parts across various part systems. The x-axis distinguishes
different part systems, while the y-axis indicates the density of parts
in each system. This plot reveals the presence of outliers in three
distinct systems: Instrument Panel and Console, Powertrain, and
Underbody Metal. While the inclusion of Periodic Maintenance
Service parts might explain outliers in the Powertrain category,
outliers in the Instrument Panel and Console and Underbody Metal
categories warrant further investigation. Identifying these outliers
within part systems is crucial for optimizing stocking decisions and
resource allocation, ensuring efficient stocking of the right parts.
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3.1.2 Implications of categorization
The categorization of service parts based on demand criteria

has several notable implications (Chandriah and Naraganahalli,
2021). Notably, it allows for a more strategic allocation of
resources. The “Platinum” and “Diamond” categories,
representing high-demand parts, warrant a more significant
focus on inventory management. In contrast, the “Bronze”
category, with low-demand parts, opens opportunities for
alternative solutions. The strategic implications of this
classification are discussed in Section 3.2.

3.2 Stocking decision rules and outcomes

3.2.1 Decision rule application
Applying the decision rules established in Section 3.1, the

study determined whether to stock each service part based
on the calculated indices. The outcomes are presented in
Table 10. A significant number of parts were identified as
candidates for stocking, aligning with the management’s
objective to stock at least one piece of every part (Agrawal
and Deshpande, 2022). Notably, this aligns with the aim of
minimizing service disruptions. The outcomes are summarized
in Table 3.1.

3.2.2 Exceptions and contingency solutions
Intriguingly, a set of exceptions and contingency solutions was

introduced. Based on factors such as classification criteria and lead
times, exceptions were recommended for certain parts that initially
fell into the stocking category. Similarly, contingency solutions
focused on minimizing costs by addressing parts with high lead
times and low demand. These strategies introduce a level of
flexibility into the decision-making process, ensuring the optimal
allocation of resources.

3.3 Cost impact assessment

A fundamental aspect of this research involved quantifying the
economic impact of the proposed stocking strategy (Muniz et al.,
2021). By comparing the cost of stocking all parts to the cost
associated with the newly developed equation, significant cost
savings were identified. The results indicate that strategic
stocking, as per the decision rules, could potentially save the
organisation a substantial amount of capital. This cost assessment
is elaborated upon in Section 3.4.

Figure 5 provides an insightful depiction of the demand
distribution for service parts categorized under “Accident
Repair.” This category is integral to the automotive service
industry as it includes parts required for collision and accident-
related repairs. The figure showcases demand trends for accident
repair parts, offering a visual representation of the initial phase of
demand, often characterized by a surge in requests. This figure
emphasizes the importance of making efficient stocking decisions
for accident repair parts to ensure that collision repair shops and
service centres have quick access to these critical components during
periods of increased demand.

3.4 Comparison and recommendations

In the evaluation of forecasting models, the Mean Absolute
Percentage Error (MAPE) served as a crucial metric for assessing
performance. Each model’s accuracy was gauged in percentages,
offering a clear picture of their effectiveness in capturing the
intricate demand patterns of service parts.

MA emerged with a MAPE of 44.6%, indicating its limitations in
accurately predicting dynamic demand variations. Exponential
Smoothing surpassed MA with a MAPE of 36.3%, showcasing

TABLE 8 Results from applying different forecasting models, for service part demand.

Model Mean absolute percentage error (MAPE) (%)

Moving Average 44.6

Exponential Smoothing 36.3

Weighted Moving Average 40.7

Support Vector Machine (SVM) 18.1

Prophet 27.6

Auto ARIMA 29.9

Histogram-based Gradient Boosting 29.1

TABLE 9 Distribution of service parts based on demand categories and
class.

Category Demand class Total

Platinum Critical 128

Diamond very-high 165

Gold high-high 163

high-low 13

Silver medium-high 220

medium-low 15

low-high 295

Bronze low-medium 59

low-low 748

Total 1806
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improved adaptability to fluctuating demand. WMA positioned
itself as a viable alternative, displaying a performance level
between MA and Exponential Smoothing, with a MAPE of 40.7%.

The SVM exhibited a significant leap in performance, achieving
a MAPE of 18.1%. This demonstrated SVM’s capacity to
comprehend complex demand patterns, offering enhanced

FIGURE 3
Histogram plot on demand criteria.

FIGURE 4
Violin plot on part system.
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forecasting accuracy. Prophet, a classical time series model,
delivered a competitive performance with a MAPE of 27.6%,
showcasing reliability in capturing predictable demand trends.

Auto ARIMA, with a MAPE of 29.9%, positioned itself as a
robust model, particularly when compared to simpler methods like
MA and WMA. The Histogram-based Gradient Boosting model
demonstrated effectiveness with a MAPE of 29.1%, striking a
balance between simplicity and accuracy.

When assessing attenuation, which reflects the reduction in
forecasting error achieved by using a more sophisticated model
compared to a simpler one, notable trends emerged. SVM exhibited
substantial attenuation compared to MA, emphasizing its

superiority in capturing complex demand patterns (Shahriar
et al., 2021). Prophet showcased attenuation concerning
Exponential Smoothing, highlighting its ability to enhance
accuracy in scenarios with more predictable demand. Auto
ARIMA displayed attenuation compared to WMA, underscoring
its superior performance in forecasting service parts demand. These
nuanced insights into model performance allow organisations to
make informed decisions based on the specific characteristics of
their service parts demand patterns.

The study conducted a comprehensive comparison of different
forecasting models, including classical time series models, machine
learning techniques, and advanced deep learningmodels. The results
highlighted the supremacy of certain models in specific contexts.
Notably, SVR emerged as the best-performing model in terms of
accuracy (Amirvaresi and Parastar, 2021). This model, however,
showed a slight performance drop when applied to erratic demand
patterns. Recommendations encompass various aspects, such as
parts classification, focus on specific categories (“Platinum,”
“Diamond,” “Gold”), and utilisation of the best-performing
forecasting model for each specific criterion. Moreover, the
research suggests a dynamic approach to stocking based on
monthly demand increments correlated with vehicle sales volumes.

3.5 Limitations and future prospects

While the current study leveraged a data set spanning a
commendable 9-month period, it is important to acknowledge
the potential for future enhancements in data availability and
historical coverage. The depth of historical data represents a

TABLE 10 Decision rule outcomes.

Classification Do not stock Stock

low-low 294 454

low-high 74 221

medium-high 6 214

high-high 3 160

low-medium 2 57

high-low 13

medium-low 15

Critical 128

very-high 165

Grand Total 379 1427

FIGURE 5
Demand distribution of accident repair parts.
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critical factor in refining forecasting accuracy, particularly for
parts characterized by sporadic or evolving demand patterns.
Expanding the historical scope beyond the current timeframe
could yield valuable insights and contribute to a more robust
forecasting model. A more extensive data set, encompassing a
more prolonged historical period, holds the potential to enhance
the precision and reliability of forecasts, offering a
comprehensive understanding of demand dynamics over an
extended timeframe. This proactive approach to data
expansion could further fortify the research outcomes and
provide a more comprehensive foundation for strategic
decision-making in service parts management. Additionally,
future research could explore ensembling approaches and
investigate advanced models not covered in this study,
potentially offering enhanced forecasting capabilities.

3.6 Industry-wide adoption

The findings of this study hold significance for the broader
automotive service industry. The systematic categorization of service
parts based on demand criteria and the implementation of efficient
stocking rules can be readily applied across the sector, leading to
more cost-effective operations and improved service quality.

4 Discussions

In this section, the implications of the study’s findings for service
parts management strategies, inventory optimization, cost-saving
measures, and overall operational efficiency in the automotive
industry are elaborated upon.

The optimized service parts classification framework offers a
nuanced approach for strategic decision-making, enabling
organizations to allocate resources based on the demand
characteristics of each category. By categorizing service parts
according to demand criteria, we can prioritize resources
effectively, ensuring that high-demand parts receive appropriate
attention while exploring alternative solutions for low-
demand parts.

The robust stocking decision rules established in the study strike
a balance between minimizing service disruptions and optimizing
costs. Through careful application, we can stock the right parts in the
right quantities, minimizing stockouts while avoiding unnecessary
capital tied up in overstocking. Additionally, the introduction of
exceptions and contingency solutions provides flexibility in
decision-making, enabling us to adapt to changing circumstances
effectively.

The cost impact assessment reveals significant potential for cost
savings through strategic stocking guided by the decision rules. By
comparing the cost of stocking all parts to that associated with the
newly developed equation, we can identify opportunities for
substantial capital savings, redirecting resources towards other
strategic initiatives.

Furthermore, the comparative analysis of forecasting models
underscores the importance of selecting the right model for specific
contexts. SVM emerges as the most accurate model in the study,
offering enhanced forecasting accuracy and improved demand

forecasting capabilities. Leveraging advanced forecasting models
like SVM can empower us to make informed inventory
management decisions, ultimately enhancing customer service
and operational efficiency.

Overall, the implications of the findings extend beyond our
organization to the broader automotive service industry. By
adopting the proposed framework and recommendations,
organizations can optimize their service parts management
practices, drive efficiency gains, and gain a competitive edge in
the market. This industry-wide opportunity for cost-effective
operations and heightened service quality underscores the
relevance and applicability of the findings in real-world
automotive service settings.

5 Conclusion

The exploration into service parts management and demand
forecasting within the context of the Thai automotive industry has
provided valuable insights and strategic recommendations. The
following key conclusions encapsulate the findings of this research:

1) Optimized Service Parts Classification: The demand-based
categorization provides a nuanced framework for strategic
decision-making, allowing tailored resource allocation based
on the demand characteristics of each category.

2) Robust Stocking Decision Rules: Meticulously derived decision
rules achieve a balance between minimizing service
disruptions and optimizing costs, with exceptions and
contingency solutions introducing flexibility into the
decision-making process.

3) Substantial Cost Savings through Strategic Stocking: The cost
impact assessment indicates that strategic stocking, guided by
the decision rules, has the potential to yield significant
cost savings.

4) Model Performance and Recommendations: The comparative
analysis of forecasting models emphasizes the importance of
selecting the right model for specific contexts, with SVR
identified as the most accurate model.

5) Attenuation and Comparison Insights: Attenuation analysis
reveals the reduction in forecasting error achieved by using
more sophisticated models compared to simpler ones. SVM
exhibits substantial attenuation, emphasizing its superiority in
capturing complex demand patterns. Recommendations
advocate for leveraging the strengths of different models
and dynamically adapting stocking strategies based on
monthly demand increments.

6) Implications for the Automotive Service Industry: The study’s
implications extend beyond individual organisations to the
broader automotive service industry, presenting an industry-
wide opportunity for cost-effective operations and heightened
service quality.

Overall, this research offers a comprehensive framework for
navigating the intricate landscape of service parts management in
the Thai automotive industry. The tailored methodology,
supported by insightful data analysis and visualisation, provides
a roadmap for optimizing stocking strategies and enhancing

Frontiers in Mechanical Engineering frontiersin.org10

Nathan et al. 10.3389/fmech.2024.1361688

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1361688


overall operational efficiency. The findings and recommendations
presented in this study aim to contribute to the ongoing narrative
of improving the efficiency and sustainability of the automotive
industry in Thailand.
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