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Abstract

The adaptive LASSO method has been employed for reliable variable selection as an alternative to LASSO in linear
regression models. This paper introduces an adjusted LARS algorithm that integrates adaptive LASSO with several biased
estimators, including the Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator
(AULE), Principal Component Regression Estimator (PCRE), r-k class estimator, and r-d class estimator. The effectiveness
of the proposed algorithm is evaluated through Monte Carlo simulation and empirical examples.
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1 Introduction
Let us consider a linear regression model

yyy === XXXβββ +++ εεε. (1.1)

Here, yyy represents the n× 1 vector of observations on the dependent variable, XXX is the n× p matrix of observations on the
non-stochastic predictor variables, βββ stands for a p× 1 vector of unknown coefficients, and εεε denotes the n× 1 vector of
random error terms. These errors are assumed to be independent and identically normally distributed with mean zero and
common variance σ2.

It is well-established that the Ordinary Least Squares Estimator (OLSE) as the Best Linear Unbiased Estimator (BLUE) for
estimating the unknown parameter vector in model (1.1), defined as:

β̂ββ OLSE = argmin
βββ

{
(yyy−−−XXXβββ )′(yyy−−−XXXβββ )

}
= (XXX ′XXX)−1XXX ′yyy.

(1.2)

Nevertheless, the OLSE demonstrates instability and yields parameter estimates with high variance in the presence of multicollinearity
within XXX . To mitigate this multicollinearity issue, many researchers resort to biased estimators.

As per Kayanan and Wijekoon [1], the generalized representation of biased estimators including Ridge Estimator (RE), Almost
Unbiased RidgeEstimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component
Regression Estimator (PCRE), r-k class estimator and r-d class estimator can be expressed as:

β̂ββ G = GGGβ̂ββ OLSE (1.3)

where

β̂ββ G =



β̂ββ RE if GGG = (XXX ′XXX + kIII)−1XXX ′XXX
β̂ββ AURE if GGG =

(
III− k2(XXX ′XXX + kIII)−2)

β̂ββ LE if GGG = (XXX ′XXX + III)−1(XXX ′XXX +dIII)
β̂ββ AULE if GGG =

(
III− (1−d)2(XXX ′XXX + III)−2)

β̂ββ PCRE if GGG = TTT hTTT ′h
β̂ββ rk if GGG = TTT hTTT ′h(XXX

′XXX + kIII)−1XXX ′XXX
β̂ββ rd if GGG = TTT hTTT ′h(XXX

′XXX + III)−1(XXX ′XXX +dIII)

Kayanan and Wijekoon [1] illustrated that the r-k class estimator and r-d class estimator yield superior performance compared
to other estimators within a particular range of regularization parameter values in the presence of multicollinearity among
predictor variables. Nonetheless, biased estimators can introduce significant bias when the number of predictor variables is
large, which may result in the inclusion of irrelevant predictors in the final model. To mitigate this problem, Tibshirani [2]
introduced the Least Absolute Shrinkage and Selection Operator (LASSO) as

β̂ββ LASSO = argmin
βββ

{
(yyy−−−XXXβββ )′(yyy−−−XXXβββ )

}
subject to

p

∑
j=1
|β j| ≤ t, (1.4)

where t ≥ 0 is a turning parameter. The LASSO solutions has been obtained by the Least Angle Regression (LARS) algorithm.

Zou and Hastie [3] observed that LASSO does not surpass the Ridge Estimator in scenarios where high multicollinearity
is present among predictors, and its performance becomes unstable when the number of predictors exceeds the number of
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observations. To address this issue, Zou and Hastie [3] proposed the Elastic Net (ENet) estimator, which integrates LASSO
and Ridge Estimator as

β̂ββ ENet = argmin
βββ

{
(yyy−−−XXXβββ )′(yyy−−−XXXβββ )+ k

p

∑
j=1

β
2
j

}
subject to

p

∑
j=1
|β j| ≤ t. (1.5)

The LARS-EN algorithm, an adaptation of the LARS-LASSO algorithm, has been employed to derive solutions for the Elastic
Net (ENet) estimator.

Further, Zou and Hastie [3] noted that LASSO does not care about variable importance when a group of variables among
which the pairwise correlations are very high.

To handle this problem, Zou [4] proposed adaptive LASSO by giving different weights to regression coefficients in L1 penalty
of LASSO. By taking weight vector ŵww = |β̂ββ OLSE|−α for any α > 0, the adaptive LASSO is defined as

β̂ββ adpLASSO = argmin
βββ

{
(yyy−−−XXXβββ )′(yyy−−−XXXβββ )

}
subject to

p

∑
j=1
|w jβ j| ≤ t. (1.6)

In addition to that Zou and Zhang [4] proposed adaptive Enet estimator by combining adaptive LASSO and RE, and it is
defined as

β̂ββ adpENet = argmin
βββ

{
(yyy−−−XXXβββ )′(yyy−−−XXXβββ )+ k

p

∑
j=1

β
2
j

}
subject to

p

∑
j=1
|w jβ j| ≤ t, (1.7)

where where ŵww = |β̂ββ Enet |−α .

Kayanan and Wijekoon [5] introduced the generalized LARS (GLARS) algorithm, which integrates LASSO with various
biased estimators, including the Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE),
Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator, and r-d
class estimator. They demonstrated that the combination of LASSO and the r-d class estimator performs effectively in high-
dimensional linear regression models, particularly when there is significant multicollinearity among the predictor variables
[6, 7, 8, 9, 10, 11].

In this article, we propose an enhanced version of the GLARS algorithm that combines adaptive LASSO with various biased
estimators, including the Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator
(AULE), Principal Component Regression Estimator (PCRE), r-k class estimator, and r-d class estimator. Additionally, we
compare the predictive performance of the proposed algorithm with existing adaptive LASSO and adaptive Elastic Net (ENet)
algorithms through a Monte Carlo simulation study and an empirical example.

The article is structured as follows: Section 2 introduces the proposed adaptive GLARS algorithm, Section 3 assesses the
performance of the algorithm, and Section 4 provides the conclusion.

2 Adaptive GLARS Algorithm for LASSO
Based on the methodology outlined by Kayanan and Wijekoon [5], we propose the adaptive GLARS algorithm as follows:
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Algorithm 1 Adaptive GLARS
1: Standardize the predictor variables XXX to have a mean of zero and a standard deviation of one, and the response variable yyy to have a mean

of zero.
2: Define ŵww = ˆ|βββ G|−α for α > 0, where β̂ββ G is the general form of the biased estimators defined in equation (1.3), and XXX =

XXX
ŵww

.

3: Initialize the estimated value of βββ as β̂ββ = 0, and set the residual rrr0 = yyy.
4: Identify the predictor variable most correlated with rrr0 by:

• Calculate X j1 = max j |Cor(X j,rrr0| for j = 1,2, ..., p.

• Increase the estimate of β̂ j1 from 0 until another predictor X j2 has a high correlation with the current residual as X j1 does.

• Proceed in the equiangular direction between X j1 and X j2.

• Similarly, each subsequent variable X ji earns its way into the active set, and proceed in the equiangular direction between all
selected predictors

• Update coefficient estimates using the formula:
β̂ββ ji = β̂ββ j(i−1)+ρiuuui, (2.1)

where αi is a value between 0 and 1 representing the distance the estimate moves before another variable enters the model, and
uuui is the equiangular vector.

• Calculate the direction uuui using:
uuui = GGGE (EEE ′iXXX

′XXXEEE i)
−1EEE ′iXXX

′rrri−1, (2.2)

where Ei is the matrix with columns (e j1,e j2, ...,e ji), e j is the j-th standard unit vector in Rp with the indices of selected variables,
and GGGE depends on the specific estimator which can be substituted by respective expressions for any of estimators of our interest
as listed in Table 2.

• Update ρi as:
ρi = min

{
ρ
+
ji , ρ

−
ji , ρ

∗
ji

}
∈ [0,1] (2.3)

where

ρ
±
ji =

Cor(rrri−1,X ji)±Cor(rrri−1,X j)

Cor(rrri−1,X ji)±Cor(XXXuuui,X j)
for any j such that β̂ββ j(i−1) = 0, (2.4)

and

ρ
∗
ji =−

β̂ββ j(i−1)

uuui
for any j such that β̂ββ j(i−1) 6= 0. (2.5)

• If ρi = ρ∗ji, update EEE i by removing the column e j from EEE i−1. Calculate the new residual rrri as:

rrri = rrri−1−ρiXXXuuui, (2.6)

and move to the next step where ji+1 is the value of j such that ρi = ρ
+
ji or ρi = ρ

−
ji or ρ∗ji.

• End this step when ρi = 1.

5: Output β̂ββ ad p =
β̂ββ

ŵww
.

In Table 1, III pE denotes the pE × pE identity matrix, where pE represents the number of selected variables at each iterative
step, and TTT hE = (t1, t2, ..., thE ) comprises the first hE columns of the standardized eigenvectors of EEE ′iXXX

′XXXEEE i.

The adaptive GLARS algorithm iteratively updates the combined estimates of adaptive LASSO and other estimators. The
algorithm requires O(m3 + pm2) operations, with m representing the number of steps. However, this study does not consider
computational efficiency. The evaluation of prediction performance is based on the Root Mean Square Error (RMSE) criterion,
as detailed in Section 3. The adaptive GLARS method enables the integration of adaptive LASSO with any of the estimators
listed in Table 1.
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Table. 1. GGGE of the estimators for GLARS

Estimators GGGE

OLSE EEE i
RE EEE i(EEE ′i(XXX

′XXX + kIII)EEE i)
−1(EEE ′iXXX

′XXXEEE i)

AURE EEE i(IIIpE − k2(EEE ′i(XXX
′XXX + kIII)EEE i)

−2)

LE EEE i(EEE ′i(XXX
′XXX + III)EEE i)

−1(EEE ′i(XXX
′XXX +dIII)EEE i)

AULE EEE i(IIIpE − (1−d)2(EEE ′i(XXX
′XXX + III)EEE i)

−2)
PCRE TTT hE TTT ′hE

EEE i
r-k class TTT hE TTT ′hE

EEE i(EEE ′i(XXX
′XXX + kIII)EEE i)

−1(EEE ′iXXX
′XXXEEE i)

r-d class TTT hE TTT ′hE
EEE i(EEE ′i(XXX

′XXX + III)EEE i)
−1(EEE ′i(XXX

′XXX +dIII)EEE i)

It is worth noting that when GGGE corresponds to the expressions of OLSE and RE, adaptive GLARS provides solutions akin to
adaptive LASSO and adaptive ENet, respectively. For ease of reference, we denote adaptive GLARS as adpLARS-LASSO,
adpLARS-EN, adpLARS-AURE, adpLARS-LE, adpLARS-AULE, adpLARS-PCRE, adpLARS-rk, and adpLARS-rd when
GGGE corresponds to the expressions of OLSE, RE, AURE, LE, AULE, PCRE, r-k class, and r-d class estimators, respectively.

We can use two-dimensional cross-validation to find the suitable value of α and shrinkage parameter k or d for adaptive
GLARS.

3 Performance of the Adaptive GLARS Algorithms
Proposed algorithms are compared using the RMSE criterion, which is the expected prediction error of the algorithms, and is
defined as

RMSE(β̂ββ ) =

√
1
n
(yyynew−XXXnewβ̂ββ )′(yyynew−XXXnewβ̂ββ ) (3.1)

Here, (yyynew,XXXnew) represents the new data set not utilized in estimating the parameters, and β̂ββ signifies the estimated value
of βββ obtained through the corresponding algorithm. A comparison is conducted using both a Monte Carlo simulation study
and empirical examples.

3.1 Simulation study
As outlined by McDonald and Galarneau [12], initially, the predictor variables are generated utilizing the following mathematical
expression:

xi, j =
√
(1−ρ2)zi, j +ρzi,m+1 ; i = 1,2, ...,n. j = 1,2, ...,m. (3.2)

In this context, zi, j represents an independent standard normal pseudo-random number, and ρ denotes the theoretical correlation
between any pair of explanatory variables.

In this investigation, we employed a linear regression model comprising 100 observations and 20 predictors. The dependent
variable is generated utilizing the subsequent equation:

yi = β1xi,1 +β2xi,2 + ...+β5xi,20 + εi ; i = 1,2, ...,100. (3.3)

where εi is a normal pseudo random number with mean zero and common variance σ2. We choose βββ = (β1,β2, ...,β20) as
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the normalized eigenvector corresponding to the largest eigenvalue of XXX ′XXX for which βββ
′
βββ = 1. To explore the impacts of

varying degrees of multicollinearity on the estimators, we select ρ = (0.5,0.7,0.9), representing weak, moderate, and high
multicollinearity, respectively. For our analysis, we simulate 50 datasets, each comprising 50 observations, to fit the model,
and another 50 observations are used to calculate the Root Mean Square Error (RMSE).

The Cross-validated RMSE values of the adaptive GLARS algorithms are depicted in Figs. 1 through 3, while the median
cross-validated RMSE values of the algorithms are presented in Tables 2 through 4.

1 2 3 4 5 6 7 8

2
.5

3
.0

3
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Algorithms
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S
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1 adpLARS−LASSO

2 adpLARS−EN

3 adpLARS−AURE

4 adpLARS−LE

5 adpLARS−AULE

6 adpLARS−PCRE

7 adpLARS−rk

8 adpLARS−rd

Fig. 1. Cross-validated RMSE values of the adaptive GLARS algorithms under the condition where ρ = 0.5

Table. 2. Median values of Cross-validated RMSE for the adaptive GLARS algorithms under the condition where
ρ = 0.5

Algorithms RMSE (k, d) α t Selected variables

adpLARS-LASSO 3.45489 – 1 6.6635 16
adpLARS-EN 3.41614 0.2 1 7.5795 17
adpLARS-AURE 3.44668 1.0 1 7.1685 17
adpLARS-LE 3.34648 0.3 1 7.1018 15
adpLARS-AULE 3.48312 0.2 1 8.0718 16
adpLARS-PCRE 3.31719 – 1 6.5019 16
adpLARS-rk 3.35712 0.2 1 6.0726 17
adpLARS-rd 3.47994 0.99 1 6.5019 16

Based on the insights gathered from Fig. 1 to Fig. 3 and Table 2 to Table 4, it is evident that the adpLARS-PCRE, adpLARS-
rk, and adpLARS-rd algorithms consistently demonstrate superior performance in terms of RMSE criterion compared to other
adaptive GLARS algorithms across varying degrees of multicollinearity, from weak to moderate and high levels, respectively.
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Fig. 2. Cross-validated RMSE values of the adaptive GLARS algorithms under the condition where ρ = 0.7
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Fig. 3. Cross-validated RMSE values of the adaptive GLARS algorithms under the condition where ρ = 0.9

3.2 Real-world example

In our analysis, we utilized the Prostate Cancer Data [13], a well-established dataset explored by Tibshirani [2], Efron et al.
[14] , and Zou and Hastie [3] to evaluate the efficacy of LASSO, LARS algorithm, and Enet.
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Table. 3. Median values of Cross-validated RMSE for the adaptive GLARS algorithms under the condition where
ρ = 0.7

Algorithms RMSE (k, d) α t Selected variables

adpLARS-LASSO 3.53553 – 1 8.7067 16
adpLARS-EN 3.42320 0.3 0.5 8.9330 17
adpLARS-AURE 3.53440 0.7 1 8.0610 17
adpLARS-LE 3.45469 0.1 0.5 9.1520 15
adpLARS-AULE 3.56472 0.1 1 8.0821 16
adpLARS-PCRE 3.41530 – 1 9.5873 16
adpLARS-rk 3.35452 0.1 1 8.9412 16
adpLARS-rd 3.37755 0.2 1 8.8207 16

Table. 4. Median values of Cross-validated RMSE for the adaptive GLARS algorithms under the condition where
ρ = 0.9

Algorithms RMSE (k, d) α t Selected variables

adpLARS-LASSO 3.44950 – 0.5 4.0460 15
adpLARS-EN 3.39404 1.0 1 8.2710 17
adpLARS-AURE 3.50448 0.9 1 10.045 17
adpLARS-LE 3.49651 0.1 0.5 10.005 15
adpLARS-AULE 3.48735 0.1 0.5 8.0684 16
adpLARS-PCRE 3.49078 – 0.5 10.682 17
adpLARS-rk 3.42176 0.3 1 10.433 16
adpLARS-rd 3.37842 0.99 0.5 7.0576 15

The Prostate Cancer Data comprises eight clinical metrics: log cancer volume (lcavol), log prostate weight (lweight), age,
log of benign prostatic hyperplasia volume (lbph), seminal vesicle invasion (svi), log capsular penetration (lcp), Gleason
score (gleason), and percentage Gleason score 4 or 5 (pgg45). The response variable is the log of prostate-specific antigen
(lpsa), with a dataset size of 97 observations. Notably, the predictor variables exhibit Variance Inflation Factor (VIF) values of
3.09, 2.97, 2.47, 2.05, 1.95, 1.37, 1.36, and 1.32, indicating considerable multicollinearity, as evidenced by a high condition
number of 243. This dataset is readily available within the ”lasso2” R package. Our analysis involved fitting the model with
67 observations and computing the Root Mean Square Error (RMSE) using 30 observations.

Table. 5. Cross-validated RMSE values for the Prostate Cancer Data utilizing adaptive GLARS algorithm

Algorithms RMSE (k, d) α t Selected variables

adpLARS-LASSO 0.77653 – 0.2 1.57112 7
adpLARS-EN 0.78716 0.3 1 0.80638 7
adpLARS-AURE 0.80638 1.0 0.9 0.80638 7
adpLARS-LE 0.80014 0.1 0.5 1.45884 7
adpLARS-AULE 0.79046 0.2 1 1.31322 6
adpLARS-PCRE 0.76890 – 0.9 1.44929 7
adpLARS-rk 0.77698 0.2 0.9 1.36273 7
adpLARS-rd 0.76854 0.7 0.9 1.44764 7

The cross-validated RMSE values obtained through the adaptive GLARS algorithms are summarized in Table 5. Upon
examining Table 5, it becomes evident that the adpLARS-rd algorithm outperforms other algorithms when applied to the
Prostate Cancer Data.
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4 Conclusion
This study provides clear evidence of the effectiveness of the adpLARS-rk and adpLARS-rd algorithms in addressing high-
dimensional linear regression challenges, particularly in the presence of numerous closely correlated independent variables.
These improved algorithms emerge as reliable tools for tackling high dimensional regression models and offer promising
avenues for future research and practical application in data-driven environments.
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