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Abstract 
 

Multi-response surface optimization (MRSO) is a problem that is peculiar to an industrial setting, where 
the aim of a process engineer is to set his process at operating conditions that simultaneously optimize a 
set of process responses. In Statistics, several methods have been proffered for tackling problems of this 
nature. Some of such methods are that of: overlapping contour plots, constrained optimization problem, 
loss function approach, process capability approach, distance function approach, game theory approach, 
and the desirability function approach. These, methods are however, not without teething flaws as they 
are either too problem specific, or require very complex and inflexible routines; little wonder, the method 
of desirability function has gained popularity especially because it overcomes the latter limitation. In this 
article, we have proposed and implemented a multivariate-based technique for solving MRSO problems. 
The technique fused the ideas of response surface methodology (RSM), multivariate multiple regression 
and Pareto optimality. In our technique, RSM was implemented on an all-maximization problem as a 
case-study process; in which case, first-order models (FOMs) for the responses were fitted using 2k 
factorial designs until the FOMs proved to be inadequate, while uniform precision rotatable central 
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composite design was used to obtain second-order models (SOMs) for the respective responses in the 
event of model inadequacy of the FOMs. With the implementation of the proposed technique to the case 
study, optimal operating conditions were obtained, with observations stemming thereof summarized as 
axioms. The first, second and third axioms respectively stated that: (1) the mid-point of all optimal 
operating conditions obtained via the proposed technique is Pareto optimal, (2) the mid-point of all 
optimal responses at the Pareto optimal operating condition is Pareto optimal, and (3) the region bounded 
by each of the optimal operating conditions from each second-order model (SOM) is a Pareto front. 
 

 

Keywords: Multi-Response Surface Optimization (MRSO); Response surface Methodology (RSM); pareto 
optimality; pareto front. 

 

1 Introduction 
 
The production of goods via industrial processes is based on the combination of contributory factors at 
certain operating conditions that are deemed favorable to a process response [1-4]. In most cases, the interest 
of the process engineer is to obtain a stable operating condition of the factors which optimizes the process 
response, in contrast to monitoring the quality of the process [5-8]. The latter objective is the subject matter 
of statistical quality control. However, in 1951, circumstances of this nature were studied by G. E. P. Box 
and K. B. Wilson, and from their study stemmed the methodology of response surface which basically 
tackled the problem of optimizing processes involving just one process response with little or no attention 
given to the scenario of optimizing processes involving more than one process response [9,7,10,11,2]. And 
although a variety of definitions have emerged in recent years, this methodology of response surface, 
popularly regarded as response surface methodology (RSM) was defined as a collection of mathematical and 
statistical techniques useful for modeling and analyzing problems in which a response of interest is 
influenced by several factors, and the objective is to optimize the response [9,12,13]. Little wonder, over the 
years, the technique has been embraced in areas other than the field of Statistics for improving and 
optimizing processes [5,7,14,15,8,16]. 
 
Notwithstanding, in recent years, optimizing multi-response variables has become the subject matter for 
Statisticians with a view to tackling trending industrial problems which involve the simultaneous 
optimization of several quality characteristics [7,8,13,17,11], among other authors have all argued that the 
simultaneous consideration of multi-response variables should commence with the development of 
appropriate response surface models for each of the response, first, after which attempts to find a set of 
operating conditions that optimize all the process responses simultaneously, or which at least keep them in 
desired ranges, can be made. Over the years, beginning with [18-20], scholarly research articles have strictly 
adhered to the first part of the routine in tackling the problem of multi-response optimization, with variations 
in their techniques emerging from the second part of the routine. 
 
Deringer and Suich [21] developed and presented a method to construct an overall desirability using a 
desirability function – a popular method which necessarily requires the decision maker’s preference 
information, and fails otherwise. [22] developed the distance function method, while the method of process 
capability index was developed by [23]; both methods were either too problem-specific or situation-specific 
[24]. presented a priority-based approach for MRSO which considers the highest importance as the objective 
function and the rest of the functions are considered as constraints – a method earlier suggested 
independently by [25], and then by [26]; but this method ultimately depends on the knowledge of what 
response is of highest importance among the lot. [27] proffered the use of the squared error loss function 
which was too problem-specific requiring the use of a cost function. [28] suggested overlays of contour plots 
for each response as an approach for optimizing several responses; but the application of this technique was 
restricted to a small set of design variables since it becomes awkward for more than three design variables. 
[3] developed the method of game theory; but this technique ends up masking the details of the experimental 
process. [17] used a posterior preference approach to perform robust multi-response optimization; but, this 
method is yet only efficient when the decision maker’s preference information is available, and fails 
otherwise [29,30,20]. 
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Notwithstanding, depending on the nature of the problem, all the afore-mentioned methods have produced 
near-satisfactory results at best. Hence, the search for more flexible and robust methods is still on, and 
which, without any loss of information, optimizes multiple response variables. This anchor point of this 
article is, thus, to attempt to bridge the said gap. Like all previous attempts, this article embraces the first 
part of the routine; but, for the second part, it approaches the problem in a manner different from all previous 
attempts via a multivariate perspective. 
 

2 Materials and Methods 
 
2.1 Materials 
 
2.1.1 The procedure of RSM for single response 
 
[5,6,1] summarizes the existing procedure of the RSM as follows. 
 
2.1.1.1 Plan and run a factorial design around the current operating condition 
 
This process is usually called a screening experiment, particularly because at this stage, all the influencing 
factors are screened based on how significant their influence is on the response variable of interest. 
 
2.1.1.2 Fit a linear model (with no interaction or quadratic terms) to the data 
 
In most RSM problems, the form of the relationship between the response and the independent variables is 
unknown. Thus, after the screening of all factors in RSM comes finding a suitable approximation for the true 
functional relationship between the response variable of interest � and the set of strongly influencing factors. 

Such a model is mostly fitted using the coded variables kxxxx ,,,, 321   instead of the natural independent 

variables k ,,,, 321  . Frequently, a low-order polynomial in some region of these strongly 

influencing factors is employed. And if the response is well-modeled by a linear function of such factors, 
then the approximating function is the first-order model (FOM). 
 

  
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2.1.1.3 Determine the PSA (maximization) or PSD (minimization) 
 

To find the PSA (Path of Steepest Ascent) or PSD (Path of Steepest Descent) requires the use of the method 
of steepest ascent (MSA) or method of steepest descent (MSD) respectively. In particular, the MSA is a 
procedure for moving sequentially in the direction of the maximum increase in the response. Of course, if 
minimization is desired, then we employ the MSD. The fitted first-order model is 
 

 1                                                                                                        ˆˆˆ
1
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i
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The PSA is proportional to the sign and magnitude of the regression coefficients in the fitted FOM. A 
general algorithm for determining the coordinates of a point on the PSA may be stated as follows, assuming 

that the point 0321  kxxxx   is the base or origin. 

 
(i) Choose the step size in one of the process variables, say 

jx . Usually, we would select the variable 

we know the most about, or we would select the variable that has the largest absolute regression 
coefficient 

j̂ . 
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(ii) The step size in other variables is 

jj

i
i

x
x







ˆ

ˆ  jiki  ;,,3,2,1  . 

(iii)  Convert the 
jx  from coded variables to the natural variables. 

 
2.1.1.4 Run tests on the PSA until response no longer improves 
 
Here, more experiments are carried out along the PSA until the “lack of fit test” proves the FOM to be an 
inadequate fit for the data. In such a case, a further increase in the experimental run may lead to a decrease in 
response (for a maximization problem) or an increase in response (for a minimization problem). 
 
2.1.1.5 If curvature of surface is large, proceed to step 6. Else, return to 2.1.1.1 
 
Here, when the “lack of fit test” proves the FOM to be inadequate for the data, an SOM must be introduced 
to account for the presence of curvature in the system. This curvature is always indicative of the fact that we 
are the neighborhood of the optimum. 
 
2.1.1.6 In the neighborhood of the optimum, design, run and fit an SOM using LST 
 
When the experimenter is relatively usually close to the optimum, a model that incorporates curvature is 
usually required to approximate the response. In most cases, the second-order model (SOM) is adequate. 
That is, 
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2.1.1.7 Based on the SOM, locate optimal setting of the strongly influencing factors 
 
Here, the optimal setting is the point 0,0,30,20,1 ,,,, kxxxx   satisfying the equation 

 3                                                           0
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provided it exists. In other words, the said point is the stationary point, which may represent a point of 
maximum response, a point of minimum response, or a saddle point. In order to obtain such a point, the 
procedure of RSM requires the writing the SOM in matrix notation: 

 4                                                                                                 ˆˆ
0 bxxbx TTy  

 

In which case, 
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In other words, 1kb  is a vector of the first-order regression coefficients, whereas kkB  is a symmetric 

matrix having its main diagonal elements as the pure quadratic coefficients  ii̂  for ki ,,3,2,1  , but 

having its off-diagonal elements as one-half of the mixed quadratic coefficients  jiij ,̂ . The partial 

derivatives of ŷ with respect to each element in 1kx  when equated to zero gives 

 6                                                                                                                                         02
ˆ





xBb

x

y
 

The stationary point is the solution to (6), in other words: 

 7                                                                                                                                               
2

1 1
0 bBx   

By substituting (7) into (4) we can now obtain the expected response at the stationary point to be: 

 8                                                                                                                                           
2

1ˆˆ 000 bxTy  

 

 
2.1.2 Multivariate multiple regression 
 
Multivariate multiple regression (MMR) considers the problem of modeling the relationship between m  
responses 

myyy ,,, 21   and a single set of predictor variables 
rzzz ,,, 21   [31-33]. According to [33], 

each response is assumed to follow its own regression model, so that: 
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The error term  m
T  ,,, 21 ε  has   0ε E  and   εvar . Thus, the error terms associated with 

different responses may be correlated [31,32]. To establish notation conforming to the classical linear 
regression model, let  jrjj zzz ,,, 10 Z  denote the values of the predictor variables for the thj  trial, let 

 jmjj
T
J YYY ,,, 21 Y  be the responses, and let  jmjj

T  ,,, 21 ε  be the errors [31,32]. In matrix 

notation, the design matrix 
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is the same as that for the single-response regression model [33]. The other matrix quantities have 
multivariate counterparts [33]. Set 
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The multivariate linear regression model is 

         
 14                                                                                                       
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with    0ε iE  and      Iεε ikki ,cov  for mki ,,2,1,   [31,32]. 

 
The m  observations on the thj  trial have covariance matrix  ik , but observations from different trials 

are uncorrelated. Here β  and 
ik  are unknown parameters; the design matrix Z  has thj  row 

 jrjj zzz ,,, 10   [31,32]. Simply stated, the thi  response  iY  follows the linear regression model 

       15                                                                                       ,,2,1, miiii  εβZY  

with    Iε iii cov . However, the errors for different responses on the same trial can be correlated [31,32]. 

Given the outcomes Y  and the values of the predictor variables Z  with full column rank, we determine the 
least squares estimates 

 iβ̂  exclusively from the observations  iY  on the thi  response [33]. In conformity 

with the single-response solution, we take 
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Collecting these univariate least squares estimates, we obtain 
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or 

     17                                                                                                                             ˆ 1
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For any choice of parameters       mbbbB  21 , the matrix of errors is ZBY  . The error sum of 

squares and cross products matrix is 
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The selection 
   ii βb ˆ  minimizes the thi  diagonal sum of squares 

         ii
T

ii ZbYZbY   

Consequently,     ZBYZBY  Ttr  is minimized by the choice βB ˆ . Also, the generalized variance 

   ZBYZBY  T  is minimized by the least squares estimates β̂ . 

Using the least squares estimates β̂  we can form the matrices of: 

 
Predicted values:    YZZZZZβY TT 1
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Residuals:     19                                                           ˆˆ
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The orthogonality conditions among the residuals, predicted values, and columns of Z , which hold in 
classical linear regression, hold in multivariate multiple regression. They follow from 
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so the residuals  iε̂  are perpendicular to the columns of Z . Also, 
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confirming that the predicted values 
 iŶ  are perpendicular to all residual vectors  kε̂ .  

Because εYY ˆˆ  , 
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The residual sum squares and cross products can also be written as 

 23                                                                                                     ˆˆˆˆˆˆ βZZβYYYYYYεε TTTTTT   

2.1.3 Pareto optimality 
 
Pareto optimality is a situation that cannot be modified so as to make any one individual or preference 
criterion better off without making at least one individual or preference criterion worse [3,8]. The concept is 
named after Vilfredo Pareto (1848 – 1923), an Italian engineer and economist, who used the concept in his 
studies of economic efficiency and income distribution. The following are four definitions or closely-related 
concepts on Pareto optimality. 
 
2.1.3.1 Definition 1 – Pareto improvement 
 
Given an initial situation, a Pareto improvement is a new situation which is weakly preferred by all agents, 
and strictly preferred by at least one agent [8,16]. In a sense, it is a unanimously-agreed improvement such 
that a movement to the new situation would imply gain to some agents, and no agent will lose. 
 
2.1.3.2 Definition 2 – Pareto dominated 
 
A situation is called Pareto dominated if it has a Pareto improvement [3,16]. 
 
2.1.3.3 Definition 3 – Pareto optimal 
 
A situation is Pareto optimal or Pareto efficient if it is not Pareto dominated [3,8]. 
 
2.1.3.4 Definition 4 – Pareto frontier 
 
Pareto frontier is the set of all Pareto efficient allocations. It also variously known as Pareto front or Pareto 
set [3,8,16]. 
 

2.2 Methods 
 
2.2.1 Already existing techniques for solving MRSO problems 
 
From its initial development till date, a variety of methods have been introduced for multiple-response 
optimization, all of which have been categorized at different times by several authors. For instance, [27] 
categorized the existing methods into three; [34] categorized the existing methods into four. In this article, 
we have considered the most recent classifications being that of [7], and [35]. These categories are the 
approaches of: overlapping contour plots, constrained optimization problem, loss function, process 
capability, distance function, game theory and desirability function. 
 
2.2.1.1 Overlapping contour plots 
 
[28] suggested that an approach for optimizing several responses is to overlay the contour plots for each 
response. Here, the experimenter can visually examine the contour plot to discover the appropriate operating 
conditions. [7] emphasized that this technique is mainly suitable when there are few design variables, since it 
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becomes awkward for more than three design variables. More so, in this approach [7] explains that there is 
no need for the decision maker’s information especially as contour plots play the main role. 
 
2.2.1.2 Constrained optimization problem 
 
The formulation and solving of the multi-response problem like a constrained optimization problem was 
described by [36] as a popular approach. [24] classified it as a priority based approach. The priority-based 
approach which is similar to a method-bounded objective in the multi-objective decision-making problem 
chooses the response with the highest importance as the objective function and the rest of the functions are 
considered as constraints, although it is not always much straightforward. This idea was first suggested by 
[25]. In their study, the responses were assumed and referred to as a “primary response” and a “constraint 
response”. The objective was to find conditions on a set of designed variables which maximizes the primary 
response function subject to the constraint response function. Subsequently, [26] considered multiple process 
responses by extending the study and formulation of [25]. 
 
2.2.1.3 Loss function approach 
 
The squared error loss function was first suggested by [27] as: 

          24                                                                                                 xyCxyxyL T  

where  xy  is the response vector,  x  is the target vector, and C  is the cost matrix and is used to 

determine the relative importance of the response variables. 

2.2.1.4 Process capability approach 
 
Process capability index is used to evaluate whether a process is able to meet current specification limits. 
[23] presented the index 

pmC  as: 

 
 25                                                                                                               

6 22 T

LSLUSL
C pm








 

where USL and LSL are specification limits, and  , 2  and T  respectively denote the mean, variance, and 

target in the above equation. Subsequently, in an independent work, [37] further extended this index; hence, 
this index could now be applied in multi-response optimization. The maximization of process capability as a 
criterion for multi-response optimization was further considered by [19]. 
 
2.2.1.5 Distance function approach 
 
The distance function approach was proposed by [22]. The distance function is 

       
 

 26                                                                       ˆˆ,ˆ Distance
1

ˆ 





  



xy

T TxyTxyTxy
 

where T  represents the target value,  xŷ  is the predicted response, and  xŷ  is the variance-covariance 

matrix of the predicted responses. The optimal operating condition is achieved if the distance function gets 
minimized. 
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2.2.1.6 Game theory approach 
 
[3] proposed a game theoretic-based approach for multi-response optimization by viewing each response as 
a player and each factor as strategies of each player. Their approach could determine the best predictor factor 
sets in order to obtain the best joint desirability of responses. This was achieved this, the signal to noise ratio 
(SN) index for each response will be calculated by considering the joint values of strategies, following which 
the obtained SN ratios for each strategy are modeled in the game theory table. To end the procedure, via 
Nash Equilibrium, the best strategy which is the best values of predictor factors is then determined. 
 
2.2.1.7 The desirability function approach 
 
The desirability function approach is one of the most widely used methods in industry for the optimization of 
multiple response processes. It is based on the idea that the “quality” of a product or process that has 
multiple quality characteristics, with one of them outside of some “desired limits”, is completely 
unacceptable. The method finds operating conditions � that provide the “most desirable” response values. 
 
For each response 

iy , a desirability function  ii yd  assigns numbers between 0 and 1 to the possible values 

of 
iy  with   0ii yd  representing a completely undesirable value of 

iy  and   1ii yd  representing a 

completely desirable or ideal response value. The individual desirabilities are then combined using the 
geometric mean, which gives the overall desirability 

        kkk ydydydydD
1

332211  
 with k  

denoting the number of responses. Notice that if any response is completely undesirable (that is, if 

  0ii yd ), then the overall desirability is zero. In practice, fitted response values 
iŷ  are used in place of 

the 
iy . 

 
Depending on whether a particular response 

iy  is to be maximized, minimized, or assigned a target value, 

different desirability functions  ii yd̂  can be used. A useful class of desirability functions was proposed by 

[21]. Let 
iL , 

iT  and 
iU be the lower, upper and target values, respectively, that are desired for response ��, 

with 
iii UTL  . 

 
If a response is of the “target is best” kind, then its individual desirability function is: 
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with the exponent s  and t  determining how important it is to hit the target value. For 1 ts , the 
desirability function increases linearly towards 

iT ; for 1s , 1t , the function is convex; for 1s , 1t , 

the function is concave (see the example below for an illustration). 

If a response is to be maximized instead, the individual desirability is defined as: 
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with 
iT  in this case interpreted as a large enough value for the response. 

 
Finally, if we want to minimize a response, we could use: 
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with 
iT  denoting a small enough value for the response. 

 
The desirability approach consists of the following steps: 
 

1. Conduct experiments and fit response models for all k  responses; 

2. Define individual desirability functions for each response; 
3. Maximize the overall desirability D  with respect to the controllable factors. 

 
However, the most important advantage of this approach is that the Decision Maker’s preference information 
can be easily applied in the model. In addition, it is easy to use, and is popular among available methods. 
 
2.2.2 Our proposed technique for solving MRSO problems 
 
Our proposed alternative to multi-response surface optimization can be achieved via the following steps. 
 
Step 1: Implement the RSM procedure on each response to obtain their respective SOMs. 
Step 2: For each SOM, obtain the respective optimal operating conditions and responses. 
Step 3: Average the optimal solutions in step 2 to get the Pareto optimal operating condition. 
Step 4: Average the optimal responses in step 2 to get the Pareto optimal response. 
 

3 Results and Discussion 
 
3.1 Implementation 
 
As a case study for our implementation, we considered a hypothetical scenario in which the target of a 
process engineer was to determine, for his process, the operating condition which maximized the volume 

1y  

of his 50 cl carbonated beverage packaged per bottle, and the number 
2y  of bottles filled every 10 minutes, 

of his process. Three factors which influenced both responses were volume of carbon-dioxide (
1 ), 

operating pressure (
2 ), and line speed (

3 ). As it was unlikely that the region about the current operating 

condition housed the optimum, a first order model (FOM) was fit and the method of steepest ascent (MSA) 
applied. To fit the FOM, the engineer had decided that the region of exploration for fitting the FOM should 
be  5.1,5.0  gl-1 of CO2,  40,30  psi of pressure, and  25,15  cms-1 of line speed. A 23 factorial experiment 
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with two replicates was conducted while observing both responses. The order in which the observations 
were taken was determined randomly. 
 
To simplify the calculations, the controllable variables were coded to a  1,1  interval. Thus, if 

1  denotes 

the natural variable percentage carbonation, 
2  denotes the natural variable operating pressure in the filter, 

and 
3  denotes the natural variable line speed, then the coded variables are: 

5
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35
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1 3
3

2
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1
1
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
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

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The coded data that resulted from this experiment are shown in Table 1. 
 
For the multiple regression analysis, the null hypothesis states that “the multiple linear regression model is 
adequately fitted”, while the alternative hypothesis states that “there is lack of fit in the multiple linear 
regression model”. If the p-value is less than the 0.05 significance level, we reject the null hypothesis in 
favor of the alternative, hence concluding that “there is sufficient evidence at the 0.05 significance level to 
conclude that there is a lack of fit in the multiple linear regression model. However, if the p-value is greater 
than the significance level 0.05, we do not reject the null hypothesis; hence, we conclude that “there is 
insufficient evidence at the 0.05 level of significance to conclude that there is a lack of fit in the multiple 
linear regression model”. 
 

Table 1. Coded data for the first experiment in the case-study 
 

Run Natural Variables Coded Variables Responses 
 1  2  3  1x  2x  3x  1y  2y  

1. 1 35 20 0 0 0 43 54 
2. 0.5 30 15 1 -1 -1 47 73 
3. 1.5 30 25 -1 -1 1 43 53 
4. 1 35 20 0 0 0 42 68 
5. 1 35 20 0 0 0 44 67 
6. 0.5 40 15 -1 1 -1 45 84 
7. 0.5 40 25 -1 1 1 46 76 
8. 1.5 30 25 1 -1 1 47 92 
9. 1.5 40 25 1 1 1 46 57 
10. 1.5 40 15 1 1 -1 44 89 
11. 0.5 30 15 -1 -1 -1 43 62 
12. 1 35 20 0 0 0 42 75 
13. 1 35 20 0 0 0 45 83 
14. 1 35 20 0 0 0 43 91 

Uniform precision 23 factorial design at a 0.05 level of significance 

Regression Analysis: y1 versus x1, x2, x3 
 
Analysis of Variance 
Source         DF   Adj SS  Adj MS  F-Value  P-Value 
Regression      3   7.3750  2.4583     0.78      0.531 
  x1                  1   6.1250  6.1250     1.95    0.193 
  x2                  1   0.1250  0.1250     0.04    0.846 
  x3                  1   1.1250  1.1250     0.36    0.563 
Error               10  31.4821  3.1482 
  Lack-of-Fit   5  24.6488  4.9298     3.61    0.093 
  Pure Error    5   6.8333  1.3667 
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Total          13  38.8571 
 
 
Model Summary 
      S    R-sq  R-sq(adj)  R-sq(pred) 
1.77432  18.98%      0.00%       0.00% 
 
 
Coefficients 
Term        Coef  SE Coef  T-Value  P-Value   VIF 
Constant  44.286    0.474    93.39    0.000 
x1         0.875    0.627     1.39    0.193  1.00 
x2         0.125    0.627     0.20    0.846  1.00 
x3         0.375    0.627     0.60    0.563  1.00 
 
Regression Equation 
y1 = 44.286 + 0.875 x1 + 0.125 x2 + 0.375 x3 
 
Regression Analysis: y2 versus x1, x2, x3  
 
Analysis of Variance 
Source         DF   Adj SS  Adj MS  F-Value  P-Value 
Regression     3   359.00  119.67     0.59    0.633 
  x1                 1   162.00  162.00     0.80    0.391 
  x2                 1    84.50   84.50     0.42    0.532 
  x3                 1   112.50  112.50     0.56    0.472 
Error              10  2014.71  201.47 
  Lack-of-Fit   5  1164.71  232.94     1.37    0.369 
  Pure Error    5   850.00  170.00 
Total          13  2373.71 
 
Model Summary 
      S    R-sq  R-sq(adj)  R-sq(pred) 
14.1941  15.12%      0.00%       0.00% 
 
Coefficients 
Term       Coef  SE Coef  T-Value  P-Value   VIF 
Constant  73.14     3.79    19.28    0.000 
x1         4.50     5.02     0.90    0.391  1.00 
x2         3.25     5.02     0.65    0.532  1.00 
x3        -3.75     5.02    -0.75    0.472  1.00 
Regression Equation 
y2 = 73.14 + 4.50 x1 + 3.25 x2 - 3.75 x3 
 
Fits and Diagnostics for Unusual Observations 
                            Std 
Obs     y2    Fit  Resid  Resid 
  8  92.00  70.64  21.36   2.02  R 
 
R  Large residual 
 
Since the p-value (0.093) in the ANOVA for the first regression model is larger than the significance level 
0.05, we fail to reject the null hypothesis in favour of the alternative. We conclude that “there is insufficient 
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evidence at the 0.05 level of significance to conclude that there is a lack of fit in the multiple linear 
regression model”. 
 
Since the p-value (0.369) in the ANOVA for the second regression model is larger than the significance 
level 0.05, we fail to reject the null hypothesis in favour of the alternative. We conclude that “there is 
insufficient evidence at the 0.05 level of significance to conclude that there is a lack of fit in the multiple 
linear regression model”. 
 
To move away from the design center  0,0,0 321  xxx  along the PSA with regards to the first 

response 
1y  (volume of carbonated beverage packaged per bottle), we moved 0.875 units in the 

1x  direction 

for every 0.125 units in the 
2x  direction and 0.375 units in the direction 

3x direction. Thus, in this case, the 

PSA passed through the points  0,0,0 321  xxx  and had slopes 875.0125.012 xx  and 

875.0375.013 xx . The engineer decided to use 0.5cl of carbon-dioxide as the basic step size. Using the 

relationship between 
1  and 

1x  we observed that 0.5cl of carbon-dioxide is equivalent to a step in the coded 

variable 
1x of 11 x . Therefore, the steps along the PSA are 0000.11 x , 

  1429.0
875.0

125.0
12  xx  and   4286.0

875.0
375.0

13  xx . We computed points along this 

path and observed values for the first response 
1y  volume of carbonated beverage packaged per bottle) until 

decrease in response were noted. Specifically, for the first response 
1y , increase in response was observed 

through the second step; but the third step produced a decrease in response 
1y . Therefore, an FOM should 

have been fitted in the general vicinity of the point –  2860.24,4290.36,2 321   . The result is 

shown in Table 2. The steps are shown in both the coded and natural variables. However, while the coded 
variables were easier to manipulate mathematically, the natural variables were used in running the process. 
 
To move away from the design center  0,0,0 321  xxx  along the PSA with regards to the second 

response 
2y  (number of bottles filled every 10 minutes), we moved 4.50 units in the 

1x  – direction for 

every 3.25 units in the 
2x  – direction and -3.75 units in the 

3x  – direction. Thus, in this case, the PSA 

passed through the points  0,0,0 321  xxx  and had slopes – 
50.4

25.3
1

2 
x

x  and 
50.4

75.3
1

3 
x

x . 

The engineer decided to use 0.5cl of carbon-dioxide as the basic step size. Using the relationship between 

1  and 
1x  we observed that 0.5cl of carbon-dioxide is equivalent to a step in the coded variable 

1x  of 

11 x . Therefore, the steps along the PSA are, 0000.11 x ,   7222.0
50.4

25.3
12  xx  and 

  8333.0
50.4

75.3
13  xx . We computed points along this path and observed values for the second 

response 
2y  (number of bottles filled every 10 minutes) until decrease in response were noted. Specifically, 

for the second response 
2y , increase in response was observed was through the fourth step; but the fifth step 

produced a decrease in response 
2y . Therefore, another FOM should have been fitted in the general vicinity 

of the point –  3340.3,440.49,3 321   . The result is shown in Table 3. The steps are shown in 

both the coded and natural variables. Once again, while the coded variables were easier to manipulate 
mathematically, the natural variables were used in running the process. In order to find a region of 
compromise, we obtained the mid-point of the two coordinates,  14,43,3 321   , and fit a new 

FOM in its general vicinity. In order to simplify the calculations, the controllable variables were again coded 
to a  1,1  interval giving: 
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The coded data that resulted from this experiment are shown in Table 4. 
 

Table 2. Steepest ascent experiment in the first response for the case-study 
 

Run No. Natural variables Coded variables Response 
For the first response type 

 1  2  3  1x  2x  3x  1y  

Origin  1.0 35 20 0 0 0  

     1.0000 0.1429 0.4286  
Origin  1.5 35.7145 22.1430 1.0000 0.1429 0.4286 43 

 2Origin  2.0 36.4290 24.2860 2.0000 0.2858 0.8572 47 

3Origin  2.5 37.1435 26.4290 3.0000 0.4287 1.2858 45 

 
Table 3. Steepest ascent experiment in the second response for the case-study 

 
Run No. Natural variables Coded variables Response 
For the first response type 
 1  2  3  1x  2x  3x  1y  

Origin  1.0 35 20 0 0 0  

     1.0000 0.7222 -0.8333  
Origin  1.5 38.6110 15.8335 1.0000 0.7222 -0.8333 73 

 2Origin  2.0 42.2220 11.6670 2.0000 1.4444 -1.6666 75 

3Origin  2.5 45.8330 7.5005 3.0000 2.1666 -2.4999 76 

 4Origin  3.0 49.4440 3.3340 4.0000 2.8888 -3.3332 80 

5Origin  3.5 53.0550 -0.8325 5.0000 3.6110 -4.1665 77 

 
Table 4. Coded data for the second experiment in the case-study 

 
Run Natural Variables Coded Variables Responses 
 1  2  3  1x  2x  3x  1y  2y  

1. 3 43 14 0 0 0 47 80 
2. 2.5 38 9 1 -1 -1 49 83 
3. 3.5 38 19 -1 -1 1 49 62 
4. 3 43 14 0 0 0 47 80 
5. 3 43 14 0 0 0 47 80 
6. 2.5 48 9 -1 1 -1 50 82 
7. 2.5 48 14 -1 1 1 52 84 
8. 3.5 38 14 1 -1 1 51 91 
9. 3.5 48 14 1 1 1 52 83 
10. 3.5 48 9 1 1 -1 54 89 
11. 2.5 38 9 -1 -1 -1 53 83 
12. 3 43 14 0 0 0 47 80 
13. 3 43 14 0 0 0 47 80 
14. 3 43 14 0 0 0 47 80 

Uniform precision 23 factorial design at a 0.05 level of significance 
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Regression Analysis: y1 versus x1, x2, x3  
 
Analysis of Variance 
Source         DF   Adj SS   Adj MS  F-Value  P-Value 
Regression     3   5.5000   1.8333     0.23    0.874 
  x1                 1   0.5000   0.5000     0.06    0.808 
  x2                 1   4.5000   4.5000     0.56    0.470 
  x3                 1   0.5000   0.5000     0.06    0.808 
Error             10  79.9286   7.9929 
  Lack-of-Fit   5  79.9286  15.9857        *        * 
  Pure Error    5   0.0000   0.0000 
Total          13  85.4286 
 
Model Summary 
      S   R-sq  R-sq(adj)  R-sq(pred) 
2.82716  6.44%      0.00%       0.00% 
 
Coefficients 
Term        Coef  SE Coef  T-Value  P-Value   VIF 
Constant  49.429    0.756    65.42    0.000 
x1          0.25     1.00     0.25    0.808  1.00 
x2          0.75     1.00     0.75    0.470  1.00 
x3         -0.25     1.00    -0.25    0.808  1.00 
 
Regression Equation 
y1 = 49.429 + 0.25 x1 + 0.75 x2 - 0.25 x3 
 
Fits and Diagnostics for Unusual Observations 
                            Std 
Obs     y1    Fit  Resid  Resid 
 11  53.00  48.68   4.32   2.05  R 
 
R  Large residual 
 
Regression Analysis: y2 versus x1, x2, x3  
 
Analysis of Variance 
Source         DF   Adj SS   Adj MS  F-Value  P-Value 
Regression      3  234.375   78.125     2.46    0.123 
  x1            1  153.125  153.125     4.82    0.053 
  x2            1   45.125   45.125     1.42    0.261 
  x3            1   36.125   36.125     1.14    0.312 
Error          10  317.982   31.798 
  Lack-of-Fit   5  317.982   63.596        *        * 
  Pure Error    5    0.000    0.000 
Total          13  552.357 
 
Model Summary 
      S    R-sq  R-sq(adj)  R-sq(pred) 
5.63899  42.43%     25.16%       0.00% 
 
Coefficients 
Term       Coef  SE Coef  T-Value  P-Value   VIF 
Constant  81.21     1.51    53.89    0.000 
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x1         4.38     1.99     2.19    0.053  1.00 
x2         2.38     1.99     1.19    0.261  1.00 
x3        -2.13     1.99    -1.07    0.312  1.00 
 
Regression Equation 
y2 = 81.21 + 4.38 x1 + 2.38 x2 - 2.13 x3 
 
Fits and Diagnostics for Unusual Observations 
Obs     y2    Fit   Resid  Std Resid 
  3  62.00  72.34  -10.34      -2.46  R 
  8  91.00  81.09    9.91       2.36  R 
 
R  Large residual 
 
Since the p-value (0.000) in the ANOVA for the first regression model is smaller than the 0.05 significance 
level, we reject the null hypothesis in favor of the alternative. We conclude that “there is sufficient evidence 
at the 0.05 level of significance to conclude that there is a lack of fit in the multiple linear regression model”. 
 
Since the p-value (0.000) in the ANOVA for the second regression model is smaller than the 0.05 
significance level, we reject the null hypothesis in favor of the alternative. We conclude that “there is 
sufficient evidence at the 0.05 significance level to conclude that there is a lack of fit in the multiple linear 
regression model”. 
 
In order to cater for curvature in both systems, two (2) SOMs had to be fitted using a uniform precision 
design. The coded data that resulted from this experiment are shown in Table 5. 
 

Table 5. Coded data for fitting the SOMs for the case study 
 

Run Natural Variables Coded Variables Responses 
 1  2  3  1x  2x  3x  1y  2y  

1. 3 43 14 0 0 0 47 80 
2. 2.5 38 9 1 -1 -1 49 83 
3. 3.5 38 19 -1 -1 1 49 62 
4. 3 43 14 0 0 0 47 80 
5. 3 43 14 0 0 0 47 80 
6. 2.5 48 9 -1 1 -1 50 82 
7. 2.5 48 14 -1 1 1 52 84 
8. 3.5 38 14 1 -1 1 51 91 
9. 3.5 48 14 1 1 1 52 83 
10. 3.5 48 9 1 1 -1 54 89 
11. 2.5 38 9 -1 -1 -1 53 83 
12. 3 43 14 0 0 0 47 80 
13. 3 43 14 0 0 0 47 80 
14. 3 43 14 0 0 0 47 80 
15. 3.841 43 14 1.682 0 0 58 86 
16. 2.159 43 14 -1.682 0 0 56 87 
17. 3 51.410 14 0 1.682 0 54 89 
18. 3 34.590 14 0 -1.682 0 53 86 
19. 3 43 22.410 0 0 1.682 57 85 
20. 3 43 5.590 0 0 -1.682 58 83 

Uniform precision 23 factorial design at a 0.05 level of significance 
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Regression Analysis: y1 versus x1, x2, x3  
 
Analysis of Variance 
Source         DF   Adj SS   Adj MS  F-Value  P-Value 
Regression      9  185.697  20.6330     2.00    0.147 
  x1            1    2.107   2.1066     0.20    0.661 
  x2            1    4.321   4.3207     0.42    0.532 
  x3            1    0.993   0.9926     0.10    0.763 
  x1*x1         1   84.292  84.2923     8.18    0.017 
  x2*x2         1   20.104  20.1044     1.95    0.193 
  x3*x3         1   97.064  97.0644     9.41    0.012 
  x1*x2         1    4.500   4.5000     0.44    0.524 
  x1*x3         1    0.500   0.5000     0.05    0.830 
  x2*x3         1    0.500   0.5000     0.05    0.830 
Error          10  103.103  10.3103 
  Lack-of-Fit   5  103.103  20.6206        *        * 
  Pure Error    5    0.000   0.0000 
Total          19  288.800 
 
Model Summary 
      S    R-sq  R-sq(adj)  R-sq(pred) 
3.21097  64.30%     32.17%       0.00% 
 
Coefficients 
Term        Coef  SE Coef  T-Value  P-Value   VIF 
Constant   47.17     1.31    36.02    0.000 
x1         0.393    0.869     0.45    0.661  1.00 
x2         0.562    0.869     0.65    0.532  1.00 
x3        -0.270    0.869    -0.31    0.763  1.00 
x1*x1      2.418    0.846     2.86    0.017  1.02 
x2*x2      1.181    0.846     1.40    0.193  1.02 
x3*x3      2.595    0.846     3.07    0.012  1.02 
x1*x2       0.75     1.14     0.66    0.524  1.00 
x1*x3       0.25     1.14     0.22    0.830  1.00 
x2*x3       0.25     1.14     0.22    0.830  1.00 
 
Regression Equation 
y1 = 47.17 + 0.393 x1 + 0.562 x2 - 0.270 x3 + 2.418 x1*x1 + 1.181 x2*x2 + 2.595 x3*x3 + 0.75 x1*x2 
+ 0.25 x1*x3 + 0.25 x2*x3 
 
Fits and Diagnostics for Unusual Observations 
Obs     y1    Fit  Resid  Std Resid 
  2  49.00  52.71  -3.71      -2.01  R 
 
R  Large residual 
  
Regression Analysis: y2 versus x1, x2, x3  
 
Analysis of Variance 
Source         DF   Adj SS   Adj MS  F-Value  P-Value 
Regression      9  335.911  37.3235     1.12    0.427 
  x1            1   81.276  81.2761     2.44    0.149 
  x2            1   42.334  42.3341     1.27    0.286 
  x3            1   13.614  13.6138     0.41    0.537 
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  x1*x1         1   28.406  28.4060     0.85    0.377 
  x2*x2         1   44.513  44.5130     1.34    0.274 
  x3*x3         1    3.899   3.8987     0.12    0.739 
  x1*x2         1   66.125  66.1250     1.99    0.189 
  x1*x3         1   55.125  55.1250     1.66    0.227 
  x2*x3         1   10.125  10.1250     0.30    0.593 
Error          10  332.639  33.2639 
  Lack-of-Fit   5  332.639  66.5278        *        * 
  Pure Error    5    0.000   0.0000 
Total          19  668.550 
 
Model Summary 
      S    R-sq  R-sq(adj)  R-sq(pred) 
5.76749  50.24%      5.46%       0.00% 
 
Coefficients 
Term       Coef  SE Coef  T-Value  P-Value   VIF 
Constant  80.14     2.35    34.07    0.000 
x1         2.44     1.56     1.56    0.149  1.00 
x2         1.76     1.56     1.13    0.286  1.00 
x3        -1.00     1.56    -0.64    0.537  1.00 
x1*x1      1.40     1.52     0.92    0.377  1.02 
x2*x2      1.76     1.52     1.16    0.274  1.02 
x3*x3      0.52     1.52     0.34    0.739  1.02 
x1*x2     -2.88     2.04    -1.41    0.189  1.00 
x1*x3      2.62     2.04     1.29    0.227  1.00 
x2*x3      1.13     2.04     0.55    0.593  1.00 
 
 
Regression Equation 
y2 = 80.14 + 2.44 x1 + 1.76 x2 - 1.00 x3 + 1.40 x1*x1 + 1.76 x2*x2 + 0.52 x3*x3 - 2.88 x1*x2 
+ 2.62 x1*x3 + 1.13 x2*x3 
 
Fits and Diagnostics for Unusual Observations 
Obs     y2    Fit  Resid  Std Resid 
  3  62.00  71.99  -9.99      -3.02  R 
 
R  Large residual 
 
Now, we obtain the optimum operating conditions of the process with respect to each response. For the first 
SOM, we have: 
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That is, 04909.01
1,0 x , 2292715.01

2,0 x  and 06543.01
3,0 x . In terms of the natural variables, the 

stationary point is 
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which yields 975455.21
1  , 8536425.411

2  , and 32715.141
3  . The predicted response at the 

stationary point is 087095.47ˆ1
0 y  and is gotten as follow. 
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However, for the second SOM we have: 
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In this case the stationary point is 
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That is, 666615.02
1,0 x , 4236.02

2,0 x  and 1780735.12
3,0 x . In terms of the natural variables, the 
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which yields 3333075.32
1  , 118.452

2  , and 1096325.82
3  . The predicted response at the stationary 

point is 915075.81ˆ 2
0 y  and is gotten as follow. 
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Now, we obtain the mid-point of 1
0x  and 2

0x  to get 
0x  as follows: 
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In terms of the natural variables, the new stationary point 
0x  is 
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which yields 15438125.31  , 48582185.432  and 21839125.113  . But, in order to obtain the 

predicted response at the new stationary point 
0x , we substitute for 

0x  approximately to get optimal 

responses 1
0ŷ  and 2

0ŷ  which is averaged to get 
0ŷ  as follows. 
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Also, 
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3.2 Discussion 
 
Based on our implementation of the proposed technique, we have made certain findings which have been 
summarized as axioms. 
 
3.2.1 Axiom 1 – The optimal operating condition obtained via the proposed technique 

Given that   xBxbxx i
T

i
T

iii fy  0̂
 for mi ,,3,2,1   SOMs having respective optimal responses 

iy0ˆ  at each i
0x  optimal operating condition, then the mid-point 

0x  of all i
0x  is a Pareto optimal operating 

condition. 
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3.2.2 Axiom 2 – The optimal yield obtained via the proposed technique 

Given that   xBxbxx i
T

i
T

iii fy  0̂  for mi ,,3,2,1   SOMs having respective optimal responses 

iy0ˆ  at each i
0x  optimal operating condition, then the mid-point 

0y  of all iy0ˆ  (obtained at the mid-point 
0x  

of all i
0x ) is a Pareto optimal yield. 

3.2.3 Axiom 3 – Pareto front obtained via the proposed technique 

The region bounded by each of the i
0x  optimal conditions based on each of the SOMs 

  xBxbxx i
T

i
T

iii fy  0̂
  for mi ,,3,2,1   is a Pareto front. 

4 Conclusion 
 
The findings in this article have shown that the proposed multivariate-based technique for solving MRSO 
problems is suitable for use under circumstances in which the decision maker’s preference information is 
absent; hence, making it a more flexible and robust alternative for optimizing multiple response variables. 
More so, our results have shown that the optimal operating condition obtained via the proposed technique is 
Pareto optimal, having as its Pareto front, the region bounded by respective optimal operating conditions 
obtained from each SOM. The optimal response obtained is also Pareto optimal.  
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