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ABSTRACT 
 

A semianalytical method to study the effects of the higher-order spectral filtering in the cubic-quintic 
complex Swift-Hohenberg equation (CSHE) through the dynamics of one soliton was applied. The 
approach is based on a reduction from an infinite-dimensional dynamical dissipative system to a 
finite-dimensional model. This formulation is helpful to study the ground state of the soliton dynamic 
since it depends on a trial function and a good set of parameters. With real coefficients, the CSHE 
exhibits stationary dissipative solitons in space with the equation parameters, and the higher-order 
spectral filtering has a real impact on the cartographies of stationary soliton domain. The detailed 
analysis reveals the effects of spectral filtering term on the stationary soliton parameters, and 
displays that it differently influences the cubic and quintic terms of the CSHE. The results highlight 
the major influence of the spectral filtering on the temporal width of the stationary soliton whereas it 
does not have a real impact on the amplitude and the spatial width. 
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1. INTRODUCTION 
 

The laser systems with nonlinearity, saturable 
absorber and allowing the generations of ultra-
short optical pulses, exhibit a variety of pulse 
shapes and evolutions. They perform a 
complicated dynamic, which distinguish them 
from the Hamiltonian soliton. This results from 
the fact that, in addition to dispersion and 
nonlinearity, the optical pulses include energy 
exchange with external sources. Thus, these 
laser cavities can be regarded as perfect 
surroundings for the concept of dissipative 
solitons and an ideal experimental frame for the 
exploration of dissipative soliton dynamics. In 
these systems with gain and loss, the soliton 
solutions appear as a result of a balance 
between dispersion (diffraction) and nonlinearity, 
then gain and loss must be also balanced. 
 

In spite of the complexity of most spatially 
extended laser systems, many of them have 
been shown to be described by the cubic-quintic 
complex Ginzburg-Landau equation (CGLE) [1].  
In the field of nonlinear optics, the CGLE can be 
used to describe a wide range of systems [2], 
such as passively mode-locked lasers with fast 
saturable absorbers, parametric oscillators, wide 
aperture lasers, nonlinear optical transmission 
lines [3] and nonlinear cavities with external 
pump [4]. It is undoubtedly that one can use just 
this equation to explain complicated phenomena 
in various systems. Hence, the CGLE has been 
intensely studied in many research studies [5, 6] 
and revealed a rich variety of solutions: 
stationary, pulsating, creeping, and erupting 
solitons [7].  
 
In laser systems with a fast saturable absorber, a 
cubic-quintic complex Ginzburg-Landau equation 
is a suitable tool to study pattern formation. In 
these conditions, its quintic nonlinearity is 
essential to ensure the stability of optical pulses 
overcoming something that the cubic Ginzburg-
Landau equation could not achieve. However, a 
cubic-quintic complex Ginzburg-Landau model is 
restricted to a second-order term and a spectral 
response with a single maximum, which is not 
the case in many experiments under real 
conditions. In these conditions, it is important to 
make the model more realistic and to take into 
account the situation when the gain spectrum is 
wide with multiple peaks. The addition of fourth-
order spectral filtering term into the cubic-quintic 

Ginzburg-Landau equation leads to the complex 
Swift-Hohenberg equation (CSHE) and this is 
needed to depict optical pulses formation in wide 
aperture.  
 
The CSHE plays the role of paradigms since it 
outlines the very basic mechanisms of pulse 
dynamic in many systems. It describes quite well 
a general theory of transverse patterns in wide 
aperture, single longitudinal mode lasers and 
synchronously pumped optical parametric 
oscillators. Under appropriate conditions, this 
equation depicts class A and C lasers [8,9,10]. 
Likewise, the CSHE representation of the two-
level lasers has been extended to model 
semiconductor lasers [11] and has been 
inspected in [12,13] to illustrate its validity in this 
context. A detailed account of the possible 
patterns present in the CSHE equation has been 
intensely studied via numerical studies [14,15] 
and has been characterized using analytical 
techniques in the whole parameter space        
[16,17]. 
 

Since, as the influence of spectral filtering on 
mode-locked fiber lasers is well known through 
several studies [18,19], our purpose in the 
present study is to investigate the impact of the 
higher-order spectral filtering on the stationary 
solutions of the CSHE. In recent studies, the 
effect of spectral filtering in mode-locked fiber 
lasers with an extended geometrical model was 
presented [20]. It was demonstrated that the 
spectral filtering leads to strong nonlinear 
dynamics in a mode-locked fiber laser cavity, 
which can be used to understand the pulse 
dynamics in mode-locked soliton fiber lasers. 
Thus, the numerical models show the vital roles 
of the spectral filtering effects on chirped pulse 
behaviors [21]. 
 
In this paper, using chirped Gaussian pulse, the 
impact of the spectral filtering on the dynamic of 
the stationary soliton in the two-dimensional 
complex Swift-Hohenberg equation was 
analyzed. The remainder of the paper is 
organized as follows: first, in section 2 the 
governing equation and the collective variables 
approach are introduced and presented. The 
variational equations obtained from this 
semianalytical approach are then reported and 
analyzed. The section 3 is devoted to the 
investigation of the influence of the higher-order 
spectral filtering in the two-dimensional cubic-
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quintic complex Swift-Hohenberg equation 
through the dynamics of one soliton. Finally, in 
section 4, some concluding remarks are given. 
 

2. MODEL AND ANALYTICAL STUDY 
 

In general, the cubic-quintic complex Swift-
Hohenberg equation has complex coefficients 
and hence time-dependent solutions. 
Nevertheless, in the present paper, we restrict 
our attention to an important but special case of 
this equation, namely the case of real coefficients 
and two spatial dimensions. The analysis of this 
equation reveals a great variety of patterns and 
structures.  It can be both quantitatively and 
qualitatively described as a number of nonlinear 
effects that occur during the optical pulses 
propagation. The CSHE characterizes also 
passively the mode-locked lasers that allow the 
generation of self-shaped ultra-short pulses in a 
laser system [22], and semiconductor laser [23]. 
The CSHE can be read in this normalized form 
[24,25]: 
 

�� − �����/2 − ����/2 − ��|�|�� − ��|�|��
= �� + �|�|�� + ���� + �|�|��
+ ������                                                                    (1). 

 

Where � (treated as a continuous variable) is the 
propagation distance or cavity round trip number, 
t  is the retarded time in a frame of reference 

moving with the pulse and �  �� = ��� + ��� 

represents the transverse coordinate, taking 
account of the spatial diffraction effects. Here, 
� = �(�, �, �) describes the complex amplitude of 
the transverse electric field, for example, inside a 
cavity. 

The equation (1) without the additive term 
������ is the same as the cubic-quintic complex 
Ginzburg-Landau equation. In this study, the 
coefficients  � ,  � , � , � , � , � , �� and  � are real 
constants, the right-hand-side of equation (1) 
contains the dissipative terms and the left-hand 
side holds the conservative terms.  �, �, �  and � 
are the coefficients for linear loss (if negative), 
nonlinear gain (if positive), spectral filtering (if 
positive) and saturation of the nonlinear gain (if 
negative), respectively. � = +1(−1)  is for the 
anomalous (normal) dispersion propagation 
regime and �  represents, if negative, the 
saturation coefficient of the Kerr nonlinearity. � 
stands for Kerr nonlinearity coefficient. In our 
study, the dispersion is anomalous, and � is kept 
relatively small. Finally, �� which is of major 
significance for this present study represents the 
higher-order spectral filter term. The parameter 
�� must be positive to have stable pulses in the 
frequency domain. The effect of the spectral filter 
can be described by the following transfer 
function: 
 

 �(�) = �� �(� − ��� − ����)                           (2) 
 

When �� = 0  (which corresponds to the CGLE, 
the spectral response is a Gaussian curve with 
amplitude �  and width �,  and has a single 
maximum) [26]. But when ��  is nonzero, the 
response of the spectral filter is much more 
affected and gives a spectral response with two 
distinct maximums. In this case the spectral 
response depends on the values of  �� as one 
can see in Fig. 1. Whatever the values of the 
higher-order spectral filter term ( ��) are, the 
evolutions present two maximums but have a 

 

 
 
Fig. 1. Spectral responses evolution according to the values of the higher-order spectral filter 

term ��. Red: �� = �. ��, blue: �� = �. ��, and black: �� = �. �� 
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common local minimum. The amplitudes of these 
maximums depend on the ��  values. Maximum 
spectral responses evolve in a manner that is 
inversely proportional to the �� parameter values. 
The less ��, the higher the maximum response. 
 
In our previous studies [16,26,27], using the 
collective variables theory [28] with some 
effectiveness, the stationary two-dimensional 
solutions of the CSHE were investigated. Indeed, 
as the 2D CHSE has several parameters that 
define the existence of stationary solutions, it is a 
tedious work to find the different types of the 
soliton according to the set of the equation 
parameters. To overcome this difficulty, one can 
use the master equation approach which helps to 
reduce an infinite-dimensional to an ordinary 
differential equation. In fact, the collective 
variables method [28] is based on a trial function 
theory.  The idea consists to associate collective 
variables with the pulse’s parameters of interest 
for which equations of motion may be derived. 
The resulting dynamical system controls the 
evolution of a finite number of parameters such 
as the pulse amplitude, width, and chirp. This is 
the way to obtain a significant reduction in the 
number of variables used for the description of 
the soliton dynamics. To this end, one can 
decompose the optical field in the following way: 
 

        (3) 
 

with �  the trial function, dependent on the 
collective variables (��), and � the residual field 
that describes all other excitations in the system 
(radiation, dressing field, noise, etc). 
 

Using the bare approximation [28] to the 2D 
CSHE (for more details, see [16,26,27,28]) and 
applying the following Gaussian function as 
ansatz function: 
 

� = ���� �−
��

��
� −

��

��
� +

�

2
���� +

�

2
���� + ���         (4) 

 

six collective variables that evolve according to 
the following set of six coupled ordinary 
differential equations are obtained.  
 

�  ̇ = �� +
3

4
��� −

2

��
� �� +

5

9
��� − ���� − 2���

+ 3 �2��
� − � �

���
� +

3

��
�� ���, 

 

� �̇ = 2� ���� −
1

4
� ���� −

2

9
��� �� + (1 − � �

���
�)

2�

� �

+ (� �
���

� − 1)
12

��
� ��, 

��̇ = 4���� −
1

4
����� −

2

9
�����, 

 

�̇� = 2 �
1

��
� − ��

�� � −
8

��
� ��� −

1

2��
� ���

−
4

9��
� ��� + 48�� �

1

��
� + ��

�� ��, 

 

�̇� = −4��
� −

1

2��
�

��� +
4

��
�

−
4

9��
�

���, 

 

� =̇ 2��� +
3

4
��� −

�

��
� −

2

��
�

+
5

9
���

− 12�� �
1

��
� − � �

���
�� ��              (5) 

 

�, � �, ��, ��, �� and p are the collective variables 
and represent respectively the amplitude, the 
temporal and spatial widths of the soliton, the 
chirp along  �  axis, the spatial chirp and p the 
global phase. The collective variables (�� ) are 
variables that evolve along the propagation 
direction �  and the dynamic of the dissipative 
soliton. 

 
It is clearly see that the CSHE, equation (1) is 
reduced to an ordinary differential equation given 
by the soliton parameters �, � � , ��, �� , ��  and �. 
As well, the collective variables method helps to 
show explicitly how each coefficient of the CSHE 
(equation 1) governs the soliton parameters 
(amplitude, widths, chirps and the global phase). 
A detailed analysis of the six coupled ordinary 
differential equations reveals that the spectral 
filter terms (��  and �) do not affect the spatial 
width and the spatial chirp. However, the 
evolution of the temporal parameters (width and 
chirp), the amplitude and the global phase are 
influenced by the effects of the spectral filter. All 
in all, the impact of the higher-order spectral filter 
term is clearly highlighted with the help of 
ordinary differential equations. Through the 
equation (5) illustrate the role of the dissipative 
and conservative terms of the CSHE. 
 

The collective variables approach’s best asset 
lies in the fact that it reveals in detail the 
influence of each parameter of CSHE under 
soliton parameters. In addition, it makes it 
possible to express the total energy with respect 
to the soliton parameters, and gives a first idea 
on the dynamic of the pulse. Here, the total 
energy is given by the following equation: 

 

� =
�√2�

4
� �����

�                                                    (6) 
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showing that the energy relies solely on the 
amplitude of the soliton, its temporal and spatial 
widths. 

 
3. STATIONARY SOLITON UNDER 

INFLUENCE OF SPECTRAL 
FILTERING  

 
The CSHE admits stationary solitons and we 
provide evidence for its localized solutions in the 
space parameters in the recent studies [26]. The 
stationary solutions correspond to the stable 
fixed points of the system, obtained from the 
ordinary differential equations. It proved that the 
collective variables approach is suitable for the 
procedure of derivation of the variational 
equations. It also provides the basic parameters 
of the fixed points, and helps to define the 
cartography of the stationary and the pulsating 
solutions [26,27]. Indeed, as it is extremely 
difficult, if not impossible to vary all the 
parameters at the same time to find stable 
solutions, the ingenuity is to vary two parameters 
by setting all the others. Thus, one can easily 
obtain in a map all the different solutions. 
  
With the following initial condition, 
 

�(�, �, 0) = 2.86��� �−
��

0.7
−

��

1.36
�                   (7) 

 

and investigating the parameter regions located 
in the vicinity of the parameters � = � = 1 , 
� = −0.3, � = −0.5, � = −0.1 and  �� = 0.05, the 
stable stationary solutions in the (�, �)  plane 
were illustrated. In fact, the behavior of the laser 
system is then largely determined by the gain � 
and principally the cavity detuning � , which is 
directly related to the difference between the 
atomic frequency and the closest cavity 
resonance frequency.  
 

For a given set of  � and � values, the use of the 
Newton-Raphson helps to find the corresponding 
fixed point before determining its stability. The 
mapping below (Fig. 2) shows the result of this 
rigorous analysis for the range of the selected 
values. The cartographies in red display the 
domains of stationary solitons for the set of 
parameters �� while the other parameters remain 
constant. Here, one could specify that for 
dissipative systems, the total energy is not 
conserved but evolves in accordance with the so-
called balance equation. So, when the stationary 
soliton is reached, the total energy converges to 
a constant value. Thus, each soliton parameter 
(amplitude and widths) in the stationary domain 

(in red) remains constant regardless of 
propagation distance. 

 
A fine analysis of the Figs. 2 a), b), and c), 
reveals that the higher-order spectral filter term 
values play an important role on the size of the 
stable stationary domain. It clearly appears that 
for the set of fixed parameters when the higher-
order spectral filter term �� decreases (from 0.05 
to 0.03) the domain of stationary soliton (in red) 
widens. In this context, stationary solutions have 
a tendency to vanish gradually when �� 
increases; which shows the importance of this 
parameter. The spectral filtering is therefore 
decisive in the formation of CSHE stationary 
solitons. 

 
An investigation on the total energy evolution 
according to the nonlinear gain coefficient for 
different values of the higher-order spectral filter 
term ��  was performed. The Fig. 3 shows this 
discussion clearly. It appears that the total 
energy increases in size as the nonlinear gain 
increases for a given �� value. 

 
This clearly reflects that for these stationary 
solitons, an increase in nonlinear gain lead to 
energy solutions. Furthermore, the higher-order 
spectral filter term �� also plays an important role 
in the evolution of energy. In fact, the Fig. 3 
points out the evolution of the energies for the 
three values of ��  ( �� = 0.01, ��  = 0.03, and 
�� = 0.05). One can clearly deduce that for small 
values of the nonlinear gain, the three curves are 
almost identical. However, when the nonlinear 
gain is greater than � ≈ 0.504 , the energy 
evolutions are considerably distinguishable. The 
curves look the same. The energy increases with  
�� value. It can thus notice that for these chosen 
values, the stationary solutions will have 
practically the same energy regardless of the 
values of  ��, for the low values of the gain. But, 
when the nonlinear gain exceeds a threshold, the 
energy increases with the higher-order spectral 
filter term. 
 

As the nonlinear gain ε is a cubic term, we have 
tried to see how ��  acts on the quintic terms. 
Therefore, the evolution of the total energy 
according to the saturation coefficient of the Kerr 
nonlinearity for the same different values of the 
higher-order spectral filter term �� was plotted. It 
notices that the appearance of the curves (Fig. 3 
vs Fig. 4) is reversed. The Fig. 4 shows distinctly 
that the total energy decreases in size as the 
saturation of the Kerr nonlinearity increases for a
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Fig. 2. Cartographies of the solutions of the 2D complex Swift-Hohenberg equation in the (�, �) 
plane. The stable fixed points regions in red represent the domain of stationary solitons. Other 

CSHE parameters appear inside the Fig. 2. 



Fig. 3. Evolution of the total energies of stationary dissipative solitons for different values of 
the higher-order spectral filter term. The red curve corresponds to 

and black to �� = �. ��. The values of other parameters are 

 
given value of ��. For low saturation coefficient of 
the Kerr nonlinearity values, the energy 
evolutions are well separated. More 
the curves get closer without getting confused. 
For a given �� , the stationary soliton energy 
decreases when the quintic terms increases.
three curves keep the same appearance. 
 
The energy increases with different increasing 
values of ��. It appears precisely that t
 

Fig. 4. Evolution of the total energies of stationary dissipative solitons for different values of 
the higher-order spectral filter term. The red curve corresponds to 

and black to �� = �. ��. The values of other parameters are 
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3. Evolution of the total energies of stationary dissipative solitons for different values of 
spectral filter term. The red curve corresponds to �� = �. ��, blue to 

. The values of other parameters are � = � = �, � = −�. �
� = −�. � and � = −�. ��� 

saturation coefficient of 
the Kerr nonlinearity values, the energy 
evolutions are well separated. More � increases, 
the curves get closer without getting confused. 

, the stationary soliton energy 
increases.The 

three curves keep the same appearance.  

The energy increases with different increasing 
. It appears precisely that the higher-

order spectral filter term acts differently on 
the actions of the cubic and quintic 
terms. 
 

It emerges from the examination of Figs. 3 and 4 
that the higher-order spectral filter parameter 
has a real impact on the dynamics of stationary 
solitons through the energies evolution. As it has 
seen above, the parameter 
differently the cubic and quintic terms of the

 
 

4. Evolution of the total energies of stationary dissipative solitons for different values of 
order spectral filter term. The red curve corresponds to �� = �. ��, blue to 

. The values of other parameters are � = � = �, � = −�. �
� = −�. � and � = �. �� 

 
 
 
 

; Article no.PSIJ.50641 
 
 

3. Evolution of the total energies of stationary dissipative solitons for different values of 
, blue to �� = �. ��, 

�, � = −�. �, 

acts differently on        
the actions of the cubic and quintic              

It emerges from the examination of Figs. 3 and 4 
order spectral filter parameter �� 

has a real impact on the dynamics of stationary 
solitons through the energies evolution. As it has 
seen above, the parameter ��  influences 
differently the cubic and quintic terms of the

4. Evolution of the total energies of stationary dissipative solitons for different values of 
, blue to �� = �. ��, 

�, � = −�. �, 
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CSHE. To further investigate this study, it 
seemed appropriate to see how this same term 
(��) affects the stationary soliton amplitude and 
widths. Indeed, one of the benefits of the 
collective variables approach is being able to 
follow (individually) the dynamic of soliton 
parameters namely its amplitude and widths. To 
highlight the action of the ��  factor on the 
propagation of the stationary soliton, on the Figs. 
5, 6 and 7, the evolution of the soliton amplitude 
and widths for the three values of ��  ( �� =
0.01, �� = 0.03, and γ� = 0.05) while keeping the 
other terms constant and for fixed values of 
nonlinear gain (� = 0.508) and saturation of the 
Kerr nonlinearity (� = −0.252) were plotted. A 
thorough interpret of these figures reveals that 
when �� goes from 0.05 to 0.01, the amplitude of 
the stationary soliton is largely unchanged ( ≈
2.1). Moreover, the spatial width is not influenced 
by this variation ( ≈ 5.9 ). This is quite in 
accordance with the ordinary differential 
equations (4). In fact, in these equations (5), the 
spatial width evolution (��̇) doesn’t contain any 
coefficient  �� , so it has no influence on its 
propagation, which is in accordance with the 
Figs. 5, 6 and 7. On the other hand, it is quite 

true that the amplitude equation (�  ̇) contains the 
term  ��, but its variation (from 0.05 to 0.01) has 
no significant effect on the amplitude propagation 
(Figs. 5, 6 and 7). The  ��  term being not 

preponderant with respect to other terms, its 
action turns out to be practically negligible. In 
addition, the study of the figures shows that the 
higher-order spectral filter �� variation (from 0.05 
to 0.01) dominates the dynamic of the temporal 
width. For �� = 0.05, ��  = 0.03, and �� = 0.01 , 
the temporal width stays at  � � ≈ 7.1,  � � ≈ 6.9, 
 � � ≈ 6.7, respectively. Therefore, the temporal 
widths remain constant but the amplitude 
dynamic changes for a given value of �� . This 
demonstration points out that the higher-order 
spectral filter �� really affects the temporal width 
solely. Otherwise the contour plot confirms the 
studies and shows that the variations mainly 
concern the temporal widths. To conclude this 
section and confirm the results of the higher 
order spectral filter ��  effect on the stationary 
solitons, the temporal and radial profiles of a 
stationary soliton for the three  �� values and for 
the values of nonlinear gain ( � = 0.508) and 
saturation of the Kerr nonlinearity (� = −0.252) 
were plotted. The fruit of these efforts is 
illustrated on the Figs. 8 and 9. It clearly appears 
that the higher-order spectral filter ��  has no 
effect on the amplitude and the spatial           
width of the stationary soliton (Fig. 8).     
However, the temporal width changes                
for each value of the higher-order spectral       
filter ��  (Fig. 9) but keeps the same         
amplitude. 

  

 
 

Fig. 5. Evolution of stationary soliton amplitude, spatial and temporal widths for the higher-
order spectral filter  �� = �. ��. The values of other parameters are � = � = �, � = −�. �, 

� = −�. �, � = −�. �,  � = −�. ��� and  � = �. ��� 
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Fig. 6. Evolution of stationary soliton amplitude, spatial and temporal widths for the higher-
order spectral filter  �� = �. ��. The values of other parameters are � = � = �, � = −�. �, 

� = −�. �, � = −�. �,  � = −�. ��� and  � = �. ��� 
 

 
 

Fig. 7. Evolution of stationary soliton amplitude, spatial and temporal widths for the higher-
order spectral filter  �� = �. ��. The values of other parameters are � = � = �, � = −�. �, 

� = −�. �, � = −�. �,  � = −�. ��� and  � = �. ��� 
 

 
 

Fig. 8. The radial profiles of the total stationary dissipative solitons for different values of 
higher-order spectral filter term. The red curve corresponds to �� = �. ��, blue to �� = �. ��, 
and black to �� = �. ��. The values of other parameters are � = � = �, � = −�. �, � = −�. �, 

� = −�. �, � = −�. ��� and  � = �. ��� 
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Fig. 9. The temporal profiles of the total stationary dissipative solitons for different values of 
higher-order spectral filter term. The red curve corresponds to �� = �. ��, blue to �� = �. ��, 
and black to �� = �. ��. The values of other parameters are � = � = �, � = −�. �, � = −�. �, 

� = −�. �,  � = −�. ��� and  � = �. ��� 
 

4. CONCLUSION 
 
In this paper, the effects of higher-order spectral 
filter term on the stationary dissipative soliton 
were investigated. The dynamical behavior of 
stationary soliton in the two-dimensional 
Complex Swift-Hohenberg equation under the 
spectral filtering was carried out. The domains of 
coexistence of stationary soliton are obtained 
through the semianalytical method, i.e., the 
collective variable approach. It appears in this 
study that the spectral filtering plays an important 
role in the formation of the stable stationary 
soliton. Therefore, the dissipative stationary 
solutions tend to vanish gradually when γ

�
 

increases. The detailed analysis points out that 
the spectral filtering also has a significant impact 
on the temporal width of the stationary profile 
while it does not really affect the amplitude and 
the spatial width. In addition, the parameter γ

�
 

influences differently the cubic and quintic terms 
of the 2D CSHE. Thus, when designing lasers, 
attention should be paid to the cubic and quintic 
parameters because they act differently on the 
spectral filtering. 

 
To conclude, in this paper using a semianalytical 
approach with a suitable trial function, the 
influence of the spectral filtering on stationary 
soliton parameters have been demonstrated. It is 
hoped that these results can be extended to 
describe the pulsed operation in laser cavity and 
can be utilized to understand and engineer the 
pulse dynamics in mode-locked soliton fiber 
lasers. 
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