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ABSTRACT

The physics system that helps us in the study of this paper is a nonlinear hybrid electrical line with
crosslink capacitor. Meaning it is composed of two different nonlinear hybrid parts Linked by
capacitors with identical constant capacitance. We apply Kirchhoff laws to the circuit of the line to
obtain new set of four nonlinear partial differential equations which describe the simultaneous
dynamics of four solitary waves. Furthermore, we apply efficient mathematical methods based on
the identification of coefficients of basic hyperbolic functions to construct exact solutions of those set
of four nonlinear partial differential equations. The obtained results have enabled us to discover that,
one of the two nonlinear hybrid electrical line with crosslink capacitor that we have modeled accepts
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the simultaneous propagation of a set of four solitary waves of type (Pulse; Pulse; Pulse; Pulse),
while the other accepts the simultaneous propagation of a set of four solitary waves of type (Kink;
Kink; Kink; Kink) when certain conditions we have established are respected. We ameliorate the
quality of the signals by changing the sinusoidal waves that are supposed to propagate in the hybrid
electrical lines with crosslink capacitor to solitary waves which are propagating in the new nonlinear
hybrid electrical lines; we therefore, facilitate the choice of the type of line relative to the type of

signal that we want to transmit.

Keywords: Hybrid electrical line; crosslink capacitor; construction; solitons solution; solitary wave;
nonlinear partial differential equation; kink; pulse.

1. INTRODUCTION

The signal propagated in the electrical lines
where the parameters of its components are
constant is a sinusoidal wave whose amplitude
decreases exponentially and loses a lot of
energy contrary to solitary wave signal which
conserves its velocity, its shape and does not
loses energy during its movement. Work has
been carried out to study the hybrid line using
numerical simulation with the goal of better
matching to a resistive load. They projected that
a hybrid line made of parallel plate with nonlinear
capacitors and inductors could be developed to
produce solitons with frequency between 1-2GHz
[1,2]. If solitons could be propagated in electrical
lines, they will resist better on dissipation factors;
for this reason, we have decided to carry out
research on what means we could modify the
component parameters of a hybrid electrical line
with crosslink capacitor so that it accepts the
propagation of solitary waves. We therefore
define analytically the nonlinear flux linkage of
inductors and the nonlinear charge of capacitors
constituting the two parts linked by capacitors in
the line. The use of these definitions and the
application of Kirchhoff laws to the circuit of
nonlinear hybrid electrical line with crosslink
capacitor has enabled us to model a set of four
nonlinear partial differential equations which
describe the dynamics of solitary waves in the
line. To construct exact solitary wave solution of
each set of four nonlinear partial differential
equations, we have used the mathematical
methods presented in [3-16] and particularly the
Bogning-Djeumen Tchaho-Kofane method [17-
22]. For one of the set of four nonlinear partial
differential equations, we have obtained a
solution which is a set of four solitary waves of
type (Pulse; Pulse; Pulse; Pulse) and for the
other we have obtained a solution which is a set
of four solitary waves of type (Kink; Kink; Kink;
Kink). Our work is developed in the following
order: in section two, we model a nonlinear
hybrid electrical line with crosslink capacitor; in

section three we find the solitary wave solution of
type (Kink; Kink; Kink; Kink); in section four we
find the solitary wave solution of type (Pulse;
Pulse; Pulse; Pulse). We conclude our work in
section 5.

2. GENERAL MODELING OF NONLINEAR
HYBRID ELECTRICAL LINE WITH
CROSSLINK CAPACITOR

Let us consider a nonlinear hybrid electrical line
shown in Fig. 1. The line is constituted by a good
number of identical networks numbered by the
positive integer n. The network number n is
constituted by a capacitor with capacitance ¢,

which link the two nonlinear hybrid parts; two
capacitors in which each of the charge ¢;' and

g, changes respectively in nonlinear manner in

terms of the voltage u and u;, across each

capacitor; two inductors in which each of the
magnetic flux ¢" and @] changes respectively

in nonlinear manner in terms of the current 7
and 7, that flow through each inductor.

Applying Kirchhoff’s laws to the circuit shown in
Fig. 1, we obtain the following equations:

n n— a !

u, —u, 1:_% (1)
n n— a y

Uy —u, ‘= % (2)

Ot ot
a(u”—u”) da"
- =-C, L2 % 4
2 ©o ot @




To obtain the continuum model, the left
hand side of each equation (1); (2); (3) et (4)
has to be approximated to a spatial partial
derivative with respect to x=nk Wwhich
represents the distance measured from the
beginning of the line. h represent the
distance that separates two consecutive nodes
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sampling derivatives period. Using respectively
. n-1 ., n—-1 _, .n+l .n+1
Taylor expansion of u, " ; u, ;i and i,

closely to u' ; u, ; i’ and i, by
considering the terms till fourth order we obtain
the set of four partial differential equations in the

following manner:

and which is equivalent to the spatial

24 ax* 6 ' 2 ox? ox ot
Oy B Ouy B0 ow of (5)
24 o' 6 o 2 ox' ox Ot

4 ~den 3 A3 2 A2 -n olu" —u” n

LN e A (u 2)+%=0

24 0Ox 6 Ox 2 Ox ox ot ot

Ko K Koo o (uy —uz”)+aigzo

2d ' 6 2 & o ot

Finally, we obtain the continuum model of the nonlinear hybrid electrical line with crosslink capacitor
presented in Fig. 1 by the set of four nonlinear partial differential equations below:

£64u1 (x.1) _Ea%l (x.1) +ﬁ62u1 (x,7)
24 oxt 6 o 2 o
. ouy (x,1) %4 (iI (x,t))
Ox ot
n 0*u, (x,1) N o’u, (x,1) +E 0%u, (x,1)
24 oxt 6 o 2 ot
. ou, (x,1) B od, (i2 (x,t))
ox ot
n 0%, (x,1) N 1 0% (x,1) +E62il (x,1) ok

ai (

x,t)

24 ot 6 o 2 o’
c (?(u1 (x1)—u, (x,t)) +6q1(u1 (x,l))

’ ot ot
Eé’“iz (x,7) +£363i2 (x,1) N 1 0%, (x,t)

+h

Oox

0i, (x,t)

24 oxt 6 & 2 &’

8(141 (x,1)-u, (x,t)) N 0q, (u2 (x,t))

ot ot

=0
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Fig. 1. Presentation of a nonlinear hybrid electrical line with crosslink capacitor
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3. CONSTRUCTION OF A SET OF FOUR SOLITARY WAVE SOLUTIONS OF TYPE
(KINK; KINK; KINK; KINK) RELATIVE TO GENERAL DIFFERENTIAL EQUATION (6)

We define each of nonlinear charges g, (ul(x,t)), q, (u2 (x,t)) of the capacitors and each of
nonlinear magnetic flux linkage ¢ (il (x,t)), @, (z'2 (x,t)) of the inductors under the analytical shape
given below:

(i1 (x,t)) =Ej (x t)+E I (x,t)+E3i13 (x,t)+E4i14 (x,t)
(i2 (x,t)) Fi, (x t)+F122 (x,t)+F;i§ (x,t)+E1i;(x,t)
ql(ul(x t)) A|ul(x t)+A2 2(x,t)+A3uf x,t)+A4ul4 (x,t)
q, (u2 (x,t)) Bu, (x t)+B u, (x,t)+B3u; x,t)+B4u§ (x,t)

¢
¢,
)

—

—

with E ; E,  E; s E, s F B F F; A A 45 A, B ; B, ; By and B, are non-nil real
numbers which will be chosen conveniently. Let us note that £; and F stand for inductance, E, and
F, stand for inductance per unit current, £, and F; stand for inductance per unit current of power
two, E, and F, stand for inductance per unit current of power three, 4, and B, stand for
capacitance, 4, and B, stand for capacitance per unit voltage, 4, and B, stand for capacitance per
unit voltage of power two, A4 and B, stand for capacitance per unit voltage of power three. By
substituting each of the nonlinear charge ql(ul(x,t)), q, (u2 (x,t)) and each of the nonlinear
magnetic flux ¢1(i1 (x,t)), ¢, (i2 (x,t)) of (7) in (6) we obtain the set of four nonlinear partial

differential equation written as:

h o', (x,1) K O’u, (x,1) N h? 0%u, (x,1) s ou, (x,1)

24 o 6 o 2 ox

+(-E, 2B, (x,0) -3 (x,1) ~4E,i} (x.1)) Oh (a’t”) =0

h 0*u, (x,1) R O’u, (x,1) +hi 0’u, (x,1) _p ou, (x,1)

24 oxt 6 ox 2 o Ox

(= F = 2F g (0,0) =3 (x,1)—AF S (x,z))a’zgf”) 0
n* oY% ()4c,t) +hi 0% ();,t) +hi 8%, ()zc,t) i oi, (x,t) c ou, (x,t)
24 ox 6 oOx 2 ox ox ot

+(C0 + A+ 245, (x,0)+ 34 (x,t)+44u, (xt))auléjf) _

E 541'2 (zc,t) +}i 531'2 (;c,t) +ﬁ 521'2 (;c,t) o 0, (x,t) _¢, ou, (x,t)

24 oOx 6 Ox 2 Ox Oox ot

ou, (x,1)
ot

+(C0 + B, +2Byu, (x,t)+3Byu; (x,t)+4B,u; (x,t)) =0 8)
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Let us use Bogning-Djeumen Tchaho-Kofane method [17-22] to come out with the solution of (8)
under the analytical shape below:

Where a, b, e, f, are wave amplitudes; k the wave vector and v the velocity which are non-zero real

numbers to be determined in terms of modeled line parameters. Replacing 1, (x,t) A (x,t) ;

I (x,t) et I, (x,t) given by (9) in (8) we yield the following set of four equations which are written in
a simplified form:

(3E3e3v —hak —%h3ak3 + Elevjz1
3 cosh? (kx—vr)
inh (kx —vt
+(2E2ezv —lh“ak4 —hlak® + 4E4e4vjsm3(v)
3 cosh® (kx—vr)
inh (kx — vt
+(h4ak4—4E4e4v) s ( v)

1
— = 4 (BEev+hiak’)———M =0
coshs(kx—vt)+( evria )cosh4(kx—vt)
2 1
3F, fv—hbk-Z1’bk* + F T
( Y 3 " lfvjcoshz(l’(:x—vt)

1 sinh (kx—vr)

2F, f*v——h*bk* — h*bk* +4F, f v | ——

+( S 3 " 4fvjcosh3(l(:x—vt)
+(h4bk4 —4F4f4v) sinh (kx —vt)

1
—— L+ (BE v+ bk ) —————— =
coshs(kx—vt)+( SV )cosh4 (kx—vr)
2 1
(—3143@3\/ + hek + 5 h3€k3 - Alav - Coav + Cobvj m

inh (kx —
+ (3A3a3v — ek’ )% + (h4€k4 + 4A4a4v)M
cosh* (kx —vt) cosh’ (kx—vt)
inh (kx —
+(—2Aza2v 1 h'ek* — h’ek® — 4A4a4vj8m3(vt)
3 cosh (kx—Vt) (10)
2 1
(—333173\/ + hfk + 5 thkS - Ble - CObV + Coavj m

1 sinh (kx —vt)

3B v- i\ ———  (h* fk* +4B, oY) ———— L
+( oY fk)cosh4(kx—vt)( i+ 4B, v)coshs(kx—vt)
1 sinh (kx —vt)
2B.b*v—=h*fik* - fk* —4BbYy | ——— L
+( 27V Jr Jr ! v]cosh3(kx—vt)

+=0

The set of equations (10) is valid if and only if each of its basic hyperbolic function coefficients is nil.
This permits us to obtain the following set of sixteen equations:
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3E363V — hak —%hSak3 +Eev=0

2Ezezv—%h4ak4 —h’ak® +4E,e*v =0

h'ak* —4E,e*v=0
—3E’v+hak’ =0

3F3f3v—hbk—§h3bk3 +Ffr=0

2F, v éh“bk“ —Wbk* +4F,f*v =0

h'bk* —4F, f*v=0
=3E,fv+ bk’ =0

—3A3a3v + hek + %iﬁek} —Aav—-Cyav+Cibv =

—2Azazv—%h4ek4 —hlek’® - 4A4a4v =0

34,a°v—hek’ =0
h'ek* +44,a*v=0

—-3B,p’v + hfk + %h?ﬂc} -Bbv-Cbv+Ciav =

~2B,h*v— %h“ Sl =l —4B,b*v =0

3BHV-h fk’ =0
Wkt +4B,b"v =0

0

0

Haven solved the set of equation (11), it has permitted us to present in (12) the solution with
conditions of the set of four nonlinear partial differential equations obtained in (8) which model the
dynamic of a set of four solitary wave of type (Kink; Kink; Kink; Kink):

1
1 4 42 3\a 2
JABAA AL (4B a8, 454 ;f:B3A4 (AE2)* \-48.4,4, +54.4; |

- 84, - 8E, 4, 8E, 4, B;
3 3 2 3 % 2

, E, By (AE] ) (—484,4, + 5447 ) 84, (A4E]) (4844, +544

- 5 (4 E33>§ 5124E3B; 81E,4;

!
3 3

. 1| (4B (—484,4,+5443 ) | E _hlak _BblE P Kbkt

_(A E})i 2161 4 T4y T T Ay T Ay

33

4= ~h’ek’a’ +3heka® —3Cyva* +3Cyva’b B - —h’ fi°b’ + 3hfkb® —=3Cvb* +3Cvb’a ;

1

4 » D
3va

3vb*
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3 2 3713 2
_hak(_3e3+h2k283) —hak(—zhke +hk’e ) - _hbk(_3f3+h2k2f3)

b 3ety 3ety Co! 3f%

2= )

E
—hbk (—z hkf> + Bk fzj

k= ; ; 4, <05 E;<0; 544] >484,4, ;
3%
1
3 ERE
1| (4B (4844, +544 ) i
484, 4, + 544 : 216K 42
ul(x,z):$tanh (4,5 ;
4 1
842 (AE ) 484,4,+544
+ t
SIE A
s 5
1 1| —(AE) (4844, +544 )
E. Bﬁ(AE3)%(48A2A +54A2)% i [ TR g
u (x,1) = 2 A — : : tanh (A3E5)4 ’
B (AEs)Z 512A3E384 l
U 84 (AE ) 484,4,+544
’ 81E,4; !
3 3\
1 1| (4B (484,4,+544 ) (12)
AE] )\ -484,4, +544] . 216K’ 4
il(x,t):( 5 3) \/SEAZ 4 3 tanh (AzE;)“ 3
3474 .
84; (4E)) 484,4,+544]
| BIE, A !
: Y
1 1| (4B (4844, +544 )
BiA(AES ) \|-A484,4, + 5442 . 216k 42
)= DEABS AL (o 3
347374 1
842 (AE ) 484,4,+544
+ t
81E, A

For the values of the following parameters: A, =37x10"2F/V , A4,=-7,28x107" F/V2 ,
A, =-30x10" F/V?, E,=-4Tx10° H/A*, B, =7,28x10"° F/V?*, B, =47x10"° F/V*,
h=-10"m , the expressions of four Kink solitons (12) can be re-written as

u, =22,31tanh (12258,84x+1,06x10°) ,  u, =1424,11tanh(12258,84x+1,06x10°¢)
i, =—1,39 tanh (12258,84x +1,06x10°), i, =3,63tanh (12258,84x+1,06x10°¢) . This permits

to obtain in Fig. 2 the representation of real profile of those four Kink solitons.

This representation shows real profile of the four Kink solitons which are topological solitons since the
properties of their media are not the same at infinity.



Guy and Bogning; PSIJ, 22(4): 1-14, 2019; Article no.PSIJ.43379

= =

Real Kink solitorn u -1
==

[
=
=
=

==

real Kink soliton uz2
=

Real Kink solitorm i1

real Kink soliton i2

Fig. 2. Real profile of the four Kink solitons

4. CONSTRUCTION OF A SET OF FOUR SOLITARY WAVE SOLUTIONS OF TYPE
(PULSE; PULSE; PULSE; PULSE) RELATIVE TO GENERAL DIFFERENTIAL
EQUATION (6)

We define each of nonlinear charges ¢, (ul(x,t)), q, (u2 (x,t)) of the capacitors and each of

nonlinear magnetic flux linkage ¢, (7, (x.t)), ¢, (i, (x.z)) of the inductors under the analytical shape

given below:
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(1 (520)) = B (50)  Ex? (5.0) (B (5.0) £ () 1 g;t)

0 ) = s ) ) B 1)+ £ ) -2 (9
g, (1 (e.) = At (o) A () (At (36) 5 A () 1= E;;”)
4, (11, (x,1)) = Bty (5,0 + B (x,0) + (B, (1) + B (1)) 1-”%’5’”

With |E0|>|i1(x,t)| ; |E]|>|i2 (x,t)| ; |A0|>|u1(x,t)| ; |BO|>|u2(x,t)|. E E ;E ;E ;F;
FE,FE;F;A4; 4 ; 4; A4,; B ; B,; B,and B, are non-nil real numbers which will be
chosen conveniently. Let us note that £, F;, E;, F; stand for inductance ; E,, F,, E,, F, stand
for inductance per unit current of power two; A4, B,, 4,, B, stand for capacitance ; 4,, B,, 4,and
B, stand for capacitance per unit voltage of power two. By substituting each of the nonlinear charge

q,(u,(x.1)), ¢, (u,(x.1)) and each of the nonlinear magnetic flux ¢ (i, (x.t)), ¢, (i,(x.t)) of
(13) in (6) we obtain the set of four nonlinear partial differential equation written as:

Bt 0t (x,t)  h* &u (x,t) . h? 0%, (x,t) 5 ou, (x,1)
24 oxt 6 o 2 o Ox

il (x.7) . E.i} (x.0)+ E,i (x,1) |61, (x,1)

—E, —3E,i* (x.t)—(E, +3E,i* (x,1)) 1 -0

H I i - Ty
R
0
K@“uz(x,t) ﬁasuz(x,t)_'_ﬁ@zuz(x,t) hauz(x,t)
24 &t 6 ox’ 2 ox? ox
.2 .2 .4 .

| =F =3E,i (xt)~(F, 4 3E,2 (x.1)) [1-2 (n0) | B () e Bl (xr) |0 (x1)

F} i2 (x.t ot
b £ \/1_12 (xz, )
FO
nt o' (x,t) +hi 0%, (x,1) +E 0%, (x,t) Tk oiy (x,1) _c u, (x,t)

24 oxt 6 ox 2 o’ ox ot

ul (x,t) A (x,0)+ A (x,1) |0, (x,1)

4 5 u} (x,t) ot
1—
A“\/ 7

+| Cy+ A+ 2437 (x,0) + (A, +3 47 (x,1)), [1-

=0 (14)

4 4 . 3 3. 2 2. .
RS (f,t)+£6 lz():,l‘)_'_hiﬁ i, (;c,t)+h612(x,t)_co ouy (x,1)
24 ox 6 Oox 2 oOx Ox ot

ul (x.7) B Bl (x,t)+B4u;‘ (x.1) |Ou, (x,t)

2
B, B \/1_ ul (x,t) ot

+| Cy+ B, +2By3 (x,t) + (B, + 3B} (x.t)), [1-
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Let us use Bogning-Djeumen Tchaho-Kofane method [17-22] to come out with the solution of (14)
under the analytical shape below:

= asech (kx—vt)
=bsech (kx—vr)

(x,1) =esech (kx—vt)
i, (x,t) = f sech (kx—vr)

<
— —~~
=
-
~ ™~
—— S

(15)

Where a, b, e, f, are wave amplitudes; k the wave vector and v the velocity which non-zero real
numbers to be determined in terms of modeled line parameters. Replacing 1, (x,t) ;U (x,t) ;

A (x,t) et I, (x,t) given by (15) in (14) we yield the following set of four equations which are written

in a simplified form a=4, ; b=B,; e=E et f =F,:

(20" Ak +48E,VE, — T2EyVE, — 241’ 4" )sinh (o —ve) cosh® (e —vt )
+(* Ak +120 4 —24E,E, )sinh (ke —vt) cosh* (ke —vt) + (96 EgVE, +24h* A,k ) sinh (fox —v¢)
+(241 4)6° + T2EQVE, ) cosh (ox—ve) +(~T2EgVE, — 24hA e+ 24E,vE, — 28h° Ak ) cosh® (Jox—ve)
+(24hA e — 24 E,vE, + 41 4 ) cosh® (ke —vt) =0
(207 Byk* +48F,vF, — T2F, vF, — 24h* B,k ) sinh (kx— vt cosh (Jox —v¢)
+(h*Be* +12° B> — 24 F,vF, ) sinh (fox —vt ) cosh* (Jor —ve) + (96 Fy vF, + 244" Byk* ) sinh (Jox—ve)
+(241° B +T2F,VF, ) cosh (loc—ve) +(=T2F, VF, — 24hB, e + 24F,vF,  28h* B,k ) cosh® (o —vt)
+(24hB,k — 24F,vF, +4h' B,k ) cosh® (kox—vt) = 0

(201" Ejk* 48 Ayvd, +T243vA, = 24h° E,Je* ) sinh (foc—vt ) cosh® (Jox —ve )
+(-24°E e — 724304, ) cosh (Jor — v ) + (=96 4;vA, +24h* E Je* ) sinh (e —vt) (16)
+(H*Egk* +121° E + 24 404, ) sinh (ke — vt ) cosh* (Jor —ve)
+(7245v4, +24hE f—24 AvA, + 281 E Jc* =24 4,vC, + 24B,vC, ) cosh® (kx —v)
+(-24hE k + 24 Apvd, — 41 E )¢ +244,vC, — 24B,vC, ) cosh® (kox—vr) =0
(207 Fyje* —48B,vB, +72B}vB, — 24h" Fk )sinh (Jox — ve ) cosh” (x —vr)
+(—241°Fyc* —72B,vB, ) cosh (ke —vt) +(—96 BvB, +24h* Fyk* ) sinh (kx vt )

+(72B,vB, +24hF,k —24B,vB, + 28W’ F)k* —24B,vC, + 24 4,vC, ) cosh’ (kx—vr)

+(h*Fyfe* +120° Fyic® + 24B,vB, ) sinh (kc—vt ) cosh* (fec— v
+(—24hF k +24B,vB, — 4y’ +24B,vC, 24 4,C, ) cosh® (kx—vt) = 0

The set of equations (16) is valid if and only if each of its basic hyperbolic function coefficients is nil.
This permits us to obtain the following set of twenty four equations:

10
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~20h* Ak* + 48E,VE, —T2E,vE, —24h*> Ak* = 0
h*B,k* +12h°B k> — 24 F)vF, =0
96E,vE, +24h* 4,k* =0
241’ Ak’ +T2EvE, =0
~72E,vE, = 24hA.k + 24EvE, = 28h* 4,)k> =0
24hAk - 24E\E, + 4’ 4,)k* = 0
—20h*B,k* + 48 F,vF, — 12F,vF, —24h*B k> = 0
h*B,k* +12h°B)k* — 24 F)vF, =0
96 F,)vF, +24h*Bk* =0
241° Bk’ + T2F)vF, =0
~72F;'vF, — 24hByk + 24F,vF, = 28h’ Bk’ = 0
24hB,k - 24F,vF, + 4’ B)k> = 0
—20h*E k* — 48 A)vA, + T2 A;vA, — 24h°Ek* = 0
24K’ E k> —T72A4;vA, =0
~96 AJvA, +24h*E k" =0
W Ek* +12h°E k> +24 4,v4, =0
T2 A4;vA, +24hE k — 24 A)vA, + 28h°E k* — 24 4,vC, + 24BvC, =0
—24hEk + 24 AvA, — 4’ E k* + 24 4,vC, — 24BvC, = 0
-20h*Fyk* — 48B,vB, + 12B,vB, - 24h°F,k* = 0 (17)
—24W°Fk* —=72BvB, =0
—96B,vB, +24h'Fk* =0
W' Fyk* +12h*F k> +24B,vB, = 0
72BvB, +24hF k —24B,vB, + 28h’F,k* = 24B,vC, + 24 A,vC, = 0
—24hFk +24BvB, — 4h’F,k* + 24BvC, — 24 4,vC, =0

Haven solved the set of equation (17), it has permitted us to present in (18) the solution with
conditions of the set of four nonlinear partial differential equations obtained in (14) which model the
dynamic of a set of four solitary wave of type (pulse ; pulse ; pulse ; pulse):

1
_ 333 3
a=A, ; b=B, ; e=E, ; f=F, ; P &;EBO : v=64Ang . A4, <0
Eh\ 2744 814 4
__Rpe g B RAR L RAR o WBE
* 3B Y 4B 7 3y ! 4’y T ? 3f%
__WBE LGB He ek ek Wk
Y4y ’ b4 64y A4y 244y 24y
B o ot A W WK KA bk AR
1 0 B, 68,y By ’ ’ 24By 2By Y Yoy 6ev

E;

_ 4K . AN 2 7o Bk N

2 2 4 4
g WBE KB

2ev 24ev YA 6 fv 2fv 24 fv

) )
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1
A4, (C44E }  644E,

u,(x,t)= A, sech —_— | X——
(w0)=4, E\ 2744 8145 4;

1
4, (644} 644IE,

— = | X
En\ 2744 8144,

u, (x,t) = B, sech

1
A, [ —64A42E} ]3 L _GA4E,

En\ 2744

i, (x,1) = Eysech R4 4
2

1
A, (C44E }  644E,
E,h

i, (x,1) = Fy sech

X——7F1
2744 814} 4]

real Pulse soliton iz Real Pulse soliton i1 real Pulse soliton u2 peal Pulse soliton u1
o o B E

Fig. 3. Real profile of the four pulse solitons
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(18)



In mathematical domain, the nonlinear hybrid
electrical line with crosslink capacitor presented
in Fig. 1 has permitted in the one hand to
discover in (8) a set of four nonlinear partial
differential equations which have for exact
solution a set of four solitary waves given in (12)
and on the other hand to discover in (14) another
set of four nonlinear partial differential equations
which have for exact solution another set of four
solitary waves given in (18).

For the values of the following parameters:
A4, =37x10" F/V?, 4,=-30x10"* F/V*,
A, =10V, B,==20V , E,=0,34, F,=-54

, h=10"", the expressions of four Pulse solitons

(18) can be re-written as
u, =IOSeCh(1081,08x+34l,48t) ,
u, = —2OSech(108 1,08x+341, 481) ,
I :O,3sech(1081,08x+341,48t) ,
I,==5 sech(108 1,08x+ 341, 48t) This

permits to obtain in Fig. 3 the representation of
real profile of those four Pulse solitons.

This representation shows real profile of the four
pulse solitons which are non-topological solitons
since the properties of their media are the same
at infinity.

5. CONCLUSION

The choice of nonlinear hybrid electrical line with
crosslink capacitor for our study is due to the fact
that it permits the simultaneous propagation of
four signals contrary to a non-coupled hybrid
electrical line which permits the simultaneous
displacement of two signals; let us recall that the
more we will multiply the crosslink capacitor in
the line, the more we will multiply the
simultaneous movement of signals in the line. In
the domain of physics in general and particularly
in the domain of telecommunication, the set of
four solitary waves obtained in (12) will permit
the manufacturing of a new hybrid electrical line
with crosslink capacitor where the flux linkage of
its inductors and the charge of its capacitors vary
in nonlinear manner defined in (7). In the same
light, the set of four solitary waves obtained in
(18) will permit the manufacturing of another
hybrid electrical line with crosslink capacitor
where the flux linkage of its inductors and the
charge of its capacitors vary in nonlinear manner
defined in (13). The set of four solitary waves
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obtained in (12) and in (18) prove that the quality
of signals which are being propagated in the
nonlinear hybrid electrical line with crosslink
capacitor was ameliorated as compared to
sinusoidal signals which are being propagate in
the hybrid electrical line with crosslink capacitor.
In order to bring up new ideas on the stability of
the four sets of solitary waves obtained, it is
necessary for us to study next their modulational
instability before carrying out a practical exercise
where we will experiment the applicability and
the perfection of the two new hybrid electrical
lines with crosslink capacitor.
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