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Abstract

The Lorentz group is a non-compact group. Consequently, it’s representations cannot be expected to be
equivalent to representations of a unitary group. Actually, they act on a large-component space and a
separated small-component space, in some sense analogous to 4-vectors. In contrast to representations of
compact groups state vectors carry the actual value of the non-compact variables, the boost-vector. In
the non-boosted state the small components vanish and the large components transform according to a
representation of the rotation subgroup. Application of a boost then generates small components, a process
that preserves norms. However, the norm now has a growing positive contribution from the large-components
and a negative contribution from the small-components, growing absolutely to keep the total unchanged.
General transformations are described in detail. The freedom to assign boost directions to the phases of
small components leads to a topological symmetry with flavor-generating representations for two-sheeted
representations.
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1 Symmetry SO(4)

There are six infinitesimal rotations for the group SO(4):

Aj = xl∂k − xk∂l, Bj = xj∂0 − x0∂j , (j, k, l) = (1, 2, 3) and cyclic permuted. (1.1)

They span the associated Lie algebra, which separates into a sum of two independent sub-algebras, generated
by

Jj =
1

2
(Aj +Bj), Kj =

1

2
(Aj −Bj), (1.2)

which both obey the commutation relations of the Lie-algebra o(3) generating the group of orthogonal transforma-
tions in three dimensions.

[Jj , Jk] = Jl, (j, k, l) as above. (1.3)

Correspondingly, SO(4) is a direct product of two groups, each homologous to SO(3) [1-4].

Therefore, its representations can be labeled by two non-negative integers or half-integers (j, k), which characterize
the two factors of a particular representation. Due to the closed nature of SO(4) these representations are closed
as well. Thus, one can apply the standard exponentiation procedure of Lie-groups to obtain an arbitrary
transformation of a representation.

Every representation has a chirality parameter (k-j) chosen such that pure j -representations (only j positive)
have a negative value (left-handed chirality). Achiral representations have j = k.

1.1 Remark on the dimension of representations of SO(3)

Representations of SO(3) must be considered real. This can be seen by choosing a ‘magnetic’ basis in which a
component, say J3 is diagonal. A representation labeled by a half integer j is (2j+1)-dimensional and has the
eigenvalues (of J3) mj = −j, 1 − j, . . . , j − 1, j with eigenfunctions eimjφ , where φ is the rotation angle about
the 3 -axis. Equivalently, we may choose the completely real functions (eimjφ+eimjφ)/2 and (eimφ−eimφ)/(2i) .
The appearance of complex conjugated functions is owed to the fact that rotations about an axis are an Abelian
subgroup with exclusively one dimensional representations. The eigenvalues of a transformation, which is real,
are either real (1 or -1 ) or occur in complex conjugated pairs. Thus, two complex conjugated representations
can be combined to a completely real two-dimensional representation now reducible, however.

If the vector spaces are considered as a field over the Euclidean R4 we can extend them to a Hilbert space by
introducing a local norm as the scalar product with the conjugated vector. Clearly, this Hilbert space is over the
field of reals, and this holds true for the product representations of SO(4) as well. The group SO(4) preserves
the Euclidean metric, and thus, is the isotropic symmetry group of R4.

A consequence of the field of reals is that a function |ψ >, when multiplied by the imaginary unit i leads to a
negative norm i2 < ψ|ψ >, as we will encounter in the following. This situation is somewhat confusing when
working with the complex conjugated representations mentioned above. In other words, the freedom of choosing
among equivalent quantization axis must not be confused with a complex Hilbert space.

2 Proper Orthochronous Lorentz Group, SO+(3, 1)

For the Lorentz group, the ‘isotropic’ symmetry group of the Minkowski space, there are several substantial
modifications, due to the non-compact nature of the group SO+(3, 1), introduced by the infinitesimal boost
operators B in expression (1.1). Obviously, we cannot expect to encounter unitary representations (which are
compact). To see the problems, let us consider a special representation (j,0) in which the second factor is

77



Gerber; J. Adv. Math. Com. Sci., vol. 38, no. 7, pp. 76-82, 2023; Article no.JAMCS.98351

the identity representation. We use the basis of magnetic quantum numbers in b-direction (boost). Starting
from a non-boosted state, a boost transformation along the b-axis corresponds in SO(4) to a rotation in the
two-dimensional space spanned by ψ and jDb̂ψ , with

jDb̂ = eiπσb̂ , (2.1)

where the spin operator σb̂ is the representation of the infinitesimal rotation J in expression (1.2) in b-direction.
This π-rotation becomes now a discrete proper transformation (see below), which corresponds to a time reversal
and an inversion of the b-axis. It mediates between ‘separated’ parts of the representation space. The term
separated needs some explication. It corresponds, in some sense, to time- and space-nature of a 4 -vector in
space-time. There exists no Lorentz transformation that converts a time-like vector in a space-like one. In
this sense time- and space-components must be considered ‘separated’. In our case we may introduce the
term large p-components and (separated) small n-components in accordance with the wording used in Dirac’s
theory of the electron [5]. The pre-scrips p- and n- stand for positive and negative (see below). Clearly, for
(0,k)-representations we must choose

kDb̂ = e−iπσb̂ , (2.2)

in accord with time direction in K (expression 1.2).

Writing the rotation in the (0,b)-plane in the SO(4)-case as

eiφσb̂
j
ψmj = cos(mj

φ

2
)jψmj + sin(mj

φ

2
)jDb̂

j
ψmj , (2.3)

we can make the transition from SO(4) to SO+(3, 1) by recalling that we can first perform the rotation part

rD, followed by the pure-boost part bD due to commutation of the two operators. For the latter we start from
(2.3) to arrive at

jDb(φ)jψmj = cosh(mj
φ

2
)jψmj − i sinh(mj

φ

2
)jDb̂

j
ψmj , (2.4)

by the replacement φ → iφ. We see that the ‘separated’ part of the representation acquires a phase that
depends on the boost direction b due to the 3 -vector nature of the exponent in expression (2.1), and it vanishes
for non-boosted states. As an aside, we must have a simultaneous back-transformation:

jDb(φ)jDb̂
j
ψmj = cosh(mj

φ

2
)jDb̂

j
ψmj + i sinh(mj

φ

2
)(jDb̂)

2jψmj ,

(jDb̂)
2 = ±1,

(2.5)

where the +sign applies for integer j, the –sign for half-integer j (two-valued representations). To see that we
can extend the concept of a norm, invariant under transformations, we consider (2.4) further and write down
the norm of the original vector and the transformed one:

<j ψmj
jD̂b(φ)|jDb(φ)

j
ψmj >= cosh2(mj

φ

2
) <j ψmj |

jψmj >

−sinh2(mj
φ

2
) <j ψmj

jD̂b̂|
jDb̂

j
ψmj > .

(2.6)

The operator jDb̂ is unitary and by multiplication with its conjugate transpose yields the unit operator, hence

<j ψmj
jD̂b(φ)|jDb(φ)

j
ψmj >= (cosh2(mj

φ

2
)− sinh2(mj

φ

2
)) <j ψmj |

jψmj > . (2.7)

However, the operator jDb(φ) is the exponential of a Hermitean and thus non-unitary. We recognize that,
for each mj-component of ψ, we have an expression ‘cosh2(x) − sinh2(x)’ which has a value of one, and is
unchanged under a pure boost transformation. Obviously, the vectors of the non-boosted representation extend
under application of a pure boost to a pair of (2j+1)-vectors. These two vectors cannot be combined to a single
(4j+2)-vector, because the relation between them is fixed by the value of the boost.

78



Gerber; J. Adv. Math. Com. Sci., vol. 38, no. 7, pp. 76-82, 2023; Article no.JAMCS.98351

Here, it must be questioned whether the transformation behavior provided by the two expressions (2.4) and
(2.5) can be termed representation in the regular sense. In this context the concept of little groups [1,6,7]
must be seriously questioned, because it supposes that the translations of the in-homogeneous group yield one-
dimensional irreducible representations which they do not in our case. p- and n-components are not independent!
Their independence would destroy the preserved norm (2.7) under boost transformations.

A capital difference in comparing SO+(3, 1) with SO(4), is that the variable φ is now not periodic anymore, but
extends from zero to plus infinity. Negative values are taken care of by ‘inverting’ the boost direction (actually
by a π-rotation, to stay with proper transformations). We emphasize this by replacing φ by the boost variable

|b| = φ

2
=

1

2
artanh(v), (2.8)

where 0 ≤ v < 1 is the speed of the boost. This allows us to give the vector b an extended meaning such that
its norm characterizes the value (2.8) to which the state is boosted. Consequently, we can omit the variable φ in
the operator jDb, see expression (2.4). We have the additional effect, that the mj-component of fields acquire
an additional phase of eimjb, because, for a (j,0) representation, a boost is always coupled with a synchronous
coaxial rotation, see expression (1.2). When the speed of the boost approaches a value of one, this phase oscillates
at ever increasing rate. For mj = 0 the n-component stays at zero and there is no oscillation. This signifies
that states which travel at the speed of light (v=1, photons, gravitons) always have zero magnetic quantum
numbers (m=0) with respect to the direction of propagation. The coefficients of all components with non-zero
magnetic quantum number, m, vanish. In these cases the wave-number 4 -vectors are zero-vectors. Furthermore,
to characterize these states we must take the limiting direction vector b̂.

We can repeat this whole consideration for general (j,k) representations by the observation that one can, in boost
direction, choose a magnetic quantum number basis in each factor of the representation which yield, under boost,
components with total magnetic quantum numbers of (mj–mk). The components of the corresponding p- and
n-vectors now are (2j+1)(2k+1)-tuples, of which the n-components corresponding to ∆m = (mj–mk) = 0 now
stay at a value of zero. For integer values of j+k we have zjk = 2min(j, k)+1 such components. For half-integer
j+k there are no ∆m = 0 states (zjk = 0). Correspondingly, the representations of (v→1)-limiting states are
characterized by a direction vector, a integer value of j+k, and zjk longitudinal components. Actually, j and k
must be smaller then one [8], which leaves us with gravitons and photons, exclusively.

2.1 Transformation behavior

A general state ψ is characterized by a boost vector b and the non-boosted state ψ0 from which it is generated
by the pure b-boost Db. The subscript ’0 ’ indicates that this state is purely in the p-component space, with
vanishing n-components

ψ = Dbψ0 (2.9)

To keep track of the transformation behavior under general Lorentz transformations we take care that the
transformation is such that we have the total pure boost as final transformation. Therefore, to rotate a state
with final boost Db by a rotation R we must write DR = DRDbD−b such that we can operate on ψ0 with DRDb:

DRψ = DRDbD−bψ = DRDbψ0 (2.10)

We can apply the rotation R on the boost vector b to obtain the new boost vector p. There exist a whole set of
rotations to achieve that, but only one of them transforms the pure boost Bb to the pure boost Bp, which we
call

Rp,bb = p (2.11)

This rotation has the rotation axis parallel to the vector product of b and p.

To proceed we make use of the decomposition possibilities of a general Lorentz transformation:

L = RBb = Rp,bRbBb = BpRpRp,b (2.12)
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where Rb and Rp are rotations about the axes b and p, respectively, by the same angle. Thus, one obtains
Rb from R and Rp,b, L from the second equation of (2.12) and Rp from the third one. This completes the
transformation (2.10):

DRψ = DRDbψ0 = DpDRpDRp,bψ0. (2.13)

Clearly, the rotated field DRpDRp,bψ0 is again a pure p-field of which we know how to apply the pure boost Dp.

A similar consideration can be made for applying a pure boost

L = BpBb = Rp⊕b,b⊕p Bb⊕p = Bp⊕b Rp⊕b,b⊕p (2.15)

Here we have to remember, that combining two boosts corresponds to adding the corresponding velocities
according to the relativistic addition formula [9], which is not commutative, and symbolized here by the circled
plus sign, ⊕. Formula (2.15) also illustrates that the product of two pure boosts is not a pure boost (Thomas-
Wigner rotation [7]). It again allows to start from the non-boosted ψ0 and to apply the rotation before the final
pure boost.

To summarize, a (j,k)-representation of the Lorentz group has a (2j+1)(2k+1)-dimensional p-component space
and a separated space of n-components of the same dimension, which are characterized by a boost vector b.
Applying the reverse boost, -b, produces a purely p-component situation, called the rest-system. The fact that
a general Lorentz transformation can always be written as a product of a rotation with a final pure boost allows
to perform the rotational part in the p-component space and finally apply the terminal boost (2.9).

The states have a norm (2.7) which is unchanged under Lorentz Transformations and under multiplication of
the states by an arbitrary phase factor. However, one must acknowledge that this phase factor will change with
the choice of the origin of the space-time coordinates, because a boost is always accompanied by a synchronous
rotation (1.2). If the field possesses a local boost b, a change in the choice of the (4-)origin δx will produce a
concurrent phase of

Φ(δx) = e±
π
2
jBδxΦ(0) (2.16)

where jB is the j -specific (anti-hermitean) boost 4-vector-operator which is a zero-vector (see expressions (8)
and (13) of Ref [8]). This new phase varies with the position of the field whenever the field changes it’s (local)
boost value with position.

It is important to acknowledge that states of a representation carry a parameter b, the characterization of the
final pure boost. This is an important difference to representations of compact Lie groups, like e.g. the rotation
groups O(n), the states of which have no memory of any applied group-element transformations.

3 Discrete Transformations

For O(4) the kernel O(4)/SO(4) is the two-element inversion-group I, distinguishing improper transformations
from the normal subgroup of proper ones. Under improper transformations the norm of a representation-vector
must change it’s sign. This can most easily be seen by inverting the quantization axis of spin wave-functions
in O(3). The spin operator is a pseudo-vector, the expectation value of which is not changed by the inversion.
However, inversion changes the sign of the magnetic quantum number, and consequently the expectation value
of the spin operator, unless the norm changes as well. For integer representations this amounts to multiplying
the representation-vector with ±i, and for half-integer ones to a sheet change. Twofold application of the same
transformation leads to a change of the phase by -1.

For improper transformations the chirality changes sign [2]. In the case of non-chiral representations (j=k) one
has an even and a odd representation [2]. For SO(4) this is the only addition when going to the full group O(4).
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For the Lorentz group the situation is somewhat more complex because the kernel O(3, 1)/SO+(3, 1) now consists
of the four elements 1, P, T, PT and is isomorphic to the Abelian Klein four-group, K4. Furthermore, due to
the ‘disconnected’ character of p- and n-components of a representation, we have an additional freedom. We
have a oriented triple of boost directions (b̂1, b̂2, b̂3) and a associated triple of matrices (D1, D2, D3) (2.1, 2.2)
providing the phase between n- and p-components of a representation. Because of the ‘separated’ nature of p-
and n-components the assignment of the two triples can be arbitrary, as long as the handedness is unchanged.
Thus we have the additional symmetry, A3, of even permutations of possible mutual assignment of b’s and D ’s.
For integer representations, j + k = n = 0, 1, 2, . . . this yields no additional symmetry because it corresponds
to a normal rotation, already included in the Lorentz transformations. This is no longer true for half-integer
representations j+k = n+½, because these representations are two-sheeted.

3.1 Case j = k

In this case a representation acquires a additional signature corresponding to one of the four representations of
K4.

3.2 Case j 6= k, j+k = n (Integer)

Here the representations are chiral and change chirality under improper transformations (j ↔ k).This corresponds
to the transition between particle and antiparticle. In addition there exists a PT -parity.

3.3 Case j 6= k, j+k = n + ½
In this situation the additionalA3-symmetry shows up as described above. It gives rise to the three representations
known as flavor [10-12]. As in the previous case one still has chirality as well as PT -parity, which is commonly
considered an additional flavor characterization.

4 Conclusion

Representations of the Lorentz group SO+(3, 1) are not unitary. Their states carry a boost parameter (3 -vector).
They have a structure consisting of a p-component (large) and a n-component (small). The n-component
disappears for zero boost. States possess a norm which is invariant under Lorentz transformations and which
has a positive and a negative contribution from p- and n-components, respectively. The two components are
‘separated’ in the sense, that there is no Lorentz transformation which can turn a only p-component vector into
a only n-component vector.

The transformation behavior can be obtained by making use of the fact that a general Lorentz transformation
can always be composed into a rotation followed by a final pure boost.

Improper transformations (particle-antiparticle relations) change the sign of the norm, such that the contribution
of the large (small) components is negative (positive). Furthermore, representations carry a PT -parity.

In addition, due to the separated nature of p- and n-component, there is a topological symmetry derived from
the assignment of boost directions to the three directions in the phase expressions (2.1) and (2.2) which leads
to a three-valued flavor-signature for half-integer representations.
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