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Abstract

Generally, redundancy allocation problems are NP-hard. This paper presents an explicit
polynomially bounded algorithm for a special class of redundancy allocation models.
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1 Introduction

Chern [1] studied the complexity of optimization models for redundancy allocation. Although his
main result shows that, generally, redundancy allocation is NP-hard, he identified special cases that
can be solved with polynomially bounded algorithms. This work deals with two of these cases:
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Model 1 Model 2 (1.1)

Max
n∏

i=1

(1− ρxi) Min
n∑

i=1

xi (1.2)

Subject to

n∑
i=1

xi ≤ z Subject to

n∏
i=1

(1− ρxi) ≥ R (1.3)

xi integral, xi ≥ 1 xi integral, xi ≥ 1 (1.4)

Soltani [2] has surveyed the literature on redundancy allocation and classified a wide range of
models, of which ours are basic examples.

In the context of redundancy allocation, a system is modeled as a series of independent subsystems,
and the parameter, n, represents the number of these subsystems. Initially, all components operate
simultaneously and then maintain the function of the subsystem until the last component has failed.
Failures of these components are treated as probabilistically independent events. Elsayed [3], and
Kapur and Pecht [4] developed functions for the reliability of complex systems, including redundancy
allocation problems modeled in model 2.

For the simplified models considered here, it is further assumed that all components of all subsystems
are identical; the parameter, ρ, represents their common failure probability. An assignment of
components to subsystems can be represented by an n-vector,
x = (x1, x2, · · · , xn), of positive integers. Each coordinate shows the number of components

allocated to the corresponding subsystem and the product
n∏

i=1

(1− ρxi) is the reliability of the

system. Throughout, it will be convenient to use the notation R(x) =
n∏

i=1

(1− ρxi).

For Model 1, the final parameter, z, is an integer that represents the total number of components
available for allocation among the n subsystems. Since each subsystem requires at least one
component, z ≥ n. An optimal solution shows how to configure the available components to
maximize the reliability of the entire system. For Model 2, the final parameter is a value R,
with 0 < R < 1, which can be interpreted as a reliability requirement for the overall system. When
vector, x, of positive integers conforms to the nonlinear constraint R(x) ≥ R, the corresponding
system meets or exceeds the requirement for reliability. An optimal solution shows how to achieve
the required reliability with the fewest identical components.

The main result of Section 2 characterizes optimal solutions of Model 1 in terms of the quotient
and remainder when z, the number of available components, is divided by n, the number of
subsystems. The optimal objective value depends on all three parameters,n, z, and ρ, while the
optimal vectors depend only on the parameters n and z. The model has unique optimal vector if
and only if z is a multiple of n.

The main result of Section 3 describes the optimal solutions of Model 2 for which the overall
reliability is as high as possible. Chern [1] noted that this special case of redundancy allocation
models can be solved with a polynomially bounded algorithm. Section 4 includes an elementary
example of such an algorithm. Section 5 includes examples and concluding observations.
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2 Allocating z Identical Components among n

Independent Subsystems in Series to Maximize System
Reliability

If x is an optimal vector for Model 1, then

n∑
i=1

xi = z because an allocation that leaves

components unused can be improved by adding a component to any of the subsystems. Among
allocations of exactly z identical components among n subsystems, those in which the largest
subsystem has at least two more components than the smallest cannot be optimal. In fact, as shown
in the next lemma, simply switching one component from the largest subsystem to the smallest will
improve the reliability without changing the total number of components.

Lemma 2.1. Let x = (x1, x2, · · · , xn) be an n−vector of positive integers for which

n∑
i=1

xi = z.

If n ≥ 2 and the difference between the largest and smallest coordinates of x is at least 2, then

there is a vector, y, of positive integers with

n∑
i=1

yi = z. and R(x) < R(y).

Proof. Choose indices i′ and j′ for which xj′ − xi′ ≥ 2. Let y be the vector that agrees with
x except at these two indices, where yi′ = xi′ + 1 and yj′ = xj′ − 1. The coordinates of y are

also positive integers and

n∑
i=1

yi = z. Since xj′ − 1 > xi′ , it follows that

(1− ρxi′ ) (1− ρxj′ ) < (1− ρyi′ ) (1− ρyj′ ) and so, R(x) < R(y).

Thus, at an optimal solution of Model 1, the difference between the largest and smallest coordinates
is as small as possible. In the context of redundancy allocation, the lemma formalizes the idea that
among all allocations of z identical components to n subsystems, the highest reliability is achieved
when the sizes of the subsystems are as closely balanced as possible Baxter and Harche [5].

With the division algorithm, any positive integer, z, can be written as qn+ r, where q is a
nonnegative integer and r is an integer in the set {0, 1, · · · , n− 1}. For the parameters of Model
1, the quotient, q, is strictly positive because z ≥ n. The next theorem shows that the integers q
and r determine the maximum reliability of a system formed by allocating z identical components
among n subsystems.

Theorem 2.2. If x = (x1, x2, · · · , xn), is a vector of positive integers, with

n∑
i=1

xi = qn+ r,

where q is a positive integer and r is an integer in the set {0, 1, · · · , n− 1}, then

R(x) ≤ (1− ρq)n−r (1− ρq+1)r .
Proof. For integers q and r as in the hypotheses, the set of positive integral vectors, x, on the

hyperplane defined by

n∑
i=1

xi = qn+ r, is finite and non-empty. Let x′ denote a positive vector

at which the function R(x) achieves its greatest value on this set. From the previous lemma, it
follows that the difference between the largest and smallest coordinates of x′ is at most 1.

If r = 0, then the smallest coordinate of x′ is no greater than q and the largest is no smaller than
q. However, since the sum of the coordinates is equal to qn, if one of the largest or the smallest
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coordinate of x′ is different from q, then so is the other. But, then the difference between the
largest and smallest coordinates is at least 2. So, if r = 0, then x′ = (q, q, q, · · · , q).

If r > 0, the largest coordinate of x′ is at least q + 1 and the smallest is at most q. Because
the difference between the largest and smallest coordinates is at most 1, the smallest coordinate
is equal to q and the largest is equal to q + 1; in addition, exactly r coordinates are equal to

q + 1. There are

(
n

r

)
vectors at which the best reliability is achieved.

3 Determining the Minimal Number of Identical
Components to Achieve a Reliability Goal

Although the feasible set for Model 2 includes infinitely many vectors with positive, integral
coordinates, the search for an optimal solution can be limited to a finite set.

Lemma 3.1. Model 2 has an optimal solution and the optimal objective value is no greater than

n

⌈
log2(1−R

1
n )

log2(ρ)

⌉
.

Proof. The positive, integral vector in which each coordinate is equal to

⌈
log2(1−R

1
n )

log2(ρ)

⌉
satisfies the reliability constraint of Model 2, and so the minimal number of components which

are required to achieve the reliability goal is at most n

⌈
log2(1−R

1
n )

log2(ρ)

⌉
. Since the set of positive,

integral vectors for which

R(x) ≥ R and
n∑

i=1

xi ≤ n

⌈
log2(1−R

1
n )

log2(ρ)

⌉
is finite and non-empty, there is at least one vector

at which the sum achieves its minimum.

Replacing the integrality requirements by the constraints xi > 0 for 1 ≤ i ≤ n, Moskowitz and
McLean [6] solved the continuous relaxation of Model 2 by the method of Lagrange multipliers and
then obtained the positive integral vector of Lemma 3.1 by rounding up to the next integer, each
coordinate of the optimal solution of the relaxed model.

Definition 3.2. If (1− ρ)n < R, then the integer

⌈
log2(1−R

1
n )

log2(ρ)

⌉
is greater than 1, and the

positive integer q∗ is defined by the equation⌈
log2(1−R

1
n )

log2(ρ)

⌉
= 1 + q∗.

For integers r, with 0 ≤ r ≤ n, the productsRr =
(
1− ρq

∗+1
)r (

1− ρq
∗)n−r

are strictly increasing,

with Rn ≥ R > R0. The positive integer r∗ is defined by

r∗ = min {r : 0 < r ≤ n and Rr ≥ R}.
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Theorem 3.3.

(i) If (1− ρ)n ≥ R, then Model 2 has the unique optimal solution x∗ = (1, 1, · · · , , 1) and the
optimal objective value is equal to n.

(ii) If (1− ρ)n < R and r∗ = n, then the optimal objective value for Model 2 is equal to
n(1 + q∗) and the vector for which each coordinate is equal to 1 + q∗ is an optimal vector.

(iii) If (1− ρ)n < R and r∗ < n, then the optimal objective value for Model 2 is equal to
nq∗+ r∗ and the vector for which each of the first r∗ coordinates is equal to 1+ q∗ and each
of the last n− r∗ coordinates is equal to q∗ is an optimal vector.

Proof. If (1− ρ)n ≥ R, then the reliability goal can be achieved without redundancy.

If (1− ρ)n < R, it follows from Theorem 2.2 that, among the redundancy allocations represented by
positive integral vectors whose sum is no greater than nq∗, the best reliability is equal to (1−ρq

∗
)n

, which is too small to conform to the reliability constraint of Model 2. From this observation
and Lemma 3.1, the optimal objective value, z∗, for Model 2 can be written as nq∗ + r, with
0 < r ≤ n. From Theorem 2.2, it follows that Rr is the best reliability that can be achieved with
nq∗ + r components and that the configuration represented by the vector in the statement of the
theorem achieves this reliability. Among these configurations, the smallest number of components
in a feasible configuration is equal to n.+ r∗.

Barlow and Proschan [10] produced highest-reliability solutions of Model 2 from the initial vector
(1, 1, · · · , 1) by adding components one at a time until the reliability goal is achieved. Their criterion
for choosing the subsystem to which the next component is added is a ratio test, which, when the
cost coefficients are all equal to 1 and the failure probabilities of the components are constant across
the subsystems, never permits the numbers of components in any pair of subsystems to differ by
more than one. The next section includes a faster method for building this optimal configuration.

4 Computing Optimal Solutions with Rational
Arithmetic

For Model 1, which shows how to use redundancy to maximize reliability, the optimal allocation
of z components among n subsystems is determined by the quotient and remainder when z is
divided byn. If z is a multiple of n, then the optimal configuration is unique each subsystem
has z

n
components. If z = qn + r, with 1 ≤ r ≤ n − 1, each optimal configuration has r

subsystems with q + 1 components and n− r subsystems with q components.

For Model 2, Theorem 3.3 shows the optimal configurations for which the difference between the
largest and the smallest coordinates is as small as possible. For an integer, n, withn ≥ 2 and
rational values of R and ρ, the integers q∗ +1 and r∗ of Theorem 3.3 can be computed relatively
quickly with elementary arithmetic operations. Proposition 4.1 shows how to find q∗+1 by starting
with m = 0 and computing reliability of systems with 2m components in each subsystem until
the reliability goal is achieved and then backtracking to find the smallest system that meets the
reliability goal with subsystems all having the same size.

Proposition 4.1. For an integer, n, greater than 1, and rational numbers, ρ andR, with 0 <
ρ < 1, 0 < R < 1 and (1− ρ)n < R, the integer q∗+1 can be computed with rational arithmetic
in at most 2 ⌈log2(1 + q∗)⌉ steps.

Proof. For fixed values of the parameters n and ρ, the function defined on the positive integers
by x 7−→ (1− ρx)n takes values in (0, 1) and is strictly increasing with respect to x. As
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x 7−→ ∞, (1− ρx)n increases to 1, so the set of positive integers for which (1− ρx)n ≥ R is
not empty. From Definition 3.2, it can be seen that q∗ + 1 is the least integer in this set.

Set t0 = ρ and m0 = 1. As long as (1− tk)
n < R, compute tk+1 = t2k and

mk+1 = 2mk. Since the terms tk decrease to 0, the first index for which (1 − tk)
n ≥ R is

a well-defined, positive integer, which we denote by K. Notice that (1− tk)
n is equal to the

reliability of the series system in which each subsystem consists of 2k components configured with
active redundancy. As constructed, the integer K is the smallest exponent for which such a series
system conforms to the reliability constraint. Thus, 2K−1 < 1 + q∗ ≤ 2K ’ so K = ⌈log2(1 + q∗)⌉.

If K = 1, then 1 + q∗ = 2. If K > 1, set U0 = mK , L0 = mK/2, and observe that
L0 < 1 + q∗ ≤ U0. Next, set δ0 = mK/4, M0 = L0 + δ0 and u0 = tK−1 tK−2 . Notice that u0 is
equal to the reliability of the series system in which each subsystem consists of M0 components
configured with active redundancy. If u0 < R, then M0 < 1 + q∗ ≤ U0; if u0 ≥ R, then
L0 < 1 + q∗ ≤ M0. In particular, if K = 2, then 1 + q∗ = 3 if (1− u0)

n ≥ R, and 1 + q∗ = 4
if (1− u0)

n < R.

For larger values of K, the integer 1 + q∗ can be found by repeating this construction. If
K > 2, then, as long as 1 ≤ j ≤ K − 2, if (1− uj−1)

n < R, set Uj = Uj−1, Lj = Mj−1 and
uj = uj−1tK−2−j ; if (1− uj−1)

n ≥ R, set Uj = Mj−1, Lj = Lj−1 and
uj = uj−1/tK−2−j . For 1 ≤ j ≤ K − 2, set δj = δj−1/2, Mj = Lj + δj . At stage j of the

procedure, Lj < 1 + q∗ ≤ Uj , Uj − Lj ≤ 2K−1−j and uj is equal to the reliability of the series
system in which each subsystem consists of Mj components configured with active redundancy. At
stage K−2, the integers L,M and U are consecutive. If (1− uK−2)

n < R, then 1+q∗ = UK−2 ;
otherwise, 1 + q∗ = MK−2 .

Once the value of q∗ is fixed, the products Rr of Definition 3.2 are strictly decreasing as r
runs from n down to 0. The set of positive integers for which Rr ≥ R is non-empty and its
smallest element is r∗, which can be computed by the bisection algorithm given in Proposition
4.2.

Proposition 4.2. For an integer n, with n ≥ 2, and rational numbers, ρ and R, with
0 < ρ < 1, 0 < R < 1 and (1− ρ)n < R, the integer r∗ can be computed with rational arithmetic
in at most 2 ⌈log2(n)⌉ steps.

Proof. Set t′0 = (1− ρq
∗
)/(1− ρq

∗+1) and m′
0 = 1. As long as t′K(1− ρq

∗+1)n ≥ R , set

t′k+1 = (t′k)
2 and m′

k+1 = 2m′
k. Notice that t′K(1− ρq

∗+1)n = Rr for r = n− 2K . Since t′0 < 1,

the terms t′K(1− ρq
∗+1)n decrease to 0, so the first index for which t′K(1− ρq

∗+1)n < R is a
well-defined, non-negative integer, denoted by K′. Since
(1− ρq

∗
)n < R and m′

K = 2K , K′ ≤ ⌈log2(n)⌉. Notice that t′K(1− ρq
∗+1)n = Rr for r = n −

2K .

If K′ = 0, then r∗ = n; if K′ = 1, then r∗ = n− 1. Otherwise, set U0 = m′
K

L0 = m′
K/2, δ0 = m′

K/4, M0 = L0 + δ0 and u′
0 = tK′−1tK′−2. If K′ = 2, then, r∗ = n − 3

if u′
0(1− ρq

∗+1)n ≥ R, and r∗ = n − 2 if u′
0(1− ρq

∗+1)n < R. If K′ > 2, then, as long as

1 ≤ j ≤ K′ − 2, if u′
j−1(1− ρq

∗+1)n < R, set Uj = Mj−1 Lj = Lj−1 and

u′
j = u′

j−1/tK′−j−2; if u′
j−1(1− ρq

∗+1)n ≥ R, set Uj = Uj−1, Lj = Mj−1 and
u′
j = u′

j−1t
′
K−2−j . As long as 1 ≤ j ≤ K′ − 2, δj = δj−1/2, and Mj = Lj + δj .

If uK′−2(1− ρq
∗+1)n < R, then n− r∗ = LK′−2; otherwise, n− r∗ = MK′−2.
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5 Examples and Conclusions

For Model 1 and a set of parameters n, ρ and z, the quotient q and remainder r obtained by
applying the division algorithm to the dividend z and the divisor n determine all optimal solutions.
For z = nq + r with 0 ≤ r < n, the optimal objective value is equal to

(
1− ρq+1)r (1− ρq)n−r .

If r = 0, then the model has only one optimal solution the vector in which each component is
equal to the quotient q. If r > 0, then the model has a unique optimal vector in which the
coordinates are non-increasing: namely, the vector in which the first r coordinates are equal to

q + 1 and the last n− r are equal to q. This configuration can be rearranged to produce

(
n

r

)
optimal solutions.

Likewise for Model 2, when (1− ρ)n < R, the coordinates of the vector x∗ of Theorem 3.3 may

be rearranged to produce

(
n∗

r∗

)
optimal vectors, each with the highest reliability that can be

achieved with z∗ components. Table 5.1 summarizes some optimal solutions achieved by the
methods of Section 4. These show how the optimal objective value and the number of optimal
solutions with the highest reliability respond to changes in the parameters ρ and n.

For the special case in this paper, the solutions with q∗ + 1 components and q∗ components in
each subsystem are exactly the integral solutions obtained by rounding up and down the solution
of the Lagrangian relaxation. As a result, even in this special case, the bound (n− 1) is the best
that can be guaranteed for the number of hyperplanes to be searched if one proceeds as in Nmah[7].
The big improvement for the special case in this paper is that only one integral solution is tested
on each hyperplane, as opposed to the much larger bound in Nmah[7] for the general case.

In Nmah [8] and Nmah [9], Nmah presents some explicit examples of multiple optimal solutions
with different values for system reliability. While the algorithm given in Nmah [7] will find all
optimal solutions in situations where the problems of discourse have multiple optimal solutions,
the algorithm in this paper finds quickly only those with the highest reliability as demonstrated in
Table 5.1 and Table 5.2. Table 5.2 contains solutions for the case where the parameter R as well
as the other parameters varies in values.

Table 5.1. Highest-reliability integral solutions

n ρ q∗ + 1 r∗ z∗ = nq∗ + r∗

2 0.1 3 2 6

22 0.1 3 4 12

24 0.1 4 7 55

28 0.1 5 173 1197

216 0.1 7 61651 454867

2 0.5 8 2 16

22 0.5 9 3 35

24 0.5 11 12 172

28 0.5 15 183 3767

216 0.5 23 46764 1488556

Min
n∑

i=1

xi , Subject to
n∏

i=1

(1 − ρxi ) ≥ 0 .99 , xi integral, xi ≥ 1
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Barlow and Proschan [10] had observed that their method of adding one component at a time would
produce the highest-reliability solutions of Model 2, but could pass over other optimal solutions.

For example, any n-vector, x, with

n∑
i=1

xi = nq∗ + r∗ andR ≤ R(x) < Rr∗ , will be an optimal

solution of Model 2. Nmah [11] has developed an algorithm for finding all alternate optimal
allocations of identical components of Model 2.

Table 5.2. Highest-reliability integral solutions

n ρ R q∗ + 1 r∗ z∗ = nq∗ + r∗

2 0.1 0.99 3 2 6

22 0.1 0.99 3 4 12

24 0.1 0.99 4 7 55

28 0.1 0.99 5 173 1, 197

216 0.1 0.99 7 61, 651 454, 867

2 0.1 0.999 4 2 8

22 0.1 0.999 4 4 16

24 0.1 0.999 5 7 71

28 0.1 0.999 6 174 1, 454

216 0.1 0.999 8 61, 702 520, 454

Min
n∑

i=1

xi , Subject to
n∏

i=1

(1 − ρxi ) ≥ R, xi integral, xi ≥ 1
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