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Abstract

Differential transform method (DTM) as a method for approximating solutions to differential
equations have many theorems that are often used without recourse to their proofs. In this
paper, attempts are made to compile these proofs. This paper also proceeds to establish the
convergence of the DTM for ordinary differential equations. This paper establishes that if the
solution of an ordinary differential equation can be written as Taylors’ expansion, then the
solution can be obtained using the DTM. This is also demonstrated with some numerical examples.
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1 Introduction

One of the main focus of research in recent times is on the methods for solving nonlinear ordinary
differential equations since most partial differential equations can be transformed to some nonlinear
ordinary differential equations by means of some rescaling terms. Perturbation Methods, Adomian
Decomposition Method (ADM) ([1, 2, 3, 4, 5]), Variational Iterative Method (VIM) ([6, 7, 8]),
Differential Transform Method (DTM) [9, 10, 11, 12, 13], Homotopy Perturbation Method [14] and
Homotopy Analysis Method (HAM) are some of the widely used methods for solving nonlinear
problems.

The Perturbation Methods, ADM, DTM and VIM are very effective in handling weakly nonlinear
problems while HAM can handle weakly as well as strongly nonlinear problems.

Despite the wide applicability of the Homotopy Analysis Method, it requires the solution of some
differential equations and some quadratures. When the problem involved is large, the quadratures
become too cumbersome and uneasy to handle but the DTM has an advantage over this setback. The
DTM reduces the problem to a set of recursive equations that can easily be handled recursively.
DTM has been applied to solve linear and nonlinear systems of ordinary differential equations
[15, 11, 16, 17, 18, 12, 19, 20, 7, 3, 21, 13, 22, 23] and it is applied to solve some biological equations
in [24, 25].

Based on the assumption that the reader is familiar with DTM, most authors omit the proofs of
some theorems. This assumption inspires the first part of this paper. Proofs of some important
theorems which are often omitted are presented. These theorems are then extended with proofs.
Moreso, we further show that the DTM converges to the exact solution when the problem involved
is linear (whether homogeneous or nonhomogeneous).

Finally, we establish these proofs with some examples.

2 Differential Transform

The Differential Transform Method is an extension of the Taylor Expansion Method. The Taylor
expansion for a function y(x) about the point x = x0 is defined as

y(x) =
∞∑

k=0

(x− a)k

k!

dk

dxk
y(x)

∣∣∣∣
x=a

. (2.1)

Define the differential transform ([9, 10, 26]) of the function y(x) about x = a as

DT {y (x)} = Ya [k] =
1

k!

dk

dxk
y(x)

∣∣∣∣
x=a

(2.2)

and the inverse transform as

DT−1 {Ya [k]} = y (x) =

∞∑
k=0

Y [k] (x− x0)
k . (2.3)

We also define the differential transform of y(x) about x = 0 as

DT {y (x)} = Y [k] =
1

k!

dk

dxk
y(x)

∣∣∣∣
x=0

(2.4)

and the inverse transform as

DT−1 {Y [k]} = y (x) =

∞∑
k=0

Y [k]xk. (2.5)
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We define the Mth order approximation of y(x) as

y (x) =

M∑
k=0

Y [k]xk. (2.6)

3 Theorems in Differential Transform

The following theorems and some of the proofs can be found in [9, 13, 10, 26, 27, 28, 29]. In the
following theorems, we shall suppose α, β, γ, c are constants and that

DT {y(x)} = Y [k] , DT {aj (x)} = Aj [k] , DT {f(x)} = F [k] , DT {g(x)} = G [k] , DT {a (x)} = A [k]

and define the delta function as

δk,n =

{
0 k ̸= n

1 k = n
. (3.1)

Theorem 3.1. Linear combination. Linear combination is closed under differential transform i.e.
if y(x) = αf(x)± βg(x), then Y [k] = αF [k] + βG[k].

Proof.

DT {y(x)} =
1

k!

dk

dxk
(αf (x)± βg (x))

∣∣∣∣
x=0

= αF [k]± βG [k] .

Corollary 3.2. Scalar Multiplication. If y(x) = αf(x), then Y [k] = αF [k].

Proof. This follows from theorem 3.1 by setting β = 0

Theorem 3.3. Polynomial function. If y (x) = cxn, then Y [k] = cδn,k

Proof. By definition

Y [k] =
1

k!

dk

dxk
cxn

∣∣∣∣
x=0

= c

{
1 k = n

0 k ̸= n
= cδn,k.

Corollary 3.4. Constant function. If y (x) = c, then Y [k] = cδ0,k

Proof. By setting n = 0 in theorem 3.3, the proof is complete.

Theorem 3.5. Exponential function. If y (x) = eax+b, then Y [k] = eb ak

k!

Proof. By definition

Y [k] =
1

k!

dk

dxk
eax+b

∣∣∣∣
x=0

= eb
ak

k!
.

Theorem 3.6. Trigonometric functions. If y (x) = sin (ax+ b) and y (x) = cos (ax+ b) then

Y [k] =
ak

k!
sin

(
kπ

2
+ b

)
and Y [k] =

ak

k!
cos

(
kπ

2
+ b

)
(3.2)

respectively.
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Proof. By definition

Y [k] =
1

k!

dk

dxk
sin (ax+ b)

∣∣∣∣
x=0

=
1

k!
ak sin

(
ax+ b+

kπ

2

)∣∣∣∣
x=0

=
ak

k!
sin

(
kπ

2
+ b

)
.

and similarly,

Y [k] =
ak

k!
cos

(
kπ

2
+ b

)
.

Theorem 3.7. nth derivative. If y (x) = dn

dxn f (x), then

Y [k] =

(
n∏

r=1

(k + r)

)
F [k + n] .

Proof. By definition

Y [k] =
1

k!

dk

dxk

(
dn

dxn
f (x)

)∣∣∣∣
x=0

=
1

k!

dk+n

dxk+n
f (x)

∣∣∣∣
x=0

=

(
n∏

r=1

(k + r)

)(
1

(k + n)!

dk+n

dxk+n
f (x)

∣∣∣∣
x=0

)
=

(
n∏

r=1

(k + r)

)
F [k + n] .

Corollary 3.8. The differential transform of
f ′(x), f ′′(x), f ′′′′ (x) are (k + 1)F [k + 1], (k + 1) (k + 2)F [k + 2], (k + 1) (k + 2) (k + 3)F [k + 3]
respectively.

Proof. These results are obtained by simply setting n = 1, 2, 3 respectively in theorem 3.7.

Theorem 3.9. Convolution theorem. If the convolution of F [k] and G [k] is defined as

F [k]⊗G [k] =
k∑

r=0

F [r]G [k − r]

then
DT {f (x) g (x)} = F [k]⊗G [k] = G [k]⊗ F [k]

Proof. Let
y (x) = f (x) g (x)

then

Y [k] =
1

k!

dk

dxk
f (x) g (x)

∣∣∣∣
x=0

=

k∑
r=0

1

r! (k − r)!

dr

dxr
f (x)

dk−r

dxk−r
g (x)

∣∣∣∣
x=0

=

k∑
r=0

1

r!

dr

dxr
f (x)

∣∣∣∣
x=0

1

(k − r)!

dk−r

dxk−r
g (x)

∣∣∣∣
x=0

=

k∑
r=0

F [r]G [k − r] (3.3)

by interchanging the roles of f and g, we also have

Y [k] =

k∑
r=0

G [r]F [k − r] =

k∑
r=0

F [k − r]G [r] . (3.4)

Hence,
DT {f (x) g (x)} = F [k]⊗G [k] = G [k]⊗ F [k] . (3.5)
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Theorem 3.10. Suppose

y (x) =

n∏
i=1

fi (x) ,

then

Y [k] =

k∑
r1=0

k1∑
r2=0

· · ·
kn−2∑

rn−1=0

F1 [r1]F2 [r2] · · ·Fn−1 [rn−1]Fn [kn−1]

where

kp = k −
p∏

i=1

ri, 1 ≤ p < n

Proof. By definition

Y [k] =
1

k!

dk

dxk

(
n∏

i=1

fi (x)

)∣∣∣∣∣
x=0

so,

Y [k] =
1

k!

k∑
r1=0

(
k!

k1!r1!

dr1

dxr1
f1 (x)

∣∣∣∣
x=0

dk1

dxk1

(
n∏

i=2

fi (x)

)∣∣∣∣∣
x=0

)

=

k∑
r1=0

F1 [r1]

(
1

k1!

dk1

dxk1

(
n∏

i=2

fi (x)

)∣∣∣∣∣
x=0

)

repeating this process again, we have

Y [k] =

k∑
r1=0

F1 [r1]

k2∑
r2=0

F2 [r2]

(
1

k2!

dk2

dxk2

(
n∏

i=3

fi (x)

)∣∣∣∣∣
x=0

)

and continuing in this manner for n− 1 times, we have

Y [k] =

k∑
r1=0

F1 [r1]

k2∑
r2=0

F2 [r2] · · ·
kn−1∑

rn−1=0

Fn−1 [rn−1]

(
1

kn−1!

dkn−1

dxkn−1
(fn (x))

∣∣∣∣
x=0

)

=

k∑
r1=0

F1 [r1]

k2∑
r2=0

F2 [r2] · · ·
kn−1∑

rn−1=0

Fn−1 [rn−1]F [kn−1]

=

k∑
r1=0

k2∑
r2=0

· · ·
kn−1∑

rn−1=0

F1 [r1]F2 [r2] · · ·Fn−1 [rn−1]F [kn−1] .

Theorem 3.11. Suppose

y (x) =
dn

dxn
f (x)

dm

dxm
g (x)

then

Y [k] =

k∑
r=0

(
n∏

i=1

(r + i)

)(
m∏

j=1

(k − r + j)

)
F [r + n]G [k − r +m] .
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Proof. By definition

Y [k] =
1

k!

dk

dxk

(
dn

dxn
f (x)

dm

dxm
g (x)

)
=

1

k!

k∑
r=0

kCr
dr

dxr

(
dn

dxn
f (x)

)
dk−r

dxk−r

(
dm

dxm
g (x)

)

=

k∑
r=0

(
1

r!

dn+r

dxn+r
f (x)

)(
1

(k − r)!

dm+k−r

dxm+k−r
g (x)

)
thus,

Y [k] =

k∑
r=0

(
n∏

i=1

(r + i)

)(
m∏

j=1

(k − r + j)

)(
1

(r + n)!

dn+r

dxn+r
f (x)

)(
1

(k − r +m)!

dk−r+m

dxk−r+m
g (x)

)

=

k∑
r=0

(
n∏

i=1

(r + i)

)(
m∏

j=1

(k − r + j)

)
F [r + n]G [k − r +m]

Theorem 3.12. If y(x) = (1 + x)m then Y [k] =m Ck

Proof. By definition

Y [k] =
1

k!

dk

dxk
(1 + x)m

∣∣∣∣
x=0

= mCk (1 + x)m−k
∣∣∣
x=0

= mCk.

Theorem 3.13. If

y(x) =

∫ x

0

f(t)dt

then

Y [k] =

{
0 k = 0
F [k−1]

k
k > 0

.

Proof. Let f̄ (x) be the anti-derivative of f (x), then∫ x

0

f(t)dt = f̄ (x)− f̄ (0)

and

Y [k] =
1

k!

dk

dxk

(∫ x

0

f(t)dt

)∣∣∣∣
x=0

=
1

k!

dk

dxk

(
f̄ (x)− f̄ (0)

)∣∣∣∣
x=0

When k = 0,

Y [0] = f̄ (0)− f̄ (0) = 0.

and when k > 0, we have

Y [k] =
1

k!

dk

dxk

(
f̄ (x)− f̄ (0)

)∣∣∣∣
x=0

=
1

k!

dk−1

dxk−1
f (x)

∣∣∣∣
x=0

=
F [k − 1]

k
.
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Theorem 3.14. If y(x) = f (ax) then

Y [k] = akF [k] .

Proof. By using the inverse differential transform, we have

f (x) =

∞∑
k=0

F [k]xk

and clearly,

f (ax) =

∞∑
k=0

F [k] (ax)k =

∞∑
k=0

akF [k]xk

and the differential transform is

Y [k] = DT {f (ax)} = akF [k] .

Theorem 3.15. Y [k] and Ya [k] are related by the relations

Y [k] =

∞∑
r=k

rCk · Ya [r] (−a)r−k and Ya [k] =

∞∑
r=k

rCk · Y [r] ar−k

Proof. If

Ya [k] =
1

k!

dk

dxk
y(x)

∣∣∣∣
x=a

, (3.6)

then the inverse differential transform is

y(x) =

∞∑
k=0

Ya [k] (x− a)k .

By substituting the Binomial expansion, we have

y(x) =

∞∑
k=0

Ya [k]

k∑
r=0

kCrx
r (−a)k−r =

∞∑
k=0

k∑
r=0

kCr · Ya [k]x
r (−a)k−r

=

∞∑
k=0

∞∑
r=k

rCk · Ya [r]x
k (−a)r−k =

∞∑
k=0

(
∞∑

r=k

rCk · Ya [r] (−a)r−k

)
xk

and therefore

Y [k] =

∞∑
r=k

rCk · Ya [r] (−a)r−k .

Similarly,

y(x) =

∞∑
k=0

Y [k]xk =

∞∑
k=0

Y [k] (x− a+ a)k

By substituting the Binomial expansion, we have

y(x) =

∞∑
k=0

Y [k]

k∑
r=0

kCr (x− a)r ak−r =

∞∑
k=0

k∑
r=0

kCr · Y [k] (x− a)r ak−r

=

∞∑
k=0

∞∑
r=k

rCk · Y [r] (x− a)k ar−k =

∞∑
k=0

(
∞∑

r=k

rCk · Y [r] ar−k

)
(x− a)k

7
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and therefore

Ya [k] =

∞∑
r=k

rCk · Y [r] (−a)r−k .

4 Main Results

Theorem 4.1. If

y(x) =

∫ x

0

f (t) g (t) dt

then

Y [k] =

{
0 k = 0
1
k

∑k−1
r=0 F [r]G[k − 1− r] k > 0

.

Proof. Let ȳ (x) be the anti-derivative of f (x) g(x), then∫ x

0

f (t) g (t) dt = ȳ (x)− ȳ (0)

and

Y [k] =
1

k!

dk

dxk

∫ x

0

f (t) g (t) dt

∣∣∣∣
x=0

=
1

k!

dk

dxk
(ȳ (x)− ȳ (0))

∣∣∣∣
x=0

When k = 0,

Y [0] = ȳ (0)− ȳ (0) = 0.

and when k > 0, we have

Y [k] =
1

k!

dk

dxk
(ȳ (x)− ȳ (0))

∣∣∣∣
x=0

=
1

k

1

(k − 1)!

dk−1

dxk−1
f (x) g (x)

∣∣∣∣
x=0

By applying the convolution theorem 3.9, we have

Y [k] =
1

k

k−1∑
r=0

F [r]G [k − 1− r]

Theorem 4.2. Initial conditions. If

dn

dxn
y(x)

∣∣∣∣
x=0

= α then Y [n] =
α

n!
.

Proof. By definition

Y [k] =
1

k!

dk

dxk
y(x)

∣∣∣∣
x=0

8
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and so, when k = n, we have

Y [n] =
1

n!

dn

dxn
y(x)

∣∣∣∣
x=0

and inserting the initial condition, we have

Y [n] =
α

n!
.

Corollary 4.3. If y (0) = α0, y
′ (0) = α1, y

′′ (0) = α2, y
′′′ (0) = α3, then Y [0] = α0, Y [1] = α1,

Y [2] = α2
2!

and Y [3] = α3
3!
.

Proof. This is a direct consequence of theorem 4.2 by simply setting n = 0, 1, 2, 3 respectively.

Theorem 4.4. Boundary conditions. If

y (b) = β then β =

∞∑
k=0

Y [k] bk.

Proof. By definition of the inverse differential transform

y (x) =

∞∑
k=0

Y [k]xk

and so, by substituting x = b, we have

β =

∞∑
k=0

Y [k] bk.

Remark 4.1. In application, we take the Mth order approximation and we therefore set

β =

M∑
k=0

Y [k] bk.

Theorem 4.5. If a, b are constants in the first order ordinary differential equation,

a
dy

dx
+ by = 0, y (0) = α, (4.1)

then the differential transform method converges to the exact solution.

Proof. The differential equation has a general solution

y(x) = αe−bx/a

Taking the differential transform of equation 4.1, we have

a (k + 1)Y [k + 1] + bY [k] = 0, Y [0] = α

and on rearranging, we have

Y [k + 1] = − b

a (k + 1)
Y [k] .

9
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Solving this recurrence relation, we have

Y [k] =
1

k!

(
−b

a

)k

α

and thus, the solution obtained from the differential transform method is

y(x) =

∞∑
k=0

1

k!

(
−b

a

)k

αxk

= α

∞∑
k=0

1

k!

(
−bx

a

)k

= αe−bx/a.

Theorem 4.6. If a, b, c are constants in the second order ordinary differential equation,

a
d2y

dx2
+ b

dy

dx
+ cy = 0, y (0) = α0, y

′ (0) = α1 (4.2)

then the differential transform method converges to the exact solution.

Proof. Taking the differential transform of equation 4.2, we have

a (k + 1) (k + 2)Y [k + 2] + b (k + 1)Y [k + 1] + cY [k] = 0, Y [0] = α0, Y [1] = α1 (4.3)

and the differential transform solution is

y (x) =

∞∑
k=0

Y [k]xk. (4.4)

Substituting the series 4.4 in the original problem 4.2, we have

a

∞∑
k=2

k (k − 1)Y [k]xk−2 + b

∞∑
k=2

kY [k]xk−1 + c

∞∑
k=2

Y [k]xk = 0

and on rearranging, we have

∞∑
k=0

(a (k + 1) (k + 2)Y [k + 2] + b (k + 1)Y [k + 1] + cY [k])xk = 0,

and comparing coefficients gives

a (k + 1) (k + 2)Y [k + 2] + b (k + 1)Y [k + 1] + cY [k] = 0. (4.5)

Hence, the recurrence relation from the DTM is satisfied.

Theorem 4.7. If ai’s (∀ i = 1, 2, · · · , n) are constants in the nth order homogeneous ordinary
differential equation,

a0y +
n∑

r=1

ar
dry

dxr
= 0, y(0) = α0,

di

dxi
y (x)

∣∣∣∣
x=0

= αi, i = 1, 2, · · · , n− 1 (4.6)

then the differential transform method converges to the exact solution.

10
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Proof. Taking the differential transform of equation 4.6, we have

a0Y [k] +

n∑
r=1

ar

(
r∏

i=1

(k + i)

)
Y [k + r] = 0, Y [0] = α0, Y [i] =

αi

i!
, i = 1, 2, · · · , n− 1 (4.7)

and the differential transform solution is

y (x) =

∞∑
k=0

Y [k]xk. (4.8)

Substituting the series 4.8 in the original problem 4.6, we have

0 = a0

∞∑
k=0

Y [k]xk +
n∑

r=1

ar
dr

dxr

(
∞∑

k=0

Y [k]xk

)

= a0

∞∑
k=0

Y [k]xk +

n∑
r=1

ar

∞∑
k=r

Y [k]

(
r−1∏
i=0

(k − i)

)
xk−r

= a0

∞∑
k=0

Y [k]xk +

∞∑
k=r

n∑
r=1

arY [k]

(
r−1∏
i=0

(k − i)

)
xk−r

= a0

∞∑
k=0

Y [k]xk +

∞∑
k=0

n∑
r=1

arY [k + r]

(
r−1∏
i=0

(k + r − i)

)
xk

=

∞∑
k=0

(
a0Y [k] +

n∑
r=1

ar

(
r∏

i=1

(k + i)

)
Y [k + r]

)
xk

and comparing coefficients gives

a0Y [k] +

n∑
r=1

ar

(
r∏

i=1

(k + i)

)
Y [k + r] = 0. (4.9)

Hence, the recurrence relation from the DTM is satisfied.

Theorem 4.8. For a variable coefficient nth order homogeneous ordinary differential equation

a0 (x) y +

n∑
r=1

ar (x)
dry

dxr
= 0, y(0) = α0,

di

dxi
y (x)

∣∣∣∣
x=0

= αi, i = 1, 2, · · · , n− 1 (4.10)

the differential transform method converges to the exact solution.

Proof. Taking the differential transform of equation 4.10, we have

k∑
m=0

A0 [m]Y [k −m] +

n∑
r=1

(
k∑

m=0

Ar[m]

(
r∏

j=1

(k −m+ j)

)
Y [k −m+ r]

)
= 0, (4.11)

subject to

Y [0] = α0, Y [i] =
αi

i!
, i = 1, 2, · · · , n− 1.

Rearranging, we have

k∑
m=0

(
A0 [m]Y [k −m] +

n∑
r=1

Ar[m]Y [k −m+ r]

(
r∏

j=1

(k −m+ j)

))
= 0.

11
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Substituting the differential transforms

y (x) =

∞∑
k=0

Y [k]xk, ar (x) =

∞∑
k=0

Ar [k]x
k. (4.12)

into the original problem 4.10, we have

0 =

∞∑
k=0

A0 [k]x
k

∞∑
k=0

Y [k]xk +

n∑
r=1

(
∞∑

k=0

Ar [k]x
k · dr

dxr

(
∞∑

k=0

Y [k]xk

))

=

∞∑
k=0

k∑
m=0

A0 [m]Y [k −m]xk +
n∑

r=1

(
∞∑

k=0

Ar [k]x
k ·

∞∑
m=0

Y [m+ r]

(
r−1∏
j=0

(m+ r − j)

)
xm

)

=
∞∑

k=0

k∑
m=0

A0 [m]Y [k −m]xk +
n∑

r=1

∞∑
k=0

k∑
m=0

(
Ar [m]Y [k −m+ r]

(
r−1∏
j=0

(k −m+ r − j)

))
xk

=

∞∑
k=0

k∑
m=0

(
A0 [m]Y [k −m] +

n∑
r=1

Ar [m]Y [k −m+ r]

(
r−1∏
j=0

(k −m+ r − j)

))
xk

=
∞∑

k=0

k∑
m=0

(
A0 [m]Y [k −m] +

n∑
r=1

Ar [m]Y [k −m+ r]

(
r∏

j=1

(k −m+ j)

))
xk

and comparing coefficients, we have

k∑
m=0

(
A0 [m]Y [k −m] +

n∑
r=1

Ar [m]Y [k −m+ r]

(
r∏

j=1

(k −m+ j)

))
= 0. (4.13)

Hence, the recurrence relation from the DTM is satisfied.

Theorem 4.9. If ai’s (∀ i = 1, 2, · · · , n) are constants in the nth order nonhomogeneous ordinary
differential equation,

a0y +

n∑
r=1

ar
dry

dxr
= f (x) , y(0) = α0,

di

dxi
y (x)

∣∣∣∣
x=0

= αi, i = 1, 2, · · · , n− 1 (4.14)

then the differential transform method converges to the exact solution.

Proof. Taking the differential transform of equation 4.14, we have

a0Y [k] +

n∑
r=1

ar

(
r∏

i=1

(k + i)

)
Y [k + r] = F [k] , Y [0] = α0, Y [i] =

αi

i!
, i = 1, 2, · · · , n− 1 (4.15)

Substituting the differential transforms

y (x) =

∞∑
k=0

Y [k]xk, f (x) =

∞∑
k=0

F [k]xk. (4.16)

12
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in the original problem 4.14, we have

∞∑
k=0

F [k]xk = a0

∞∑
k=0

Y [k]xk +

n∑
r=1

ar
dr

dxr

(
∞∑

k=0

Y [k]xk

)

= a0

∞∑
k=0

Y [k]xk +

n∑
r=1

ar

∞∑
k=r

Y [k]

(
r−1∏
i=0

(k − i)

)
xk−r

= a0

∞∑
k=0

Y [k]xk +
∞∑

k=r

n∑
r=1

arY [k]

(
r−1∏
i=0

(k − i)

)
xk−r

= a0

∞∑
k=0

Y [k]xk +

∞∑
k=0

n∑
r=1

arY [k + r]

(
r−1∏
i=0

(k + r − i)

)
xk

= a0

∞∑
k=0

Y [k]xk +

∞∑
k=0

(
n∑

r=1

arY [k + r]

r−1∏
i=0

(k + r − i)

)
xk

=

∞∑
k=0

(
a0Y [k] +

n∑
r=1

arY [k + r]

r−1∏
i=0

(k + r − i)

)
xk

=

∞∑
k=0

(
a0Y [k] +

n∑
r=1

ar

(
r∏

i=1

(k + i)

)
Y [k + r]

)
xk

and comparing coefficients gives

a0Y [k] +
n∑

r=1

ar

(
r∏

i=1

(k + i)

)
Y [k + r] = F [k] . (4.17)

Hence, the recurrence relation from the DTM is satisfied.

Theorem 4.10. For a variable coefficient nth order nonhomogeneous ordinary differential equation

a0 (x) y +

n∑
r=1

ar (x)
dry

dxr
= f (x) , y(0) = α0,

di

dxi
y (x)

∣∣∣∣
x=0

= αi, i = 1, 2, · · · , n− 1 (4.18)

the differential transform method converges to the exact solution.

Proof. Taking the differential transform of equation 4.18, we have

k∑
m=0

A0 [m]Y [k −m] +

n∑
r=1

(
k∑

m=0

Ar[m]

(
r∏

j=1

(k −m+ j)

)
Y [k −m+ r]

)
= F [k] , (4.19)

subject to

Y [0] = α0, Y [i] =
αi

i!
, i = 1, 2, · · · , n− 1.

Rearranging, we have

k∑
m=0

(
A0 [m]Y [k −m] +

n∑
r=1

Ar[m]Y [k −m+ r]

(
r∏

j=1

(k −m+ j)

))
= F [k] .

Substituting the differential transform 4.20

y (x) =

∞∑
k=0

Y [k]xk, ar (x) =

∞∑
k=0

Ar [k]x
k, f (x) =

∞∑
k=0

F [k]xk. (4.20)

13
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in the original problem 4.18, we have

and comparing coefficients, we have

k∑
m=0

(
A0 [m]Y [k −m] +

n∑
r=1

Ar [m]Y [k −m+ r]

(
r∏

j=1

(k −m+ j)

))
= F [k] . (4.21)

Hence, the recurrence relation from the DTM is satisfied.

5 Numerical Examples

Example 5.1. Consider the homogeneous second order linear ordinary differential equation

y′′ + 5y′ + 6y = 0; y (0) = 0, y′(0) = 1.

The general solution is

y = e−2x − e−3x =

∞∑
k=0

(
(−2)k − (−3)k

)
xk

k!

and to O(7),we have

y = x− 5

2
x2 +

19

6
x3 − 65

24
x4 +

211

120
x5 − 133

144
x6 +O(x7) (5.1)

We take the Differential Transform and we get

(k + 1) (k + 2)Y [k + 2] + 5 (k + 1)Y [k + 1] + 6Y [k] = 0,

subject to
Y [0] = 0, Y [1] = 1.

By rearranging, we have

Y [k + 2] = −5Y [k + 1]

(k + 2)
− 6Y [k]

(k + 1) (k + 2)
,

so that the 6th order approximation is

y(x) =

M∑
k=0

Y [k]xk = x− 5

2
x2 +

19

6
x3 − 65

24
x4 +

211

120
x5 − 133

144
x6 + · · ·

Clearly, this series converges to the exact solution as shown in equation 5.1.

14
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Example 5.2. Consider the equation the nonhomogeneous second order linear ordinary differential
equation

y′′ + 5y′ + 6y = ex; y (0) = 0, y′(0) = 1.

The general solution is

y =
1

12

(
8e−2x − 9e−3x + ex

)
= x− 2x2 +

5

2
x3 − 25

12
x4 +

161

120
x5 − 7

10
x6 + · · ·

We now proceed to take the differential transform of the problem

(k + 1) (k + 2)Y [k + 2] + 5 (k + 1)Y [k + 1] + 6Y [k] =
1

k!
, Y [0] = 0, Y [1] = 1

on rearranging, we have

Y [k + 2] =
1

(k + 2)!
− 5Y [k + 1]

(k + 2)
− 6Y [k]

(k + 1) (k + 2)
.

So that

Y [2] = −2, Y [3] =
5

2
, Y [4] = −25

12
, Y [5] =

161

120
, Y [6] = − 7

10
, · · ·

and thus we have the solution as

y = x− 2x2 +
5

2
x3 − 25

12
x4 +

161

120
x5 − 7

10
x6 + · · ·

which converges to the exact solution.

Example 5.3. Consider the nonhomogeneous first order linear ordinary differential equation

(1 + x)
dy

dx
+ y = (1 + x) ex, y (0) = 0.

The exact solution is

y = x (1 + x)−1 ex = x
∞∑

n=0

(−x)n
∞∑

m=0

(
xm

m!

)

= x

∞∑
n=0

n∑
m=0

(
(−1)m

(n−m)!

)
xn = x+

1

2
x3 − 1

3
x4 +

3

8
x5 + · · ·

6 Conclusion

The first part of this work is dedicated to proving some theorems whose proofs have been long
ignored. Most authors assume the knowledge of these theorems, so they do not bother to prove the
theorems. The theorems are therefore proved to serve as a reference for any work that would want
to use the theorems without proofs.

The later part of this work establishes the convergence of the solution obtained from the DTM to
the exact solution. The DTM solution converges to the exact solution for any ordinary differential
equation, whether homogeneous or nonhomogeneous. These theorems are illustrated with some
examples.

The differential transform method reduces the difficulty of solving an ordinary differential equation
to a simple recursive equation that are relatively easy to solve. This work establishes that without
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solving a differential equation to get a closed form solution, we can obtain an approximation (up
to any term of interest) to the solution by solving using the DTM.

It is important to mention here that since DTM is a method derived from the Taylors’ expansion
method and Taylors’ expansion is only valid for functions that are continuous in the region of
concern, we note that this method will as well be useful only for solutions that are continuous in
the region under consideration.

In addition to this, we recognise that the solution is assumed to admit a Taylors’ expansion.
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