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Abstract

By using the bifurcation theory of dynamical systems to the generalized KP equation, under
different parametric conditions, various sufficient conditions to guarantee the existence of the
solitary wave solutions, periodic cusp wave solutions and compactons solutions are given. Some
exact explicit parametric representations of the above waves are determined.
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1 Introduction

Kadomtsev and Petviashvili [1] first considered the following KP equation:
u, +a (u;Z + uuxx) +QU,,, +eU,, =0,(1.1)

wherea ,g,€ are arbitrary constants. This equation is used to describe weakly dispersive and

nonlinear medium perturbation. The KP equation can also be regarded as KdV equation in the
promotion of two-dimensional space. KP equation in (2+1)-dimensional eguation occupies a very
important position which has N-soliton solutions, infite symmetries and conservation laws, Painlev
properties and so on [2-5].

In this paper, we shall study all solitary waves [6], compactons [7] and periodic cusp waves in
the parameter space of the following (2+1)- dimensional KP-like K(m,n) equation:

m 2 n n _
a(u™) +a(u’+uu,)+g(u") +e(u )w =0,12)
wherea ,g,€ are arbitrary constants, M, N and a are non-zero integers and a non-zero arbitrary

constant, respectively. This equation is to promote the (2+1)-dimensional KP equation which has
similar K (m, n) equation form [8-10]. | believe in the future, as the equation continues to be studied,
it will be like to other equations used in many physics areas such as nonlinear optics, plasmas, fluid

mechanics, condensed matter and many more. Specially, when a=mM=n=1, Eq. (1.2) becomes
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KP equation. But in this paper we consider

m>n2>3,ac # 0and we shall study all traveling wave solutions in the parameter space of this
system. Letu(x,y,t) =f (x+wy—ct)=f (X), where c and w are the wave speed and the wave
number on the y-direction, respectively. Then Eq.(1.2) becomes

—ac(f m)” +a ((f ')2 +ff ”) +g (f " )”” +ew (f n)” =0, (1.3) where™ is the derivative with

respect toX . Integrating (1.3) twice, setting the constants of integration to be zero we have the
following ordinary differential equation

1 "
—acfm+§af2+g(f”) +ewdf "=0. (1.4)
2
a w-e g . ) .
Let g=——,p=———,r=—— .Then Eq.(1.4) is equivaent to the following two-
2ac ac ac

dimensiona system:
2 n m _ n-2.2
i:z, dz_ of P+ pf "+ +rr11(n 1)f "*z | w9
dx dx rnf "

With the first integral

1 - 1
H(f,2)=rmf 209z pgmz| Ay Pyn2y 2 gm2i_p g
2 n+2 2n m+n
System (1.5) is a 5-parameter planar dynamical system depending on the parameter group
(m,n, p,q,r). For different M,Nand a fixed I , we shall investigate the bifurcations of phase

portraits of (1.5) in the phase plane (f , z) as the parameters P and (are vary. The bifurcation
theory of dynamical systems plays an important role in our study [11].

Clearly, the right hand of the second equation in (1.5) is not continuous when f = 0. In other words,

on the above straight line of the phase plane (f , 2), fx" has no definition. This implies that the

smooth system (1.2) sometimes has non-smooth traveling wave solutions. This phenomenon has
been studied by some authors [12-16].

2 Bifurcations of Phase Portraits of (1.5)

In this section, we study all possible periodic annuli, homoclinic and heteroclinic orbits defined by
the vector fields of (1.5) depending on the parameter space( m,n, p,q,r ) . System(1.5) has the same
topological phase portraits as the following system

df _ dz
—=rf""'z, —=-
dz dz

except for the straight lines f = 0, where dx = rrf ""dz . Now, the straight lines f =0 isan

[qf 24 pf "+f "+ rn(n-1)f n’222],(2-1)
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integral invariant straight line of (2.1). Denote that

_ n-2 m-2 ’ . _ n-3| ¢ m-n p( n- 2)
F(F)=qepf "24f ™2, £/(f)=(m-2)f {f P22 ](2.2)

For m-n=2(ez"),m-2=2m-1n-2=2n-1m,neZ" p<0  when

1

f :fo{—m_m,r(ﬂo):o.

m-2 |
B m-2
We have f(3f )=q+ _Pn-2 m—n(ﬂn) Wwhich imply respectively the relations in the
. m=2 n-2
( p, q) -parameter plane
m-2 m-2
L qz(m—nJ{_ p(n—Z)T‘“, L q:_(m—nj{_ p(n—z)}m—n_
n-2 m-2 n-2 m-2
1
For m-n=2(ez"),m-2=2m,n-2=2n,p<0 , when f:f0:|:_ Pr(:—zz)}m—n '

m-2
f'(+f,)=0 We have f(ﬂo)=q+[ P(n-2) ”H‘(n_m) which imply respectively the
m-2 n-2

relationsin the ( p, ) -parameter plane

m-2

L g Z(r::gj{_ Dr(:_—zzqm.

1
For m—n=2-1(l Z+),m— 2=2m,n-2=2n -1 ,when f:f0:|: P2 |m-n '
m-2
m-2
f'(f,) =0. We have f(f,) =q+{——p(n_2)}m_n(—n_mj ,which imply respectively the relations
m-2 n-2

inthe (P, q)-parameter plane

L: q:(r:_—;){ pr(nnzz)}“_
1

For m—n=2-1(1eZ%),m-2=2m,n-2=2n -1, when f :foz[_p(n_—ZZ) m=n
m_
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m-2

f'(f,) =0. We have f(f,) =q+{—m}m_n (ﬂnj ,which imply respectively the relations
m-2 n-2

inthe (P, q)-parameter plane

L = -(:‘:2)[ pxzz)}"m”ﬁ.

Let M(f,,z) bethe coefficient matrix of the linearized system of (2.1) at an equilibrium

point (f ,z) . Then, we have

J(f,,0)=det(M (f;,0))=rrf " (2q+ prf "2 +nf,™?).

It J <0 then the equilibrium point is a saddle point; if J >0and Trace(M (f,,Zz,)) =0, then

it is a center point; if J >0 and (Trace(M (fe, ze)))2 —4] (fe, Ze) >0, then it is a node; if

J =0 and the index of the equilibrium point is 0 then it is a cusp; otherwise, it is a high order
equilibrium point.

For the function defined by (1.6), we denote that

q(m-2) s p(m-n) ne| g
(n+2)(m+n) 2n(m+n)f' ’ .

h =H(f,,0)=f"?

We next use the above statements to consider the bifurcations of the phase portraits of
(2.1). In the ( p, q) -parameter plane, the curves partition it into 4 regions for m—n=2 or

mM-n= 2l -1 shownin Fig.1 (1-1),(1-2),(1-3), and (1-4), respectively.

o W (o0
N\ €2 €2) ,/ (1) (D1)

5 \ : 5 5 4% = ’Z)J 5
@3 (©4)
(C4) -5 (C4) -5+ (DD\
1-1) m-n=21, (12 m-n=2l, (1-3) m-n=20-1,(1-4) m-n=2l -1,
n=2n+1.n=2n+2. n=2n+1.n=2n+2.

Fig. 1 Thebifurcation set of (1.5) in (p,q)-parameter plane, m,n e Z".
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I. The case # 0. We use Fig.2, Fig.3, Fig.4, and Fig.5 to show the bifurcations of the phase

portraits of (2.1) which has solitary wave solutions, periodic cusp wave solutions and compactons
solutions.

(2-8)

Fig. 2 The phase portraitsof (1.5) for m—-n=2l,n=2n +11l,n € Z"
(22) r>0n =2 (p,g) €(A) , (22 r>0n =2 (p,g €(A) , (23 r>0n =1
(P.) (A) . (24) r>0n=1(pg) e(A) . (25 r>0n=1(pq) <(A) . (2:6)
r>on =1 (p,g €(A) .(2-7)r<0,n =1 (p,q) €(A) ,(28r<0,n =1 (p,g) €(A)

| @\ |

Fig. 3 Thephaseportraitsof (1.5) for m-n=2l,n=2n +2,I,n e Z".
(3'1) r> 0,(p, q) € (Bz) ’ (3_2) r> 0! n1 =l.(p,q) € (Bg) !(3'3) r> 0! n1 =l.(p,q) € (B4) ’ (3_4)
r<o,n =21(p,q) €(B,).

(31) (32) 33
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(4-2) | @9

a4y (4-5) T @)
Fig. 4 Thephaseportraitsof (1L.5) form-n=2-1n=2n +1l,n eZ".
(4-1) r>0n =1(p,q)e(C) , (4-2)r >0,n =L(p,q) €(C,) , (4-3)r>0,n =1 (p,a) €(C,) ,
(4-4)r<0,(p,g)e(C) ,(45r<0,n =1(p,g)e(C,) ,(46)r<0,n =1 (p,q)(C,).

(5-6)

Fig. 5 Thephaseportraitsof (1.5) form-n=2l-1,n=2n+2,,n e Z".
(5'1)r >Ov(p!q) E(Dg) ’ (5_2) r >01 n1 =1!(pvq) € (Dg) ’ (5_3) r >0! n1 =lv(p!q) € (D4) ’ (5'4)
r<0n =1(p,g)e(D,) ,(55r<0n =1(p,q)e(D,) ,(56)r<0,(p.,g)e(D,).
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I1. Thecase = 0. We consider the system

df dz
—=rfz, —=—|pf?+f "™ +rn(n-1)2*|, 2.3
dz dz [pf ( ) ] (&5
with the first integral
1 2(n-1)_2 ni2| P gn2 1 m-2
H(f,z)==rnf Z+f M e —f =h. (2.4)
2 2n m+n

Fig.6 and Fig.7 show respectively the phase portraits of (2.3) which has solitary wave solutions,
periodic cusp wave solutions and compactons solutions.

T

(7-1) (7-2) (7-3)
Fig.6forq=0,n=2n+1n e€Z",Fig.7 forq=0,n=2n+2neZ".

(6-1) r>0m=2m +1m>n,p<0 , (6-2) r>0m=2m+2,m >n,p<0 , (6-3) r <0,
m=2m+2,m>n,p>0, (7-1) r>0m=2m+1m >n,p<0 , (7-2) r<0,m=2m +1,
m>n,p>0,(7-3)r>0m=2m +2,m >n,p<0.

3 Exact Explicit Parametric Representations of Travelling Wave
Solutions of (1.5)

In this section, we only give some exact explicit parametric representations of solitary wave
solutions, periodic cusp wave solutions and compactons solutions. Because the phase portraits (6-2),
(7-1), (2-3), (2-7), (3-2), (4-1), (4-2), (4-3), (5-1), (5-2) and (5-3), are there flections of the phase
portraits (6-3), (7-2), (2-4), (2-8), (3-3), (4-5), (4-4), (4-6), (5-6),(5-4) and (5-5), with respect to the z-
axis. So we consider the above phase portraits, the only discussion the phase portraits (6-2), (7-1), (2-
3), (2-7), (3-2), (4-1), (4-2), (4-3), (5-1),(5-2) and (5-3).

(1) Suppose thatn=2n +1,m=2m+1m >n,m,n eZ",r>0,p<0,q=0(see Fig. 6 (6-
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1)). Notice that H (O, O) =0=h,. We see from (2.4) that the arch curve connecting
A(0,0). The arch curve has the algebraic equation

2o 1 P e 1 gamn| (3.1)
r(an+1)| 2n+1 m+n+1

Thus, by using the first equation of (1:5) and (3.1), we obtain the parametric representation of this

arch asfollows:
_1
_ _ — m-n
f(x)zinmm”)sech(u/_px} e
2n +1 2n+1N r

So (3.2) givesrise to two solitary wave solutions of peak type and valley type of (1.2).

(2) Suppose that n=2n+1,m=2n+2,n e€Z ,rp<0,q=0 (see Fig. 6 (6-2) or (6-3)). By
using similar method of (1), we obtain the parametric representation of this arch as follows:

—n(4 3 _
f (x) = M 1—tanh? L /_px _ (3.3)
4n +2 an+2\V r
So (3.3) givesrise to a solitary wave solutions of peak type and valley type of (1.2).

(3)Suppose that n=2n +2,m=2n+3,n € Z",rp<0,q=0 (see Fig. 7 (7-1) or (7-2)). By
using similar method of (1), we obtain the parametric representation of this arch as follows:

—p(4 _
f (x):M 1-tanh? _ 1 Bl (3.4)
4(n +1) An+1) N r
So (3.4) givesrise to a solitary wave solutions of peak type and valley type of (1.2).

(4) Suppose thatn=2n +2,m=2n+2,m >n,m,n €Z" ,r >0,p<0,q=0 (see Fig. 7 (7-
3) ). By using similar method of (1), we obtain the parametric representation of this arch as follows:

f(x)==+ \/_p(zr?n;ni;z) sech(%\/?x] mllnl (35)

So (3.5) givesrise to two solitary wave solutions of peak type and valley type of (1.2).

(5) Suppose that n=3,m=5,r > 0,(p,q) € (A) (seeFig. 2 (2-3)), corresponding to the orbit
defined by H (f ,z) = 0 to the equilibrium point A( 0, 0) , the arch curve has the algebraic equation
1

z ZE(df —f 2)(f 2+ df +4—§+d2),(3-6)
r
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4
where d is the real root of the equation of f %+ df —i-?p+d2 =0. Thus, by using the first

equation of (1.5) and (3.6), we obtain the parametric representation of this arch as follows:
%

s(x)=—V P
) cn(Qx; k)

(37

P4, - P4,
(I 2—1 D1z2r

df  12-11 4 2p
k= |—2% S22 1 2satistyl P (Cod) (B +—)=0, p, =1 2 +dl |,
pqu_pqu ds (S_l) d 3 2

4 4
p2=I12+d|1+—p+d2,q1:—I J+dl,,q, =17 +dl 2+—p+d2.So(3.7)givesri51etoa
3 3

wherecn(x; k) isthe Jacobin elliptic functions with the modulok and Q, =

compacton solution of (1.2).
(6) Suppose that N=3, m=5,r < O,( p, q) € (AZ)U(As) (see Fig. 2 (2-3)), corresponding

to the orbit defined by H(f,z) =0 to the equilibrium point A(O, 0), the arch curve has the

algebraic equation
1
% :12(_r)(f ~£)(F ) (Fa—f ) (F, 1), (39

4 8
where f <f <f, <f4,f‘(fi3+—lofi +—q) =0,i =1-4. Thus, by using the first equation of(1.5) and
3 5

(3.8), we obtain the parametric representation of this arch as follows:

f(X):(f4—f2)f3—f4(f3—fz)snz(sz;kz)
(f,—f,)—(f,—f,)n*(Qx;k,)
where  sn(x; k) is the Jacobin dliptic functions with the modulo k and
0 =l\/(f4_f2)(f3_f1) k — (fs_fz)(f4_f1)
24 ~3r P OA(F, T, (Fo 1))
solution of (1.2).

, (3.9)

. S0 (3.9) gives rise to a compacton

(7) Suppose that Nn=4,m=6,r > O,( p, q) € (BS) U ( B4) (see Fig. 3 (3-2)), corresponding

to the orbit defined by H(f ,z) =0 to the equilibrium point S, [O, f} , the arch curve has the
r

algebraic equation

1( [ , 5q 5 [25 , 59 5
Z=—| [Z2p_A_Zp_f2| |22 Znif2] 3.10
ZOr( 64”3 8" ]L 6a” 38" ] &0

Thus, by using the first equation of (1.5) and (3.10), we obtain the parametric representation of this
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arch asfollows:

25 , 54 5 ) 2K (k)
f(x)=4|,|[=p*-=2-= n(Q.x; X < 3.11
(%) (Mpg)ng (Qx:k,) o, (31
25 , 50 5
p - — 5P
where Qsz\/l 25 —~p°- >4 K = 3 8 , K(K) is the first kind of
10r ' 64 3 ,[25 . 5
64 3

complete elliptic integral. So (3.11) gives rise to two periodic cusp wave solutions of peak type and
valley type of of (1.2).

(8) Suppose that n=4,m=6,r < 0,(p,q) € (B,) (see Fig. 3 (3-4)). By using similar method
of (7), we obtain the parametric representation of this arch as follows:
2K (k)
Q, ‘ ’

5y, [ A 5,_ |5 5
8" Vea” "3 | _ 8" VeaP "3
5q

5(-r) "ty s o+ |25 5
8 64 3
two periodic cusp wave solutions of peak type and valley type of (1.2).

X <

(3.12)

where O, = —

. S0 (3.12) givesrise to

(9) Suppose that n=3,m=4,r >0,(p,q) € (C,) (see Fig. 4 (4-1)), corresponding to the orbit
defined by H(f,z) =0 to the equilibrium point A( 0, 0) , the arch curve has the algebraic equation

2 7 1[40 , 28 7 1[40 , 28
2= (0-F )|+ p—= [ p* =g || f + = pr= [~ pP - g | (@13
2 )[ 1272\ 5qJ( 127" 2\36" 5q] G

Thus, by using the first equation of (1.5) and (3.13), we obtain the parametric representation of this
arch asfollows:

f {49p2—36(;12 pz—qﬂ (1- s (Qpx;ks )
(x)= . (314)

12“7p—6 p p* - ?Q}mz(ﬂt-,x;ks)—(m%,/p —28qﬂ
49 28 7 1 /49 28
Tp+6,p - fp—n/f p*-"20q
where (), = 36 12 236 5 .S0 (3.14) givesrise

K A S
12 2\ 36 5
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to a compacton solution of (1.2).

(10) Suppose thatn =3, m=4,r > 0,(p,q) € (C,) (see Fig. 4 (4-3)). By using similar method
of (9), we obtain the parametric representation of this arch as follows:

’
f(x) 5 ()
X )=
7 1/49228 49 , 28
_ e [P 2R [9) _“°
(12'O 2\36 " q] (Q5K) =36 P 5
T pp 149 e 28,
1\/2/49 k- | 127 2Vs" 5

2\21r V36 49 , 28

(3.15)

where Qg =

So (3.15) givesrise to a compacton solution of (1.2).

(11) Suppose that n=4,m=>5,r > 0,(p,q) € (D;) (see Fig. 5 (5-2)), corresponding to the
orbit defined by H (f , zZ) = O to the equilibrium point S, , the arch curve has the algebraic equation

1 9p 3
Z=—1|F3-Ef2_Zq|. 3.16
18r( 8 qu (3.10

Thus, by using the first equation of (1.5) and (3.16), we obtain the parametric representation of this

arch asfollows:
\/72rK( A+b -l j

3p X 2A

f(X)=—1 05, 0s |, X< , 3.17

(x)=—73 w( % QSJ x| Ta (317)

27 2 1 3 2 2 2 | B 9p2
h _l e g —ZpP+6q . A =(Iy-l = =22
where G =g P BT P (B-1)+a . == 8 o8

3[5_9P2] .

.__\8 8/ B:(32p3+384q+\/295p6+24576p3q+147456q2 )5 So (317)

TS
gives rise to a periodic cusp wave solutions of peak type of (1.2).

(12) Suppose that n=4,m=>5,r >0,(p,q) € (D,) (see Fig. 5 (5-3)), corresponding to the
orbit defined by H (f , zZ) = 0 to the equilibrium point S, , the arch curve has the algebraic equation

1 9p,., 3 1
Z=—r| f°-=f2-=q|=—=(f -f,)(f -F,)(f -F,), 3.18
wheref  >f, >fl,fi3 +9—8pfi +§q =0,i =1-3.Thus, by using the first equation of (1.5) and (3.18),

we obtain the parametric representation of this arch as follows:
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f(x)=f,+(f,—f,)en’(Qx:k,), [x|< Kg()k7), (3.19)

7

—f

3 2 .S0 (3.19) gives rise to two periodic cusp wave solutions of
3 1

peak type and of valley type of (1.2).

1
whereQ_ = —4|——,
7 6\ o2r 7

4 Conclusion
In this paper, we have considered all solitary wave, periodic cusp wave and compactons for the KP-
like K(m,n) system (1.2) in its parameter space, by using the method of dynamical systems. We

obtain some parametric representations for solitary wave, periodic cusp wave and compactons of
(1.2) in different parameter regions of the parameter space.
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