STM Article Repository

Niedermayer, Fiona and Schauberger, Gunther and Rathmann, Wolfgang and Klug, Stefanie J. and Thorand, Barbara and Peters, Annette and Rospleszcz, Susanne and Gao, Peng (2024) Clusters of longitudinal risk profile trajectories are associated with cardiometabolic diseases: Results from the population-based KORA cohort. PLOS ONE, 19 (3). e0300966. ISSN 1932-6203

[thumbnail of journal.pone.0300966.pdf] Text
journal.pone.0300966.pdf

Download (1MB)

Abstract

Background
Multiple risk factors contribute jointly to the development and progression of cardiometabolic diseases. Therefore, joint longitudinal trajectories of multiple risk factors might represent different degrees of cardiometabolic risk.

Methods
We analyzed population-based data comprising three examinations (Exam 1: 1999–2001, Exam 2: 2006–2008, Exam 3: 2013–2014) of 976 male and 1004 female participants of the KORA cohort (Southern Germany). Participants were followed up for cardiometabolic diseases, including cardiovascular mortality, myocardial infarction and stroke, or a diagnosis of type 2 diabetes, until 2016. Longitudinal multivariate k-means clustering identified sex-specific trajectory clusters based on nine cardiometabolic risk factors (age, systolic and diastolic blood pressure, body-mass-index, waist circumference, Hemoglobin-A1c, total cholesterol, high- and low-density lipoprotein cholesterol). Associations between clusters and cardiometabolic events were assessed by logistic regression models.

Results
We identified three trajectory clusters for men and women, respectively. Trajectory clusters reflected a distinct distribution of cardiometabolic risk burden and were associated with prevalent cardiometabolic disease at Exam 3 (men: odds ratio (OR)ClusterII = 2.0, 95% confidence interval: (0.9–4.5); ORClusterIII = 10.5 (4.8–22.9); women: ORClusterII = 1.7 (0.6–4.7); ORClusterIII = 5.8 (2.6–12.9)). Trajectory clusters were furthermore associated with incident cardiometabolic cases after Exam 3 (men: ORClusterII = 3.5 (1.1–15.6); ORClusterIII = 7.5 (2.4–32.7); women: ORClusterII = 5.0 (1.1–34.1); ORClusterIII = 8.0 (2.2–51.7)). Associations remained significant after adjusting for a single time point cardiovascular risk score (Framingham).

Conclusions
On a population-based level, distinct longitudinal risk profiles over a 14-year time period are differentially associated with cardiometabolic events. Our results suggest that longitudinal data may provide additional information beyond single time-point measures. Their inclusion in cardiometabolic risk assessment might improve early identification of individuals at risk.

Item Type: Article
Subjects: GO for ARCHIVE > Biological Science
Depositing User: Unnamed user with email support@goforarchive.com
Date Deposited: 05 Apr 2024 10:59
Last Modified: 05 Apr 2024 10:59
URI: http://eprints.go4mailburst.com/id/eprint/2206

Actions (login required)

View Item
View Item