STM Article Repository

Backerra, Anna C. M. (2019) Relation between Planck’s Constant and Speed of Light, Predicting Proton Radius More Accurately. Applied Physics Research, 11 (5). p. 1. ISSN 1916-9639

[thumbnail of 5ddd557b46071.pdf] Text
5ddd557b46071.pdf - Published Version

Download (313kB)

Abstract

In twin physics, descriptions of phenomena on a quantum-mechanical as well as astronomical scale are reconciled by considering them in a complementary way. This is in agreement with the view of Heisenberg and carried out by using the definition of complementarity as given by Max Jammer. The obtained theoretical results can be identified with basic physical phenomena like the forces of nature, a series of elementary particles and gravitational waves. If the proton as described by twin physics is combined with the early ideas of Einstein about the energetic equivalence of mass and radiation, a relation between the Planck’s constant and the speed of light is found, in which the mass and radius of the proton occur, together with a factor four. This factor acts as a conversion factor from mass to radiation. Besides of that, this relation leads to a more accurate prediction of the radius of the proton.

Item Type: Article
Subjects: GO for ARCHIVE > Physics and Astronomy
Depositing User: Unnamed user with email support@goforarchive.com
Date Deposited: 18 Apr 2023 05:58
Last Modified: 29 Jan 2024 06:14
URI: http://eprints.go4mailburst.com/id/eprint/606

Actions (login required)

View Item
View Item