STM Article Repository

Chen, Yan and Gao, Chunxiang and Chu, Wuli (2022) Effect and Mechanism of Roughness on the Performance of a Five-Stage Axial Flow Compressor. Aerospace, 9 (8). p. 428. ISSN 2226-4310

[thumbnail of aerospace-09-00428-v2.pdf] Text
aerospace-09-00428-v2.pdf - Published Version

Download (8MB)

Abstract

In order to prolong the service life of multistage axial compressors, it is increasingly important to study the influence of blade surface roughness on the compressor performance. In this paper, a five-stage axial compressor of a real aero-engine was selected as the research object, and an equivalent gravel roughness model was used to model the roughness based on measured blade surface roughness data. Furthermore, the impact of blade surface roughness on the performance at design rotational speed was studied by full three-dimensional numerical simulation, and the mechanism of performance variation caused by the roughness was discussed combined with quantitative and flow field analyses. The results show that, when the blade surface roughness of all blades increases, the peak total efficiency decreases by approximately 0.4%, the blocking mass-flow decreases by approximately 0.3%, and the stable working range changes little. When the surface roughness of all rotor blades increases, the performance decline is close to that of all rotor and stator blades, and the variation in stator blade roughness has little effect on the compressor performance. Regarding the variation in roughness, the performance of the latter stage is more sensitive than that of the previous stage, and the decline in the performance of the fifth stage contributes the most to the total performance degradation of the compressor. Once the surface roughness of the fifth-stage rotor blade increases, the flow in the middle of the rotor blade deteriorates and the stage performance decreases obviously, which is the main reason for the decline in the overall performance.

Item Type: Article
Subjects: GO for ARCHIVE > Engineering
Depositing User: Unnamed user with email support@goforarchive.com
Date Deposited: 11 Apr 2023 06:11
Last Modified: 01 Feb 2024 04:18
URI: http://eprints.go4mailburst.com/id/eprint/549

Actions (login required)

View Item
View Item